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Abstract: The onset of oscillatory bifurcations in a porous horizontal layer L, uniformly rotating
about a vertical axis, with vertically stratified porosity, heated from below and salted from above and
below, is investigated. Denoting by Pi, (i = 1, 2), the Prandtl numbers of the salt Si salting L from
below (i = 1) and above (i = 2) respectively, it is shown that: (i) in L the oscillatory bifurcations can
occur only if one of the structural conditions P1 > 1, P2 < 1 or P1 = 1, P2 < 1 or P1 > 1, P2 = 1
is verified; (ii) exists a bound R̄2 for the Rayleigh number R2 of S2 such that R2 < R̄2 guarantees
the absence of cold convection; (iii) via a new approach based on the instability power of each
coefficient of the spectrum equation, criteria of existence, location and frequency of oscillatory (Hopf)
bifurcations are furnished for any porosity stratification law. These criteria, as far as we know are,
for the case at stake, the first criteria of Hopf bifurcations appearing in literature. We are confident
that, via experimental results, will be validated.

Keywords: convection; Hopf bifurcation; rotation; vertically stratified viscosity

1. Introduction

The onset of thermal convection in porous layers with vertically stratified permeability
and/or viscosity, for its importance in geophysical phenomena and in the construction
of artificial porous materials, has attracted—in the past as nowadays—the attention of
scientists [1–14]. The increase in viscosity with depth in the earth’s mantle has been studied
in [1,2]; the changes in permeability due to mineral diagenesis in fractured crust has been
analyzed in [3]; in references [4,5] the porosity changes due to the subterranean movement
and the increase in permeability and porosity near solid wall, are considered; the influence
of porosity stratification on the onset of thermal convection in the construction of artificial
porous materials is studied in [2].

In the present paper a porous horizontal layer with depth-dependent permeability
and viscosity—heated from below, rotating uniformly about a vertical axis and salted
from above and from below—is considered. The scope is to analyze the effects of such
stratifications on the onset of Hopf bifurcations. The paper is organized as follows.
In Sections 2 and 3 same basic preliminaries concerning the model equations (Section 2)
and the linear stability of the thermal solution (Section 3) are given. Section 4 is devoted to
the spectrum equation of the problem at stake, while in the subsequent Section 5 the insta-
bility basic property of the coefficients of the spectrum equation is recalled. In Section 6 it is
shown the existence of hidden symmetries and structural conditions on the salts necessary
for the existence of oscillatory bifurcations are found.The condition for avoiding the onset
of instability for each value of the thermal Rayleigh number (cold convection) is found in
Section 7. The criteria for the onset of oscillatory bifurcations are obtained in the subsequent
Section 8. Section 9 is devoted to the exponentially increasing porosity. The paper ends
with some final remarks (Section 10).
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2. Preliminaries

Let two different chemical components (“salts”) Sα (α = 1, 2), be dissolved in the fluid
porous layer L and let the equation of state be

ρ = ρ0[1− α∗(T − T0) +
2

∑
α=1

Aα(Cα − C̃α)] (1)

where ρ, T, Cα are the density, temperature and salts concentrations with ρ0, T0, C̃α reference
values and α∗, Aα thermal and solute expansion coefficients. We denote by Oxyz an orthog-
onal frame of reference with fundamental unit vectors i, j, k (k pointing vertically upwards).
Let d = const. > 0 and L = z ∈ [0, d]. The isochoric motions in L—rotating uniformly
around the z axis with velocity ω̄ – are governed, in the Boussinesq approximation [6], by

∇P = −µ

k̃
v− ρg− 2ρ0ω̄k× v

T,t + v · ∇T = k∆T, ∇ · v = 0

Cα,t + v · ∇Cα = kα∆Cα

(2)

with the list of symbols given by

P pressure field, T temperature field,
v seepage velocity, µ = µ̃ f1(z)fluid viscosity,
k̃ = k̄ f2(z) permeability, k thermal diffusivity,
kα diffusivity of Sα, k̄ reference permeability,
µ̃ reference viscosity

defined in [6]. Passing to the boundary conditions, since in (2)1 there are not derivatives in
the velocity, one needs only to prescribe the normal component of v: we require that this
component is null. As concerns the temperature and the salts, we assume that their values
are fixed. Therefore to (2) we append precisely the boundary conditions{

T(0) = T1, T(d) = T2 , v · k = 0, at z = 0, d
Cα(0) = Cαl , Cα(d) = Cαu α = 1, 2, δC1 > 0, δC2 < 0 ,

(3)

with T1, T2, Cαl , Cαu (α = 1, 2) positive constants and Cαl − Cαu = δCα (α = 1, 2), T1 > T2.
The boundary value problem (2) and (3) admits the conduction solution m0 = (ṽ, p̃, T̃, C̃α)
given by 

ṽ = 0 , T̃ = −βz + T1 , β =
T1 − T2

d
, C̃α = Cαl −

z(δCα)

d

P̃ = p0 + ρ0gz2
[
−α∗β

2
+ A1

(δC1)

2d
+ A2

(δC2)

2d

]
+

−ρ0gz
[
1− α∗(T1 − T0) + A1(C1l − C̃1) + A2(C2l − C̃2)

]
(4)

where p0 is a constant. Setting

v = ṽ + u , p = P̃ + Π , T = T̃ + θ , Cα = C̃α + Φα (5)
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and introducing the scalings

t = t∗
d2

k
, u = u∗

k
d

, Π = Π∗
µ̃k
k̄

, x = x∗d , θ = θ∗T] ,

Φα = (Φα)∗Φ
]
α , T] =

(
µ̃k|δT|

α∗ρ0gk̄d

)1/2

, Φ]
α =

(
µ̃kPα|δCα|
Aαρ0gk̄d

)1/2

,

R =

(
α∗ρ0gk̄d|δT|

µ̃k

)1/2

, Rα =

(
Aαρ0gk̄dPα|δCα|

µ̃k

)1/2

, T =
2ρ0ω̄k

µ̃
,

δT = T1 − T2 , H = sign(δT) , Hα = sign(δCα) , Pα =
k
kα

,

(6)

since in the case at stake the layer is heated from below and salted from below by S1 and
from above by S2, it follows hat H = H1 = 1, H2 = −1 and the equations governing the

dimensionless perturbations {u∗, Π∗, θ∗, (Φα)∗}, omitting the stars, and setting f =
f1

f2
,

are (α = 1, 2) 

∇Π = − f (z)u +

(
Rθ −

2

∑
α=1

RαΦα

)
k + T u× k

∇ · u = 0, θt + u · ∇θ = Ru · k + ∆θ

Pα

(
∂Φα

∂t
+ u · ∇Φα

)
= HαRαu · k + ∆Φα ,

(7)

under the boundary conditions

u · k = θ = Φα = 0 on z = 0, 1 (8)

In (6) and (7) R and Rα are the thermal and salt Rayleigh numbers respectively while
Pα are the salt Prandtl numbers and T is the Taylor-Darcy number. We set u = (u, v, w)
and assume, as usually done, that:

(i) the perturbations (u, v, w, θ, Φ1, Φ2) are periodic in the x and y directions, respectively of
periods 2π/ax, 2π/ay;

(ii) Ω = [0, 2π/ax]× [0, 2π/ay]× [0, 1] is the periodicity cell;
(iii) u, Φ1, Φ2, θ belong to W2,2(Ω) and are such that all their first derivatives and second spatial

derivatives can be expanded in Fourier series uniformly convergent in Ω

and denote by L∗2(Ω) the set of the functions Φ such that

(1) Φ : (x, t) ∈ Ω×R+ → Φ(x, t) ∈ R, Φ ∈ W2,2(Ω), ∀ t ∈ R+, Φ is periodic in the x and
y directions of period 2π/ax, 2π/ay respectively and |Φ|z=0 = |Φ|z=1 = 0;

(2) Φ together with all the first derivatives and second spatial derivatives can be expanded in a
Fourier series absolutely uniformly convergent in Ω, ∀ t ∈ R+.

3. Preliminaries to Linear Instability

Since (7)1 is linear, the linear stability of m0 is governed by
∇Π = − f (z)u +

(
Rθ −∑2

α=1 Rαφα

)
k + T u× k,

∇ · u = 0,
θt = Rw + ∆θ,
Pαφαt = HαRαw + ∆φα,

(9)
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under the boundary conditions

w = θ = φα = 0 on z = 0, 1. (10)

Let f ∈ C1[0, 1] a.e. and set

ζ = (∇× u) · k =
∂v
∂x
− ∂u

∂y
. (11)

In view of 
k · [∇× f u] = f ζ,
k · {∇ × [(Rθ −∑2

α=1 Rαφα)k]} = 0,
k · [∇× (u× k)] = k · [∇(vi− uj)] = wz,

(12)

the third component of the curl of (9)1 gives

ζ = T f−1wz. (13)

Furthermore, in view of
k · ∇ × [∇× (− f u)] = f ′wz + f ∆w,
k · ∇ × [∇× (u× k)] = ζz,

k · ∇ × [∇× (Rθ −∑2
α=1 Rαφα)k] = −∆1

(
Rθ −∑2

α=1 Rαφα

)
,

(14)

where ∆1 =
∂2

∂x2 +
∂2

∂y2 , one has that the third component of the double curl of (9) is

T ζz + f ′wz + f ∆w = ∆1

(
Rθ −

2

∑
α=1

Rαφα

)
(15)

and (13) implies

F =
[
T 2( f−1)′ + f ′

]
wz + T 2( f−1)wzz + f ∆w− ∆1

(
Rθ −

2

∑
α=1

Rαφα

)
= 0. (16)

Since the set {sin nπz}n∈N is a complete orthogonal basis of L∗2(0, 1), one has

φ ∈ {w, θ, φ1, φ2} ⇒ φ =
∞

∑
n=1

φn =
∞

∑
n=1

φ̃n(x, y, t) sin nπz (17)

and the periodicity in the x, y directions implies{
∆1φn = −a2φn, ∆φn = −ξnφn

a2 = a2
x + a2

y, ξn = a2 + n2π2 (18)

The following property holds.

Property 1. Setting
An =

∫ 1

0

[ a2

ξn
sin2(nπz) +

(
1− a2

ξn

)
cos2(nπz)

]
f (z) dz

Bn =
(

1− a2

ξn

)
T 2

∫ 1

0
( f−1) cos2(nπz) dz

(19)



Fluids 2021, 6, 57 5 of 15

one has

w̃n = ηn

(
Rθ̃n −

2

∑
α=1

Rαφαn

)
(20)

where

ηn =
a2

2ξn(An + Bn)
> 0 (21)

Proof. One easily obtains that

Fn =w̃n(nπ f ′ cos nπz− ξn f sin nπz)+

w̃nT 2[( f−1)′nπ cos nπz− n2π2 f−1 sin nπz]+

a2(Rθ̃n −
2

∑
α=1

Rαφα) sin nπz = 0

(22)

which implies ∫ 1

0
Fn sin nπz dz = 0 (23)

i.e., 

w̃n

∫ 1

0
(nπ f ′ sin nπz cos nπz− ξn f sin2 nπz) dz+

w̃nT 2
∫ 1

0
[( f−1)′nπ sin nπz cos nπz− n2π2 f−1 sin2 nπz] dz+

a2

(
Rθ̃n −

2

∑
α=1

Rαφα

) ∫ 1

0
sin2 nπz dz = 0

(24)

Then in view of
∫ 1

0
sin2(nπz) dz =

1
2

,
∫ 1

0
f ′ sin(2nπz) dz = −2nπ

∫ 1

0
f cos(2nπz) dz∫ 1

0
[−n2π2 f−1 sin2(nπz) +

nπ

2
( f−1)′ sin(2nπz)] dz = −n2π2

∫ 1

0
f−1 cos2(nπz) dz,

(25)

one has that (23) gives (21).

Remark 1. We remark that the previous proof of property 1 follows, step by step, the which one
given in [2], but some missprints concerning An and Bn (appearing in [2]) have been eliminated.

4. Spectrum Equation

Let H1 = 1, H2 = −1, i.e., let L be salted from below by S1 and from above by S2.
Then (9) implies 

∂θ̃n

∂t
= Rw̃n + ∆θ̃n

P1
∂φ̃1n

∂t
= R1w̃n + ∆φ̃1n

P2
∂φ̃2n

∂t
= −R2w̃n + ∆φ̃2n

(26)

where w̃n is given by (20). It follows that

∂

∂t

 θ̃n
φ̃1n
φ̃2n

 = Ln

 θ̃n
φ̃1n
φ̃2n

 (27)
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where

Ln =

a1n a2n a3n
b1n b2n b3n
c1n c2n c3n

 (28)

and 
a1n = R2ηn − ξn, a2n = −RR1ηn, a3n = −RR2ηn

b1n =
RR1

P1
ηn, b2n = −

(R2
1ηn + ξn)

P1
, b3n = −R1R2

P1
ηn

c1n = −RR2

P2
ηn, c2n =

R1R2

P2
ηn, c3n =

(R2
2ηn − ξn)

P2

(29)

The spectrum equation is given by

Pn(λ) = λ3
n + Ā1nλ2

n + Ā2nλn + Ā3n = 0 (30)

where
Ā1n = −I1n, Ā2n = −I2n, Ā3n = −I3n

I1n = a1n + b2n + c3n = ∑3
α=1 λαn, I3n = det Ln = λ1nλ2nλ3n,

I2n =

∣∣∣∣∣a1n a2n

b1n b2n

∣∣∣∣∣+
∣∣∣∣∣a1n a3n

c1n c3n

∣∣∣∣∣+
∣∣∣∣∣b2n b3n

c2n c3n

∣∣∣∣∣ = λ1n(λ2n + λ3n) + λ2nλ3n.
(31)

One easily obtains that

I1n =
{

R2 +
R2

2
P2
−
[R2

1
P1

+
ξn

ηn

(
1 +

1
P1

+
1
P2

)]}
ηn

I2n =
P1 + P2

P1P2

[(1 + P1 + P2

P1 + P2

) ξn

ηn
+

1 + P2

P1 + P2
R2

1 −
( 1 + P1

P1 + P2
R2

2 + R2
)]

ηnξn

I3n =
1

P1P2

[
(R2 + R2

2)−
(

R2
1 +

ξn

ηn

)]
ξ2

nηn

(32)

Remark 2. In the sequel we will set (r = 1, 2, 3)

Ir1 = Ir, Ār1 = Ar, η1 = η, ξ1 = ξ (33)

and, since it is sufficient for the instability, we consider only n = 1. Then it follows that the
spectrum equation is

P(λ) = λ3 − I1λ2 + I2λ− I3 = 0 (34)

with 

I1 =
{

R2 +
R2

2
P2
−
[R2

1
P1

+
ξ

η

(
1 +

1
P1

+
1
P2

)]}
η

I2 =
P1 + P2

P1P2

[(1 + P1 + P2

P1 + P2

) ξ

η
+

1 + P2

P1 + P2
R2

1 −
( 1 + P1

P1 + P2
R2

2 + R2
)]

ηξ

I3 =
1

P1P2

[
(R2 + R2

2)−
(

R2
1 +

ξn

ηn

)]
ξ2η

(35)



ξ2 = a2 + π2, w̃1 = w̃
(

Rθ̃ −∑2
α=1 Rαφα

)
η = η1 =

a2

2ξ(A + B)
, A = A1, B = B1

θ̃1 = θ̃, φ̃s1 = φ̃s, s = 1, 2,
ar1 = ar, br1 = br, cr1 = cr, r = 1, 2, 3.

(36)
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5. Power Property of the Spectrum Equation Coefficients

In the present section the existence and location property of the Hopf bifurcations in
dynamical system, via the spectrum equation instability coefficients power, is recalled.

Let ‖aij‖ be a n× n real matrix. As it is well known, the set σ = {λ1, . . . , λn} of its
eigenvalues is called the spectrum of ‖aij‖ and the algebraic equation (r = 1, 2, . . . , n)

P(λ) = det ‖aij − λδij‖ = λn +
n

∑
r=1

Arλn−r = 0, (37)

with δij Kronecker coefficients, is the spectrum equation, since the eigenvalues are its roots.
Further

Ar = (−1)r Ir; r ∈ {1, 2, . . . , n} (38)

with Ir characteristic values of ‖aij‖ given by

I1 =
n

∑
r=1

λr, I2 =
n−r

∑
i 6=j

λiλj, In = λ1λ2 · · · λn. (39)

In terms of the entries aij, Ir is obtained by adding the determinants of the principal
diagonal minors of order r of ‖aij‖ [7].

The spectrum σ and ‖aij‖ are said to be

• unstable if at least one eigenvalue has positive real part,
• bifurcating if and only if contains—at least—a zero or pure imaginary eigenvalue.

The following properties hold.

1. Each condition
Ar > 0, ∀ r ∈ {1, 2, . . . , n} (40)

is necessary for the stability of σ and each condition

Ar ≤ 0, ∀ r ∈ {1, 2, . . . , n} (41)

is sufficient for the instability (coefficient instability power).
2. If

An = 0, Ar > 0, r ∈ {1, 2, . . . , n− 1} (42)

then the instability is implied by the existence of a zero eigenvalue and one has
steady instability.

3. If exists a positive number ϕ such that the pure imaginary number ϕi belongs to σ:

P(iϕ) = 0 (43)

and one has oscillatory or Hopf bifurcation.
4. If the entries depend on a positive parameter R, denoting by RS the lowest value of

R at which An = 0 and by RH the lowest value of R at which P(iϕ) = 0 for at least
a real ϕ, one has 

RS < RH ⇐⇒ steady bifurcation
RS > RH ⇐⇒ oscillatory bifurcation
RS = RH ⇐⇒ steady+Hopf bifurcation

(44)

A direct proof of (1) is given in the appendix of [7]; (2) and (3) are obvious; (4) de-
pends on the fact that at the growing of R, (44) implies the occurrence of instability
respectively via: a zero eigenvalue, a pure imaginary eigenvalue or via the presence of both
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such eigenvalues [7]. In [7] Rionero has put in evidence that the coefficients of the spectrum
equation have the property of driving not only the onset of instability via the condition

Ar = 0. (45)

In fact he has shown that, via (45), the following property guaranteeing the existence
of Hopf bifurcations holds.

Property 2. Let ‖aij‖ be stable at R = 0 and let R̄ be the lowest positive value of R at which a
coefficient of the spectrum equation is zero. Then

r̄ < n (46)

implies that exists a
R∗ ∈]0, R̄[ (47)

at which an oscillatory bifurcation occurs.

Proof. Since the instability occurs only via a steady state {RS = 0, RH > 0} or via a
rotatory bifurcation {RS > 0, RH = 0} eventually coupled to a steady state {RS = RH} –
at the growing of R from the stability state at R = 0 to the instability state at {R = R̄} – (46)
implies the existence of an R∗ ∈ ]0, R̄[ at which an oscillatory bifurcation occurs.

6. Salts Structural Conditions, Necessary for the Onset of Oscillatory Bifurcations

Property 3. In a porous horizontal layer with stratified porosity, rotating uniformly about a
vertical axis, heated from below and salted from below by S1, and from above by S2, the oscillatory
bifurcations can occur only if the salts satisfy one of the structural conditions{

P1 > 1
P2 < 1

{
P1 = 1
P2 < 1

{
P1 > 1
P2 = 1

(48)

Proof. Let us consider the one to one transformation between φα and ψα given by

ψ1 = R1θ − P1Rφ1, ψ2 = R2θ + P2Rφ2 (49)

with ∣∣∣∣R1 −P1R
R2 P2R

∣∣∣∣ = R (R1P2 + R2P1) 6= 0 (50)

Setting

R∗ = R2 −
R2

1
P1

+
R2

2
P2

(51)

(9) becomes
∇Π = − f (z)u +

1
R

(
R∗θ +

R1

P1
ψ1 −

R2

P2
ψ2

)
k + T u× k

∇ · u = 0
θt = Rw + ∆θ

Pαψαt = ∆ψα + Rα(Pα − 1)∆θ

(52)

under the boundary conditions

w = θ = ψα = 0 on z = 0, 1. (53)
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In view of (20) and (49), the linear system governing the evolution of the first compo-
nent of (θ̃, ψ̃1, ψ̃2) is

d
dt

 θ̃
ψ̃1
ψ̃2

 = L ∗

 θ̃
ψ̃1
ψ̃2

 (54)

where

L ∗ =


R∗η − ξ

R1

P1
η −R2

P2
η

(1− P1)ξ
R1

P1
− ξ

P1
0

(1− P2)ξ
R2

P2
0 − ξ

P2

. (55)

Setting
ψ̃1 = āX ψ̃2 = b̄Y (56)

with ā, b̄ real constant to be determined, one has

d
dt

 θ̃
X
Y

 = L ∗∗

 θ̃
X
Y

 (57)

with

L ∗∗ =


R∗η − ξ ā

R1

P1
η −b̄

R2

P2
η

ξ

ā
(1− P1)

R1

P1
− ξ

P1
0

ξ

b̄
(1− P2)

R2

P2
0 − ξ

P2

 (58)

and requiring

ā
R1

P1
η =

ξ

ā
(1− P1)

R1

P1
, b̄

R2

P2
η =

ξ

b̄
(P2 − 1)

R2

P2
(59)

one has

ā2 =
(1− P1)ξ

η
, b̄2 =

(P2 − 1)ξ
η

(60)

which are admissible only for
P1 ≤ 1, P2 ≥ 1. (61)

The problem at stake has therefore, when (61) holds, hidden symmetries. Since the
eigenvalues of real symmetric matrices are all real numbers, it follows that oscillatory
bifurcations cannot occur when the structural condition (61) holds.

7. Cold Convection Influence

Let us choose, as requested by the physics of the phenomenon at stake, the thermal
Rayleigh number R as bifurcation parameter.

Then in order to apply property 2, one has to require linear stability at R = 0. On the
other hand, the existence of the salt S2 salting L from above, implies the existence of the
cold convection which implies instability at R = 0. We called cold convection the onset of
instability for any value of R, R = 0 included [8]. In view of (35) one has that the instability
∀R ≥ 0 is implied by each one of the following conditions

R2
1 ≥ R2

1 =
P2

P1
R2

1 +

(
1 + P2 +

P2

P1

)
ξ

η
⇒ A1 ≤ 0

R2
2 ≥ R2

2 =
1 + P2

1 + P1
R2

1 +

(
1 +

P2

1 + P1

)
ξ

η
⇒ A2 ≤ 0

R2
2 ≥ R2

3 = R2
1 +

ξ

η
⇒ A3 ≤ 0.

(62)
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Therefore one has

Property 4. The cold convection is avoided and one has a pure thermal convection only if

R2
2 < R̄2

2 = min(R2
1 , R2

2 , R2
3 ). (63)

Setting
f̄ = inf

[0,1]
f , ¯̄f = max

[0,1]
f (64)

in view of

1− a2

ξ
=

π2

a2 + π2 ,
∫ 1

0
sin2 πz dz =

∫ 1

0
cos2 πz dz =

1
2

(65)

one has 
∫ 1

0
f−1 sin2 πz dz ≥ 1

2
¯̄f−1

f̄
2
≤ min

( ∫ 1

0
f sin2 πz dz,

∫ 1

0
f cos2 πz dz

) (66)

and it follows that

ξ

η
= 2

ξ

a2

[
π2T 2

∫ 1

0
f−1 cos2 πz dz +

∫ 1

0
(a2 sin2 πz + π2 cos2 πz) f dz

]
> π2[T 2 ¯̄f−1 + f̄ ]. (67)

Therefore setting

H(a2) =
ξ

η
= 2π2 a2 + π2

a2 g1 + 2(a2 + π2)g2

g1 =
∫ 1

0
(T 2 f−1 sin2 πz + f cos2 πz) dz

g2 =
∫ 1

0
f sin2 πz dz

(68)

in view of 
lim

a2→0
H(a2) = lim

a2→∞
H(a2) = ∞

d
da2 H(a2) =

(
g2 −

π4

a4 g1

)
= 0⇔ a4 =

π4g1

g2

(69)

it follows that

H∗ = min
a2∈R+

H = H(a2
c ), a2

c = π2
√

g1

g2
(70)

i.e.,

H∗ = 2π2
( ∫ 1

0
f dz + 2(g1g2)

1
2 + T 2

∫ 1

0
f−1 sin2 πz dz

)
(71)

and hence setting 
R̄2

1 =
P2

P1
R2

1 +

(
1 + P2 +

P2

P1

)
H∗

R̄2
2 =

1 + P2

1 + P1
R2

1 +

(
1 +

P2

1 + P1

)
H∗

R̄2
3 = R2

1 + H∗

(72)

one has that the cold convection is avoided by requiring (63).

8. Oscillatory Bifurcations via the Spectrum Equation Coefficients Power Approach

Let (48) and (63) hold in view of (33)–(36) the spectrum equation is

λ3 + A1λ2 + A2λ + A3 = 0 (73)
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with
A1 = −I1 A2 = I2 A3 = −I3 (74)

and I1, I2, I3 given by (35). Setting
R2

C1
=

R2
1

P1
−

R2
2

P2
+

(
1 +

1
P1

+
1
P2

)
H∗

R2
C2

= (1 + P2)R2
1 − (1 + P1)R2

2 + (1 + P1 + P2)H∗

R2
C3

= R2
1 − R2

2 + H∗

(75)

one has that {
R2 = R2

Ck
⇔ Ak = 0 (k = 1, 2, 3)

R2
Ck

> 0.
(76)

The “instability coefficient power” (ICP)k of Ak can be defined by setting

(ICP)k =
1

R2
Ck

(77)

and the following property holds

Property 5. Let Ak̄ be the spectrum equation coefficient with the biggest (ICP) and let the thermal
conduction m0 be linearly asymptotically stable at R = R2 = 0. Then, at the growing of R and R2,
from R = R2 = 0, the instability occurs at R2 = R2

Ck̄
and one has a steady bifurcation if k̄ = 3,

while an oscillatory bifurcation occurs at an R2 ∈ ]0, R2
Ck̄
[ if k < 3.

Proof. Let us begin by recalling that the (Routh-Hurwitz) stability conditions in the case at
stake are

A1 > 0, A2 > 0, A1 A2 − A3 > 0 (78)

and that
P(iϕ) = 0⇔ A1 A2 − A3 = 0. (79)

At R = R2 = 0, in view of (29) L = L1 reduces to∥∥∥∥∥∥∥∥∥∥
−ξ 0 0

0 −R2η + ξ

P1
0

0 0 − ξ

P2

∥∥∥∥∥∥∥∥∥∥
(80)

with ξ and η bigger than zero. The eigenvalues are

λ1 = −ξ, λ2 = −R2η + ξ

P1
, λ3 = − ξ

P2
(81)

i.e., m0 is asymptotically linearly stable and one has

A1 > 0, A2 > 0, A1 A2 − A3 > 0 at R = R2 = 0 (82)

(1) Let k̄ = 1. Then at R2 = R2
C1

one has

A1 = 0, A3 > 0, A1 A2 − A3 = −A3 < 0. (83)

Therefore, in view of the continuity of A1 A2 − A3, exists a R̄ ∈ ]0, RC1 [ in which

A1 A2 = A3 R = R̄ (84)
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which is the lowest root of (84)1 in ]0, RC1 [ and a simple oscillatory bifurcation (SOB)
occurs at R̄ having the frequency ϕ/2π such that

P(iϕ, R̄) = −iϕ3 − A1(R̄)ϕ2 + iA2(R̄)ϕ̄ + A3(R̄) = 0 (85)

with

ϕ2 =
A3(R̄)
A1(R̄)

= A2(R̄) (86)

(2) if RC3 = RC1 < RC2 , then at R = RC1 the spectrum equation reduces to

λ(λ2 + A2) = 0 (87)

and at R = RC1 one has a steady+oscillatory bifurcation of frequency ϕ/2π with

ϕ = [A2(RC1)]
1
2 (88)

(3) if RC1 = RC2 < RC3 , the spectrum equation at R = RC2 = RC1 reduces to{
λ3 + A3 = (λ + γ)(λ2 − γλ + γ2) = 0

γ = A
1
3
3 , A3(RC1) > 0.

(89)

Therefore
λ1 = −γ, λ2,3 =

γ

2
(1±

√
3) (90)

and a SOB occurs at an R̄ ∈ ]0, RC1 = RC2 [.

(4) if RC2 < RC1 < RC3 , a SOB occurs at a R̄ ∈ ]0, RC2 [ with frequency ϕ given by (86)
with R̄ lowest root of A1 A2 − A3 = 0.

In view of (1)–(4) and (75), criteria guaranteeing the existence of oscillatory bifurcations
are easily obtained. We confine ourselves to the following.

Property 6. Let R2 < R̄2 and let one of (48) holds. Then

P2(1− P1)R2
1 − P1(1− P2)R2

2 + (P1 + P2 − P1P2)H∗ < 0 (91)

guarantees the existence of a R̄ ∈ ]0, RC1 [ at which an oscillatory bifurcation occurs.

Proof. In fact (85) implies

R2
C1
− R2

C3
=

(
1
P1
− 1
)

R2
1 −

(
1
P2
− 1
)

R2
2 +

(
1
P1

+
1
P2
− 1
)

H∗ (92)

and hence (97) implies RC1 < RC3 .

Property 7. Let R2 < R̄2 and let one of (48) holds. Then

P2R2
1 − P1R2

2 + (P1 + P2)H∗ < 0 (93)

guarantees the existence of a R̄ ∈ ]0, RC2 [ at which an oscillatory bifurcation occurs.

Proof. In fact (75) implies

R2
C2
− R2

C3
= P2R2

1 − P1R2
2 + (P1 + P2)H∗ (94)

and RC2 < RC3 is guaranteed by (93).
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Property 8. Let R2 < R̄2 and let one of (48) holds. ThenP2(1− P1)R2
1 − P1(1− P2)R2

2 + (P1 + P2 − P1P2)H∗ = 0(
1 + P2 −

1
P1

)
R2

1 −
(

1 + P1 −
1
P2

)
R2

2 +
(

P1 + P2 −
1
P1
− 1

P2

)
H∗ < 0

(95)

guarantees that at R = RC1 a steady-oscillatory bifurcation occurs.

Proof. In fact: (95)1 ⇒ RC1 = RC3 , (95)2 ⇒ RC1 < RC2 .

Property 9. Let R2 < R̄2 and let one of (48) holds. ThenP2R2
1 − P1R2

2 + (P1 + P2)H∗ = 0(
1 + P2 −

1
P1

)
R2

1 −
(

1 + P1 −
1
P2

)
R2

2 +
(

P1 + P2 −
1
P1
− 1

P2

)
H∗ > 0

(96)

guarantees that at R = RC2 a steady-oscillatory bifurcation occurs.

Proof. In fact: (96)1 ⇒ RC2 = RC3 , (96)2 ⇒ RC2 < RC3 .

We end by remarking that:

(1) the values of H∗ have to be evalueated via (71) with g1, g2 given by (68);
(2) the values of P1, P2 have to be taken into account;
(3) in the case {P1P2 > 1, P2 ≤ 1

1+P1
} the following criterion holds.

Property 10. Let 
P1P2 < 1, P2 ≤

1
1 + P1

, R2 < R̄2(
1− 1

P1

)
R2

1 +

(
1
P2
− 1
)

R2
2 >

(
1
P1

+
1
P2

)
H∗

(97)

then an oscillatory bifurcation occurs at a R̄ ∈ ]0, RC1 [.

Proof. In fact one has {P2 < 1, P1 > 1} and RC1 < min(RC2 , RC3).

9. Applications

The knowledge of the function H∗(T ) given by (71), is necessary for the applications
of Hopf bifurcation criteria. One has to remark that—accounting for (68)2 and (68)3 and
the presence of (g1g2)

1
2 in (71), does not simplify H∗(T ).

We here, for the sake of simplicity and concreteness, confine ourselves to the case

f (z) = ez. (98)

One has, ∀p ∈ R,

∫ 1

0
epz cos πz dz =

[
epz p cos πz + π sin πz

p2 + π2

]1

0
=

p(ep − 1)
p2 + π2 ,

∫ 1

0
epz(cos2 πz + sin2 πz) dz =

ep − 1
p

,

∫ 1

0
epz(cos2 πz− sin2 πz) dz =

∫ 1

0
epz cos πz dz =

p(ep − 1)
p2 + 4π2 ,

(99)
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which imply 

∫ 1

0
epz sin2 πz dz =

2π2(ep − 1)
p(p2 + 4π2)

,

∫ 1

0
epz cos2 πz dz =

(ep − 1)(p2 + 2π2)

p(p2 + 4π2)

(100)



∫ 1

0
ez sin2 πz dz =

2π2(e− 1)
1 + 4π2 ,

∫ 1

0
e−z sin2 πz dz =

2π2(e− 1)
e(1 + 4π2)

,

∫ 1

0
ez cos2 πz dz =

(1 + 2π2)(e− 1)
1 + 4π2 ,

∫ 1

0
e−z cos2 πz dz =

(1 + 2π2)(e− 1)
e(1 + 4π2)

(101)


g1 =

2π2(T 2 + (1 + 2π2)/2π2)(e− 1)
e(1 + 4π2)

, g2 =
2π2(e− 1)

1 + 4π2 ,

(g1g2)
1
2 =

2π2(e− 1)
1 + 4π2

√
e−1
(
T 2 +

1 + 2π2

2π2

) (102)

H∗(T ) = 4π4(e− 1)

e−1T 2 + 2

√
e−1
(
T 2 +

1 + 2π2

2π2

)
+ 1

 (103)

plotted in Figure 1. We end by remarking that:

(1) the contruction of H∗(T ) in the cases of stratification laws of type f = ecz, with c ∈ R,
is obtained following, step by step, the previous procedure. In particular, one can
consider the law ec(1/2−z), c =const.> 0 proposed in [1] for the increase of viscosity in
the earth’s mantle;

(2) in [2], upper and lower bounds of H∗(T ) are furnished for any stratification law.

Figure 1. f = ez, H∗ = H∗(T ).

10. Final Remarks

1. The results obtained can be applied for any stratification law of porosity f and the
oscillatory bifurcations depend on f via H∗ given in (71).

2. Property 5 guarantees the existence of oscillatory bifurcations (giving also an estimate
of their locations).

3. The condition RCk < RC3 for at least a k < 1 is simpler than the looking for the roots
of A1 A2 − A3 = 0.
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