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Abstract: The numerical investigation of the interpenetrating flow dynamics of a gas injected into
a homogeneous porous media saturated with liquid is presented. The analysis is undertaken as a
function of the inlet velocity, liquid–gas viscosity ratio (D) and physical properties of the porous
medium, such as porous geometry and surface wettability. The study aims to improve understanding
of the interaction between the physical parameters involved in complex multiphase flow in porous
media (e.g., CO2 sequestration in aquifers). The numerical simulation of a gaseous phase being
introduced through a 2D porous medium constructed using seven staggered columns of either
circular- or square-shaped micro-obstacles mimicking the solid walls of the pores is performed using
the multiphase Lattice Boltzmann Method (LBM). The gas–liquid fingering phenomenon is triggered
by a small geometrical asymmetry deliberately introduced in the first column of obstacles. Our study
shows that the amount of gas penetration into the porous medium depends on surface wettability and
on a set of parameters such as capillary number (Ca), liquid–gas viscosity ratio (D), pore geometry
and surface wettability. The results demonstrate that increasing the capillary number and the surface
wettability leads to an increase in the effective gas penetration rate, disregarding porous medium
configuration, while increasing the viscosity ratio decreases the penetration rate, again disregarding
porous medium configuration.

Keywords: multiphase flow; Lattice Boltzmann Method (LBM); Peng–Robinson; capillary number;
viscosity ratio; surface wettability

1. Introduction

The increase in greenhouse gas (GHG) concentration in the atmosphere over the past
decades has generated strong interest in developing technologies that help in reducing
CO2 emissions, especially those generated by fossil fuel combustion in heat and power
generation [1–3]. Carbon dioxide sequestration, a fundamental part of a larger Carbon
Capture and Storage (CCS) initiative [4], is an emerging field of research that is viewed
as one of the potential solutions to decrease CO2 concentration in the atmosphere. CCS is
based on two main stages [5,6]. Firstly, it requires the capture of carbon dioxide from
industrial and energy sources, and, secondly, it needs to transport and store it for long-
term sequestration in underground aquifers, which are essentially porous media saturated
with saline water isolated from the atmosphere. The penetration of a displacing fluid
into a porous medium depends on the capillary and viscous forces at work, as well as
the physical properties of the porous medium itself [7]. The displacement of the non-
wetting fluid by the wetting phase is essential and affects CO2 sequestration in terms of
storage efficiency, capacity, and security. However, it is a rather complex phenomenon,
difficult to study in laboratory or through purely analytical means. Numerical modeling
is a complementary and powerful approach that can greatly help in understanding this
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phenomenon, provided that the discretized model is capable of capturing the rich physics
involved in such a process.

Despite the continuous increase in computational power, modelling multiphase flow
in a porous medium is challenging for conventional Computational Fluid Dynamics (CFD)
tools due to the complex geometries involved, including small length-scale pores, and,
hence, the required use of a computationally prohibitive adapted mesh [8]. For such
meso-scale phenomena, the multiphase Lattice Boltzmann Method (LBM) has proved to
be a promising alternative to standard CFD techniques [8,9]. Among these techniques,
the volume-of-fluid (VOF) [10], the level set (LS) [11] and the phase field (PF) [12] methods
are most common. However, according to Yang and Boek [7], these techniques have
numerical instabilities at small-scale interface regions.

The LBM reproduces the macroscopic continuous dynamics of fluids, starting from
the statistical approach embedded in the Kinetic Theory, in which the microscopic, dis-
crete nature of a fluid can be described by particle distribution functions while avoiding
the necessity to track individual molecules [9–11]. Additionally, in comparison to tradi-
tional CFD tools, the LBM algorithm is intrinsically parallel and effective in dealing with
complex boundary geometries [13,14]. Since the very early stages of LBM, several multi-
phase models have been proposed, namely the color-fluid model, the pseudo-potential
model, the free energy model and the mean-field theory model [15–17]. Despite the many
advantages of LBM, all these multicomponent multiphase models are confined to use for
small liquid–gas density ratios due to the presence of spurious currents at the interface,
which ultimately promote numerical instabilities [18–21]. According to Fakhari and Rahi-
man [22], LBM multicomponent multiphase models have a limited range of gas–liquid
density ratios (up to 15) due to these numerical instabilities. Generally, if the magnitude
of the unphysical currents corresponds to the order of the local flow velocity, the model
generates meaningless results [14].

There have been several attempts to improve the performance of multiphase LBM
at high density ratios. For example, Inamuro et al. [23] proposed using a lattice kinetic
scheme, which applies a single equilibrium distribution function calibrating the speed
of sound, while Lee et al. [24] introduced a new method, which is based on a pressure
equation and can be applied to a wide range of density ratios. Additionally, in the approach
by Lee et al., spurious velocities at the interface are drastically reduced by increasing the
surface thickness. Moreover, Yuan and Schaefer [25] studied the stability of LBM at high
density ratios under various equation of states (EOS). It was found that Peng–Robinson
(P-R) and Carnahan–Starling (C-S) EOS can model high-density ratios while minimizing
the effects of spurious velocities because these EOS allow LBM to correctly capture the fluid
flow phenomena in terms of temperature, in addition to other relevant thermodynamic
parameters. Furthermore, Fakhari et al. [26] have found that the flow through the pore
domain is extremely sensitive to the choice and accuracy of the boundary conditions,
especially the entrance conditions.

Well-known numerical studies on porous media apply multiphase color-fluid LBM
[6,17,27,28] with a density ratio of 1. However, the pseudo-potential model has shown
better performance in terms of stability for fluid flows involving higher density contrasts,
as, for example, in the case of CO2 flow in porous media [25]. According to Li et al. [29],
Kupershtokh et al. [30], Chen et al. [31] and Yuan-Schaefer [25], the performance of the
model depends on EOS and the forcing scheme. There are different forcing schemes, such as
velocity-shift, exact difference method (EDM) and Guo’s forcing scheme, depending on
how interaction force is introduced into LBM. The accuracy and stability of these forcing
schemes have been analyzed in several studies [16,29–31]. According to Li et al. [29],
EDM is more stable when relaxation time is less than 1, i.e., τ < 1, while a velocity-shift
forcing scheme is more stable when τ ≈ 1. Li et al. [29] also analyzed the effects of different
values of τ on the coexistence curves. However, in a previous study, Kupershtokh et al. [30]
showed that at τ ≈ 1, EDM and velocity-shift forcing schemes are identical. Due to the
fact that LBM is still a newly emerging method, there are contradictions between some
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studies. Therefore, in this study we compare these two popular forcing schemes in terms of
numerical stability and accuracy and make recommendations regarding multiphase flows
in complex geometries, where a model’s high stability is crucial.

We use P-R EOS in this study, as it is one of the accurate EOS, which helps specify the
fluid thermodynamic properties through their acentric factor. We study the displacement
process and its efficiency by applying pseudo-potential LBM instead of the widely used
color fluid model. Throughout our work, the gas is injected with a uniform inlet profile
into a saturated aquifer at different viscosity ratios, capillary numbers and pore geometry.
By changing these parameters, their effects on displacement efficiency are investigated.
The liquid–gas density ratio is fixed at 5 to ensure negligible spurious velocities at the
interface. This apparently low-density ratio is also consistent with carbon dioxide injection
condition in deep saline aquifers, which typically occurs at critical or near-critical regimes.

The paper is arranged as follows: The multiphase LBM with the P-R EOS model
is proposed in Section 2. Section 3 is dedicated to validating the model, and Section 4
addresses extensive analysis using different fluid properties and pore configuration. The
conclusions are presented in Section 5.

2. Methodology

2.1. Lattice Boltzmann Method

In this study, the standard two-dimensional Lattice Boltzmann Method (LBM) with a
Bhatnagar–Gross–Krook (BGK) collision operator is used. The Lattice Boltzmann Equation
(LBE), which describes the rate of change of the particle distribution function in a generic
point x on a Cartesian grid at a generic time t on a single direction of a predefined lattice,
is given by Equation (1):

fi(x + ei∆t, t + ∆t) = fi (x, t) +
1
τ

(
f eq
i (x, t)− fi(x, t)

)
+ ∆ fi, (i = 0, 1 . . . , M) (1)

where fi is the particle velocity distribution function associated with i-th direction of the
lattice, ∆t is the time increment and ei is the lattice speed along the i-th direction. ∆ fi is the
body force term. τ expresses the dimensionless relaxation time, which is used to describe
the kinematic viscosity v = c2

s (τ − 0.5)∆t. M is the number of discrete velocities and cs is
the speed of sound. The number and directions of the set of M speeds define the lattice,
which is typically referred to as DnQM, n being space dimensionality. Since the goal is
to obtain the Navier–Stokes (NS) equations, a given lattice is acceptable if and only if it
possesses enough symmetries to recover 4th-order isotropy of stress–strain tensors [8]. f eq

i
is the corresponding equilibrium distribution function described as follows:

f eq
i (x, t) = wiρ

[
1 + 3(ei·u) +

9
2
(ei·u)2 − 3

2
u2
]

(2)

where u is the macroscopic velocity and wi is the weighting factor [25]. The form of
Equation (2) is designed to recover the Euler equation. In this two-dimensional study, we
adopt the widely used D2Q9 lattice, which is characterized by the following weighting
factors (see Table 1):

Table 1. Weighting factors for D2Q9.

I wi

0 4/9

1,3,5,7 1/9

2,4,6,8 1/36

These weighting factors are necessary to recover isotropy for lattice models with
different velocity vector modules. Macroscopic quantities like density ρ and momentum
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density can be recovered as discrete moments of the distribution functions, which are
given by Equations (3) and (4), respectively. Additionally, in LBM, the incompressible NS
equations with pressure are recovered via simple EOS rather than by solving a Poisson
equation, as in standard CFD [32]. The ideal EOS with standard LBE is described in
Equation (5).

ρ = ∑i fi (3)

ρu = ∑i fiei (4)

p = c2
s ρ (5)

The LBE described so far accounts for single-phase problems; to deal with multiphase
flows, non-ideal effects must be introduced. In this study, we chose the pseudo-potential,
or Shan–Chen [32], model, which consists of introducing a body force depending on the
discrete gradient of a function of density, usually referred to as effective mass (Equation (6)).

Fint(x) = −ψ(x)∑x́ G(x, x́)ψ(x́)(x́ − x) (6)

where G(x, x́) is the Green’s function, which describes the interaction strength between
neighbour particles. Depending on its magnitude, the interaction force can be described
as repulsive or attractive. ψ(x) is the effective mass, which controls the EOS and, thus,
the nature of the non-ideal fluid to be modeled. The SC model leads to the general EOS
given by:

p = c2
s ρ +

cs

2
g[ψ(ρ)]2 (7)

The adhesion force between two fluids is expressed by Equation (8):

Fads(x, t) = −Gadsρ(x, t)∑
i

ωis(x + ei∆t, t)ei (8)

where Gads is the interaction force between the fluid and solid walls. The interaction
can be considered as non-wetting or wetting depending on its magnitude. Specifically,
it is considered positive for a non-wetting fluid surface and negative for a wetting fluid
surface [33]. To calculate the contact angle, the modified Young’s equation is used as
proposed by Huang et al. [34]:

cosθ =
Gads,2 − Gads,1

Gc
(ρ1−ρ2)

2

(9)

where Gc is cohesion parameter, Gads is calculated from Equation (8) and (ρ1−ρ2)
2 is the

density factor.
The Shan–Chen EOS is widely used for multiphase LBM simulations due to its sim-

plicity (Equation (7)). However, in this study, the Peng–Robinson EOS [35] (Equations (10)
and (11)) is preferred because it has proven to be capable of dealing with higher density
ratios with a reduction in the instabilities associated with spurious currents [25].

p =
ρRT

1 − bρ
− aα(T)ρ2

1 + 2bρ − b2ρ2 (10)

α(T) =

[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

)
∗
(

1 −

√
T
Tc

)]2

(11)

where R is the universal gas constant, a (a = 0.45724R2T2
c /pc) and b (b = 0.0778RTc/pc) are

species-dependent coefficients, α denotes a function of the reduced temperature (Tr =
T
Tc

,
Tc is the critical temperature of the fluid in consideration) and ω is the so-called acentric
factor. In the present work, the values of a, b and R are set as 2/49, 2/21 and 1, respectively;
thus, the critical properties of the LBM fluid are evaluated correspondingly.
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2.2. Forcing Scheme Analysis

According to Kuperstokh et al. [30], the exact difference method (EDM) considers
additional body forces to avoid discrepancies of distribution function at the higher-order
terms of conservation laws. EDM can be derived from LBM by discretization of LBE in the
velocity space. Finally, the body force term of the distribution function can be written as:

∆ fi = f eq
i (ρ, u + ∆u)− f eq

i (ρ, u) (12)

where, ∆u = F∆t/ρ is change of mass velocity at a node. ∆ fi is equal to the difference in
equilibrium distribution functions during time-step ∆t at constant density ρ.

The performance of the pseudo-potential model with both a velocity-shift forcing
scheme and an EDM scheme was investigated at different relaxation times. Figure 1 shows
the lowest achievable reduced temperature (T/Tc) for both schemes at τ < 1. Results from
these tests show that the EDM forcing scheme is more stable. The stability of the velocity-
shift scheme rises with increasing τ. When τ ≈ 1, the difference between the stability of
the two forcing schemes becomes not so significant, in correspondence with the results of
Kupershtokh et al. [30].

Figure 1. Comparison between the achievable lowest temperature with different forcing schemes at
various relaxation times. Velocity-shift force scheme is presented in the graph as S-C.

Table 2 also compares the maximum values of spurious currents at various temper-
atures predicted by LBM with both forcing schemes. Overall, some little differences are
noticed in the magnitudes of the spurious currents. These results suggest that numeri-
cal stability improves, allowing to reach lower temperatures (T/Tc ≈ 0.79), and that the
magnitude of spurious currents decays as relaxation time τ approaches 1.

Table 2. Comparison of the maximum spurious currents for different forcing schemes.

T/Tc Velocity-Shift EDM

0.90 0.0693 0.0643

0.85 0.1126 0.1000

0.82 0.1399 0.1399

3. Validation of the Model

The validation of our model was carried out in consideration of a capillary pressure
test with a known analytical solution. The test considered the injection of a gaseous phase
from a plenum into two parallel passages (see Figure 2). The inlet and outlet boundary
conditions were of uniform velocity and constant pressure, respectively, while the top and
bottom walls were prescribed as on-grid bounce-back. The passages had different widths (r1
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and r2) and, correspondingly, different capillary pressures (Pc1 and Pc2). Capillary pressure
can be calculated by the Young–Laplace equation

Pc = 2σ ∗ cos(θ)
r

(13)

where σ is the surface tension. Then, the obtained values are compared to the pressure
difference (∆p) at the inlet (pin) and the outlet (pout). Depending on the conditions present,
the fluid can either enter or not enter the passages (note that passage 1 is narrower than
passage 2). When ∆p is less than Pc2, the gas cannot enter any of the passages, while if ∆p
is in the range from Pc1 to Pc2, the gaseous phase can only penetrate through passage 2.
Finally, when ∆p is larger than Pc1, the gas can fully penetrate through both passages.

Figure 2. Initial setup for the capillary pressure test.

The simulations were performed with contact angle θ = 70◦, viscosity ratio D = 1 and
a liquid–gas density ratio of 5, while r1 and r2 were chosen as 15 and 30, respectively. Three
distinct pressure differences were simulated, namely ∆p1 = 1.04 × 0−3, ∆p2 = 2.13 × 10−3

and ∆p3 = 4.3 × 10−3, where Pc1 and Pc2 are 2.51 × 10−3 and 1.25 × 10−3, correspondingly.
All these quantities are in non-dimensional lattice units (lu).

The computational domain was discretized using 280 lattice units (lu) in the x-direction
and 140 lu in the y-direction. The passages 1 and 2 are l00 lu in length by 15 lu-width and
30 lu-width, respectively. Figure 3 shows the excellent agreement between the numerical
results and the expected flow behavior.

Figure 3. Capillary pressure test results at different ∆p: (a) ∆p1 = 1.04 × 10−3; (b) ∆p2 = 2.13 × 10−3;
(c) ∆p3 = 4.3 × 10−3.

4. Results and Discussion

The schematic setup of the porous domain is shown in Figure 4a,b. Inlet and outlet
boundary conditions are uniform velocity and constant pressure, respectively, while the
top and bottom walls are prescribed as periodic boundary conditions. The computational
domain has a size of 401 × 401 (lu2) and is filled with staggered columns of circular pores
with a radius of 10 lu or square pores at 20 × 20 (lu2), separated by 10 lu. Each column of
pores is spatially arranged uniformly with just a small perturbation (+1 and −1 lu) among
contiguous pores to facilitate the break-up of flow symmetry during the simulation and
resemble a more realistic flow behavior.
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Figure 4. (a) Initial and boundary conditions for the circular pore domain (white circles are pores
with radius = 10 lu); (b) Initial and boundary conditions for the rectangular pore domain (white
squares are pores with side = 20 lu).

Additionally, one pore is removed from the 1st column to observe its effect on the
fingering phenomenon. The uniform size and position of the pores in our study allows us
a more precise control of the problem, which is different to what happens in experiments
where pores often have different positions, pore sizes or variations in wettability. Initially,
the porous medium is filled with the liquid phase, while the gaseous phase is introduced
from the left to the right at a constant and uniform velocity. All simulations are conducted
at a liquid–gas density ratio of 5, in order to have negligible spurious currents at gas-liquid
interfaces [25].

The penetration of the gaseous phase is expected to depend on multiple dimensionless
parameters, namely the capillary number (Ca), the viscosity ratio (D) and surface wettability.
The capillary number Ca describes the relationship between viscous and interfacial forces:

Ca =
uGnG

σ
(14)

where uG and nG are the average velocity and the dynamic viscosity of the gaseous phase,
respectively. The viscosity ratio is defined as the ratio between the viscosity of the liquid
and gaseous phases:

D =
nL
nG

, (15)

where nL is the dynamic viscosity of the liquid phase.
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Furthermore, a common dimensionless time t∗ defined in Equation (16) is used in the
comparison of gas penetration for cases with different injection velocity.

t∗ =
uG × t

H
, (16)

where t is the total time-steps and H is the width of the domain.
As a first stage in the modeling process, we performed a forcing scheme analysis to

ensure its proper selection. For this purpose, the model with surface contact angle θ = 70◦,
Ca = 0.038 and circular pore geometry was selected. In this test, two different forcing
schemes (namely velocity-shift and EDM) were analyzed under the same conditions at
τ = 1. As can be seen from Figure 5, all simulations have approximately the same results,
as previously proven in Section 2.2. Thus, further calculations at τ = 1 will be presented
using the original velocity-shift forcing scheme. Nevertheless, the authors would like to
suggest that for low-temperature and low-viscosity ratio fluid flow conditions not within
the scope of this paper, the advantages of EDM over velocity-shift should be scrutinized,
since the former might possess better numerical stability.

Figure 5. Gaseous phase (red) penetration for circular pores at the 12,500th time-step, Ca = 0.038 with
different forcing schemes: (a) velocity-shift; (b) EDM.

Multiple simulations were performed to identify the effect of Ca on the penetration
of the gaseous phase into the porous media. Initially, the viscosity ratio was equal to 1
and the surface contact angle was set to θ = 70◦, indicating a wettable condition. Three
different capillary numbers were examined in this study, namely Ca1 = 0.038, Ca2 = 0.076
and Ca3 = 0.115. Different Ca can be obtained by varying velocity at the inlet boundary.

Figures 6 and 7 illustrate the different penetration lengths at the common non-
dimensional time t∗ = 0.175 at which the same amount of gas has been injected despite
the injection velocity. Figures 6 and 7 show that a larger Ca favors faster penetration of
the gaseous phase into the porous media, as it was expected. Additionally, the fingering
can be observed for each selected array of pore geometry near the entrance of the domain.
Furthermore, at a lower Ca (Figures 6a and 7a), it can be observed that the fingering favored
the span-wise direction (with a larger pore throat) due to lower entry pressure, while it
moved towards the stream-wise (front) faster with increasing Ca. Nevertheless, backward
fingering, also known as capillary fingering, is hardly appreciated in our simulations, de-
spite previous works observing that phenomenon being driven by the capillary force [28].
Lenormand et al. [36] also pointed out that capillary fingering may occur through a large
pore throat in backward direction due to low entry pressure, but this backward-fingering
is more noticeable for non-homogeneous porous media where the difference in pore throat
between the cylinders is higher than that of the spacing used in the present investigation.
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Figure 6. Gaseous phase (red) penetration for circular pores at t∗ = 0.175 with different Ca:
(a) Ca = 0.038; (b) Ca = 0.076; (c) Ca = 0.115.
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It is evident that, depending on pore geometry, the effective gas penetration, measured
by length T (Figure 8), changes slightly, as shown in Table 3. Figure 8 illustrates the domain
length (L), the slip distance (S) and the effective penetration length (T). In our case the slip
distance is the same for all simulations.

Figure 8. Schematic illustration of gas penetration.

Table 3. Comparison of effective penetration length T for different pore geometries at different Ca

and t∗ = 0.175.

Pore Geometry Ca T (lu)

Circular 0.038 84.322

Rectangular 0.038 93.691

Circular 0.076 89.931

Rectangular 0.076 97.447

Circular 0.115 92.812

Rectangular 0.115 103.107
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Table 3 shows that, for low Ca, gas penetration is almost the same for both geome-
tries, but as Ca increases, the penetration through the square-shaped pores is augmented
significantly more than for the circular pores. We noted that extremely low Ca promotes
the growth of spurious currents associated with numerical instabilities, consistent with
findings by Raeini et al. [37].

Additionally, our results overcame the limitations found by Lenormand et al. [36],
where it was stated that in a heterogeneous pore domain, a high Ca will force the fluid
to occupy a limited fraction of the domain. Instead, our model has periodic boundary
conditions, uniform size and uniform positioning of pores, removing that pitfall.

Furthermore, the effect of the viscosity ratio D is examined by varying gaseous phase
viscosity while keeping the viscosity of the liquid phase constant. Additionally, Ca and
θ are set as constant and equal to 0.038 and 70◦, respectively. Figures 9 and 10 show
that increasing the viscosity ratio makes the gas injection more difficult and increases
the time needed to displace the liquid phase out of the domain. The results corroborate
previous studies, indicating that, at low D, the fingering narrows and spreads sideways
faster, while it locally thickens when D increases [17]. Moreover, our results show the
expected [27] easier front penetration at lower viscosity ratios, depicting how the intruding
phase progresses faster in a finger-like manner as shown in Figures 9a and 10a. Our results
also corroborated that increasing the viscosity ratio favors a uniform frontal displacement
(Figures 9c and 10c). It should be noted that pore geometry affects the effective gas
penetration length. According to Table 4, in the circular-shape pore domain, the gas
penetration length is shorter than in the square-shape pore domain.

Figure 9. Gaseous phase penetration for circular pores at t∗ = 0.275, Ca = 0.038, at: (a) D = 1; (b) D = 2;
(c) D = 3.

Figure 10. Gaseous phase penetration for square pores at t∗ = 0.275, Ca = 0.038, at: (a) D = 1; (b) D = 2;
(c) D = 3.
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Table 4. Comparison of effective penetration length T for different pore geometries at different D
and t∗ = 0.275.

Pore Geometry D T (lu)

Circular 1 119.937

Rectangular 1 126.201

Circular 2 113.468

Rectangular 2 118.933

Circular 3 106.619

Rectangular 3 110.051

The effect of contact angle on gas penetration is investigated by changing the adhesion
parameter between wall and fluid. As was previously discussed, depending on capillary
pressure (Equation (13)), the gross evolution of the gaseous phase through the pores might
be predicted. Consequently, the surface contact angle effectively affects the displacement of
the gaseous phase into the liquid-filled porous domain. Previous studies [6,17] on porous
media were done on a constant contact angle. Therefore, multiple simulations with various
surface contact angles, namely θ = 83◦, θ = 70◦, θ = 50◦ and θ = 33◦ at fixed Ca, were carried
out. Figure 9 demonstrates the evolution of the gaseous phase into the porous domain at
t∗ = 0.225. All simulations were performed for wetting conditions, i.e., θ < 90◦. Figure 9
shows how gas penetration length increases while the surface contact angle decreases,
as was expected. However, the effective gas penetration in the circular-pore domain
(Figure 11) is higher than that in the square-pore domain (Figure 12) due to the narrower
inter-pore pas-sages (see Figure 13).

Figure 11. Gaseous phase penetration at t∗ = 0.225 with fixed Ca = 0.038, D = 1, for various contact
angles: (a) θ = 83◦; (b) θ = 70◦; (c) θ = 50◦; (d) θ = 33◦.
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Figure 12. Gaseous phase penetration for square pores at t∗ = 0.225 time-step with fixed Ca = 0.038,
D = 1, for various contact angles: (a) θ = 83◦; (b) θ = 70◦; (c) θ = 50◦; (d) θ = 33◦.

Figure 13. Comparison of effective gas penetration length T for different pore geometries at different
θ at t∗ = 0.225.

5. Conclusions

A multiphase LBM model was employed to study the influence of capillary number,
viscosity ratio and surface contact angle on the hydrodynamics of gas penetration into a
homogeneous 2D porous medium saturated with liquid. Previous studies [6,17,27,28] were
done based on the phase-field (PF) method in a framework of a color-fluid multiphase
LBM model with a density ratio of 1. In the present work, the Peng–Robinson EOS was
successfully integrated into LBM in order to increase the stability of the model. As a
result, P-R EOS enables the modeling of the gas penetration phenomenon with a liquid–gas



Fluids 2021, 6, 89 13 of 14

density ratio of 5, resulting in negligible instabilities (i.e., spurious currents) at the interface.
Additionally, the validity of the prescribed forcing scheme was assessed as one the main
strategies to increase the stability of the model. It was found that at τ = 1 the velocity-
shift and EDM forcing schemes performed similarly in terms of stability, and, therefore,
the former was chosen to develop the whole set of simulations in porous media.

The numerical results demonstrated that increasing the capillary number (Ca) and
surface wettability enhanced the effective gas penetration at constant viscosity ratio D,
while an opposite effect is noticed when increasing D whilst maintaining constant Ca and
wettability. Furthermore, the shape of the pores influences fingering length and effective
gas penetration. In the present study, the effective gas penetration was higher in the square-
pore domain than that in the circle-pore domain by approximately 10% and 4% for explored
Ca,max and Dmin, respectively. Moreover, for the largest wettability explored in this study,
the effective gas penetration in the square-pore domain was less than 3% than that in the
circle-pore domain. Future work is planned to investigate gas–liquid penetration behavior
in heterogeneous pore domains while increasing the viscosity ratio. What is more, in future
study, we intend to use the EDM forcing scheme for better stability at low relaxation times.
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