Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Coupled Electro-Thermo-Mechanical Model of Cardiac Ablation
3.2. Effect of Porosity
3.3. Effect of Thermal Relaxation Times
3.4. Effect of Blood Flow in the FSI Problem and Electrode Insertion Depth
3.5. Effect of of Electrode Orientation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almekkawy, M.; Chen, J.; Ellis, M.D.; Haemmerich, D.; Holmes III, D.R.; Linte, C.A.; Panescu, D.; Pearce, J.; Prakash, P.; Zderic, V. Therapeutic systems and technologies: State-of-the-art applications, opportunities, and challenges. IEEE Rev. Biomed. Eng. 2019, 13, 325–339. [Google Scholar] [CrossRef]
- Kok, H.P.; Cressman, E.N.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grüll, H.; Ter Haar, G.; Wust, P.; Crezee, J. Heating technology for malignant tumors: A review. Int. J. Hypeth. 2020, 37, 711–741. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.F.; Dupuy, D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Melnik, R. Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electr. Biol. Med. 2020, 39, 49–88. [Google Scholar] [CrossRef]
- Huang, S.K.S.; Miller, J.M. Catheter Ablation of Cardiac Arrhythmias; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- González-Suárez, A.; Berjano, E. Comparative analysis of different methods of modeling the thermal effect of circulating blood flow during RF cardiac ablation. IEEE Trans. Biomed. Eng. 2015, 63, 250–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Suárez, A.; Berjano, E.; Guerra, J.M.; Gerardo-Giorda, L. Computational modeling of open-irrigated electrodes for radiofrequency cardiac ablation including blood motion-saline flow interaction. PLoS ONE 2016, 11, e0150356. [Google Scholar] [CrossRef] [Green Version]
- González-Suárez, A.; Pérez, J.J.; Berjano, E. Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes? Biomed. Eng. Online 2018, 17, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linte, C.A.; Camp, J.J.; Rettmann, M.E.; Haemmerich, D.; Aktas, M.K.; Huang, D.T.; Packer, D.L.; Holmes III, D.R. Lesion modeling, characterization, and visualization for image-guided cardiac ablation therapy monitoring. J. Med. Imaging 2018, 5, 021218. [Google Scholar] [CrossRef]
- Pérez, J.J.; González-Suárez, A.; Berjano, E. Numerical analysis of thermal impact of intramyocardial capillary blood flow during radiofrequency cardiac ablation. Int. J. Hypeth. 2018, 34, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Tucci, C.; Trujillo, M.; Berjano, E.; Iasiello, M.; Andreozzi, A.; Vanoli, G.P. Pennes’ bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation. Sci. Rep. 2021, 11, 5272. [Google Scholar] [CrossRef]
- Andreozzi, A.; Brunese, L.; Iasiello, M.; Tucci, C.; Vanoli, G.P. Modeling heat transfer in tumors: A review of thermal therapies. Ann. Biomed. Eng. 2019, 47, 676–693. [Google Scholar] [CrossRef]
- Petras, A.; Leoni, M.; Guerra, J.M.; Jansson, J.; Gerardo-Giorda, L. A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Melnik, R. Computational modeling of cardiac ablation incorporating electrothermomechanical interactions. J. Eng. Sci. Med. Diagn. Ther. 2020, 3, 041004. [Google Scholar] [CrossRef]
- Yan, S.; Gu, K.; Wu, X.; Wang, W. Computer simulation study on the effect of electrode–tissue contact force on thermal lesion size in cardiac radiofrequency ablation. Int. J. Hypeth. 2020, 37, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Melnik, R. Computational model of radiofrequency ablation of cardiac tissues incorporating thermo-electro-mechanical interactions. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual Conference, Online, 16–19 November 2020; Volume 84522. [Google Scholar] [CrossRef]
- Irastorza, R.M.; Gonzalez-Suarez, A.; Pérez, J.J.; Berjano, E. Differences in applied electrical power between full thorax models and limited-domain models for RF cardiac ablation. Int. J. Hypeth. 2020, 37, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.M.; Qian, P.; Barry, T.; McEwan, A. The region-of-interest based measurement selection process for electrical impedance tomography in radiofrequency cardiac ablation with known anatomical information. Biomed. Signal Process. Control 2020, 56, 101706. [Google Scholar] [CrossRef]
- Singh, S.; Melnik, R. Coupled thermo-electro-mechanical models of cardiac ablation at tissue-cellular scales and a role of microtubules. In Proceedings of the 14th World Congress in Computational Mechanics and ECCOMAS Congress (WCCM-ECCOMAS), Virtual Conference, Online, 11–15 January 2021. [Google Scholar] [CrossRef]
- Iasiello, M.; Andreozzi, A.; Bianco, N.; Vafai, K. The porous media theory applied to radiofrequency catheter ablation. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 2669–2681. [Google Scholar] [CrossRef]
- Singh, S.; Melnik, R. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects. Phys. Med. Biol. 2019, 64, 245008. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.J.; González-Suárez, A.; Nadal, E.; Berjano, E. Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling. Comput. Methods Programs Biomed. 2020, 195, 105673. [Google Scholar] [CrossRef]
- Keangin, P.; Rattanadecho, P. Analysis of heat transport on local thermal non-equilibrium in porous liver during microwave ablation. Int. J. Heat Mass Transf. 2013, 67, 46–60. [Google Scholar] [CrossRef]
- Zhang, Y. Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 2009, 52, 4829–4834. [Google Scholar] [CrossRef]
- Li, C.; Chen, S.; Wang, Q.; Li, H.; Xiao, S.; Li, F. Effects of thermal relaxation on temperature elevation in ex vivo tissues during high intensity focused ultrasound. IEEE Access 2020, 8, 212013–212021. [Google Scholar] [CrossRef]
- Strunin, D.V.; Melnik, R.V.N.; Roberts, A.J. Numerical modelling of thermoelastic processes using nonlinear theories with thermal relaxation time. ANZIAM J. 2000, 42, C1356–C1378. [Google Scholar] [CrossRef] [Green Version]
- Strunin, D.V.; Melnik, R.V.N.; Roberts, A.J. Coupled thermomechanical waves in hyperbolic thermoelasticity. J. Therm. Stress. 2001, 24, 121–140. [Google Scholar]
- Melnik, R.V.N.; Strunin, D.V.; Roberts, A.J. Nonlinear analysis of rubber-based polymeric materials with thermal relaxation models. Numer. Heat Transf. Part A Appl. 2005, 47, 549–569. [Google Scholar] [CrossRef] [Green Version]
- Chaichanyut, M.; Tungjitkusolmun, S. Microwave ablation using four-tine antenna: Effects of blood flow velocity, vessel location, and total displacement on porous hepatic cancer tissue. Comput. Math. Methods Med. 2016, 2016, 4846738. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, A.; Repaka, R.; Mishra, S.C. Thermographic evaluation of early melanoma within the vascularized skin using combined non-Newtonian blood flow and bioheat models. Comput. Biol. Med. 2014, 53, 206–219. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Firoozabadi, B. Numerical study of the effect of vascular bed on heat transfer during high intensity focused ultrasound (HIFU) ablation of the liver tumor. J. Therm. Biol. 2019, 86, 102431. [Google Scholar] [CrossRef]
- Paul, A.; Paul, A. Thermomechanical analysis of a triple layered skin structure in presence of nanoparticle embedding multi-level blood vessels. Int. J. Heat Mass Transf. 2020, 148, 119076. [Google Scholar] [CrossRef]
- Singh, S.; Bhowmik, A.; Repaka, R. Radiofrequency ablation of malignant breast tumor: A numerical study. In Proceedings of the 23rd National Heat and Mass Transfer Conference and 1st International ISHMT-ASTFE Heat and Mass Transfer Conference, Trivandrum, India, 17–20 December 2015; pp. 17–20. [Google Scholar]
- Kaur, J.; Melnik, R.; Tiwari, A.K. Forced convection heat transfer study of a blunt-headed cylinder in non-Newtonian power-law fluids. Int. J. Chem. React. Eng. 2021, 19, 673–688. [Google Scholar] [CrossRef]
- Formaggia, L.; Quarteroni, A.; Veneziani, A. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System; Springer: Milan, Italy, 2010; Volume 1. [Google Scholar]
- Quarteroni, A.; Veneziani, A.; Vergara, C. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 2016, 302, 193–252. [Google Scholar] [CrossRef] [Green Version]
- Quarteroni, A.; Manzoni, A.; Vergara, C. Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical Applications; Cambridge University Press: Cambridge, UK, 2019; Volume 33. [Google Scholar]
- Henri, J.P.M.; Ohayon, R. Fluid Structure Interaction: Applied Numerical Methods; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Nobile, F. Numerical Approximation of Fluid-structure Interaction Problems with Application to Haemodynamics. Ph.D. Thesis, EPFL Scientific Publications, Lausanne, Switzerland, 2001. [Google Scholar] [CrossRef]
- Dowell, E.H.; Hall, K.C. Modeling of fluid-structure interaction. Annu. Rev. Fluid Mech. 2001, 33, 445–490. [Google Scholar] [CrossRef]
- Kamath, H.; Willatzen, M.; Melnik, R.V. Vibration of piezoelectric elements surrounded by fluid media. Ultrasonics 2006, 44, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Wang, J.; Layton, A. Numerical methods for fluid-structure interaction—A review. Commun. Comput. Phys. 2012, 12, 337–377. [Google Scholar] [CrossRef]
- Yu, Y. Numerical Methods for Fluid-Structure Interaction: Analysis and Simulations. Ph.D. Thesis, Brown University, Providence, RI, USA, 2014. [Google Scholar]
- Liang, F.; Yang, X.; Zhang, W.; Qian, Y.; Melnik, R. Parametric vibration analysis of pipes conveying fluid by nonlinear normal modes and a numerical iterative approach. Adv. Appl. Math. Mech. 2019, 11, 38–52. [Google Scholar] [CrossRef]
- Griffith, B.E.; Patankar, N.A. Immersed methods for fluid–structure interaction. Annu. Rev. Fluid Mech. 2020, 52, 421–448. [Google Scholar] [CrossRef] [Green Version]
- Toma, M.; Chan-Akeley, R.; Arias, J.; Kurgansky, G.D.; Mao, W. Fluid–structure interaction analyses of biological systems using smoothed-particle hydrodynamics. Biology 2021, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- COMSOL. COMSOL Multiphysics v. 5.5; COMSOL AB: Stockholm, Sweden, 2019. [Google Scholar]
- Andreozzi, A.; Brunese, L.; Iasiello, M.; Tucci, C.; Vanoli, G.P. Numerical analysis of the pulsating heat source effects in a tumor tissue. Comput. Methods Programs Biomed. 2021, 200, 105887. [Google Scholar] [CrossRef]
- Singh, S.; Melnik, R. Domain heterogeneity in radiofrequency therapies for pain relief: A computational study with coupled models. Bioengineering 2020, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Melnik, R. Radiofrequency ablation for treating chronic pain of bones: Effects of nerve locations. In Proceedings of the International Work-Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, 8–10 May 2019; Springer: Cham, Switzerland, 2019; pp. 418–429. [Google Scholar]
- Singh, S.; Melnik, R. Computational analysis of pulsed radiofrequency ablation in treating chronic pain. In International Conference on Computational Science; Springer: Cham, Switzerland, 2019; pp. 436–450. [Google Scholar]
- Singh, S.; Repaka, R. Quantification of thermal injury to the healthy tissue due to imperfect electrode placements during radiofrequency ablation of breast tumor. J. Eng. Sci. Med. Diagn. Ther. 2018, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Sun, Y.; Yang, J. Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source. Int. J. Therm. Sci. 2018, 125, 34–43. [Google Scholar] [CrossRef]
- Ma, J.; Yang, X.; Sun, Y.; Yang, J. Thermal damage in three-dimensional vivo bio-tissues induced by moving heat sources in laser therapy. Sci. Rep. 2019, 9, 1–13. [Google Scholar]
- Calzolari, V.; De Mattia, L.; Basso, F.; Crosato, M.; Scalon, A.; Squasi, P.A.M.; Del Favero, S.; Cernetti, C. Ablation catheter orientation: In vitro effects on lesion size and in vivo analysis during PVI for atrial fibrillation. Pacing Clin. Electrophysiol. 2020, 43, 1554–1563. [Google Scholar] [CrossRef] [PubMed]
Parameter | Myocardium/ Cardiac Tissue | Blood/ Cardiac Chamber | Electrode (Active Part) | Catheter (Insulated Part) |
---|---|---|---|---|
Density ρ (kg/m3) | 1060 | 1000 | 21,500 | 70 |
Specific heat c (J/(kg·K)) | 3111 | 4180 | 132 | 1045 |
Thermal conductivity k (W/(m·K)) | 0.53 | 0.541 | 71 | 0.026 |
Electrical conductivity σ (S/m) | 0.54 | 0.667 | 4.6 × 106 | 10−5 |
Thermal expansion coefficient α (K−1) | 1 × 10−4 | – | – | – |
Parameter | Low Blood Flow u = 3 cm/s | High Blood Flow u = 8.5 cm/s | ||
---|---|---|---|---|
Previous Study [6] | Present FEM Study | Previous Study [6] | Present FEM Study | |
Depth of lesion | 7.64 mm | 7.62 mm | 7.53 mm | 7.53 mm |
Maximum width of lesion | 12.81 mm | 12.80 mm | 11.92 mm | 11.90 mm |
Maximum temperature in the tissue | 111.3 °C | 110.8 °C | 102.4 °C | 101.9 °C |
Maximum temperature in the blood | 89.6 °C | 89.2 °C | 79.9 °C | 79.7 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Melnik, R. Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation. Fluids 2021, 6, 294. https://doi.org/10.3390/fluids6080294
Singh S, Melnik R. Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation. Fluids. 2021; 6(8):294. https://doi.org/10.3390/fluids6080294
Chicago/Turabian StyleSingh, Sundeep, and Roderick Melnik. 2021. "Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation" Fluids 6, no. 8: 294. https://doi.org/10.3390/fluids6080294
APA StyleSingh, S., & Melnik, R. (2021). Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation. Fluids, 6(8), 294. https://doi.org/10.3390/fluids6080294