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Abstract: In this study, we obtain the comparative analysis of methods of quick approximate analyti-
cal prediction of Mach shock height in planar steady supersonic flows (for example, in supersonic
jet flow and in narrowing channel between two wedges), that are developed since the 1980s and
being actively modernized now. A new analytical model based on flow averaging downstream
curved Mach shock is proposed, which seems more accurate than preceding models, comparing with
numerical and experimental data.

Keywords: shock reflection; supersonic flow; Mach stem

1. Introduction

Since two types of shock reflection (the regular reflection, and the irregular one,
commonly called Mach reflection, were discovered both in unsteady [1] and steady [2]
shock/surface, shock/symmetry line and symmetric shock/shock interactions, a large
number of fruitful studies was obtained (see, for example, reviews of the current state-of-
the-art in different periods discussed in [3–6]). The great growth of interest in shock/surface
reflections occurred in the 1940s due to research of damaging mechanical action of large-
scale charges of high explosives and nuclear weapons. Great physicists and mathemati-
cians [7–10], such as J. von Neumann, R. Courant, K.O. Friedrichs, L.D. Landau, and Ya.B.
Zel’dovich, were involved in that studies of vast civil and military importance, and they
achieved sufficient progress in our knowledge. Two basic criteria of regular/Mach shock
reflection transition (the “von Neumann criterion”, which corresponds to the formation
of so-called stationary Mach configuration with normal Mach shock, and “detachment
criterion”, which corresponds to maximum flow reflection angle at regularly reflected
shock) were established [7]; with some additions and remarks, we apply them to flow
analysis until this time. Some valuable results were obtained later: the impossibility of
regular reflection in inviscid steady axisymmetric flow was proven [11]; hysteresis phe-
nomenon in regular/Mach reflection transition was shown experimentally [12,13] and
numerically [14–16]. According to the modern point of view [6,17], change of reflection
type in unsteady flow usually corresponds to the “detachment criterion”; steady reflection
transition usually corresponds to von Neumann one.

Not only the type of shock reflection but also geometric features of the forming shock-
wave structure, including its key parameter (Mach stem height or Mach shock size), are
of vast importance nowadays. Geometrical parameters of occurring shocks and other
gasodynamic discontinuities define the aggregate (integral) features downstream, as well
as flow features in its various regions. So, a steady Mach reflection in supersonic gas jet
flows, convergent supersonic inlets and other aerospace facilities leads to the formation
of complex shock-wave structure that divides the supersonic stream into two regions
with very different values of stagnation pressure, dynamic pressure, flow velocity, static
temperature, gas density, acoustic impedance, and many other flow characteristics of
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great engineering importance [18]. Such parameters as stagnation pressures and gas static
temperatures across the slipstream that emanates from the triple point can differ in dozens
of times [18,19]. The Mach stem size is traditionally considered the key parameter that helps
to estimate volumes of both above-mentioned regions, to compare their influence, and to
analyze the shock-wave structure and flow features of the downstream Mach reflection
point (“triple point”) as a whole. However, the estimation of that important flow structure
parameter should be very accurate because different widespread CFD software also gives us
very different, even contradictory, results (see, for instance, the discussion on the ambiguity
of the solution and the performability of the so-called “negative” triple configurations
in [20–23]). It concerns both “commercial” and “homemade” (“researcher’s”) hydrocodes
because their solutions are very sensitive to initial and boundary conditions, the type of
solver, the accepted model of turbulence, and so on. Despite this, simple and easy-to-use
analytical models of shock-wave structures are needed for fast and reliable estimation and
analysis of flow features as a whole.

A new splash of interest in the analytical prediction of the Mach stem size appears now
again [24–28] because of progress in the design of aviation and rocket engines (including
detonation ones [29]) and also in high supersonic and hypersonic flights. As it was
remarked and patented in [30], treated analytically in [31] and numerically in [32], it can
be used in design of the prospective combined ramjet engine. The high temperature of
the flow immediately after the Mach stem can initiate combustion or detonation of fuel
mixture, so the cycle of the ramjet detonation engine is most prospective for it. On the
contrary, relatively large stagnation pressure after the reflected shock makes that part of
flow most efficient in the traditional ramjet engine. Therefore, it is crucially important to
know the Mach stem height and the shape of the slipstream that separates two flow regions
that are to be used in different ways. The most evident way to separate those flow regions
in practice seems to be situating a thin rigid wall between them, which repeats the shape of
the emanating slipstream. However, to realize it, it is necessary to know the Mach stem
height and the shape of the emanating slipstream. Some important problems of supersonic
jet functionality distance, the design of supersonic inlets, and so on can also be reduced by
Mach stem height determination.

The proposed model does not take into account the real gas effects, impulse energy
efflux due to combustion and detonation initialized by high temperature growth behind
the Mach stem [18,19], non-equilibrium flows [33], or, for example, plasma formation [34].
An impulse energy influx can be included into this mathematical model applying the
Zel’dovich–Döring–von Neumann (ZDN) detonation model and corresponding relations
for the Mach shock wave with the energy efflux [35,36]. As preliminary results show, heat
efflux leads to the formation of a Mach reflection in situations where only regular reflection
is theoretically possible in flows without chemical reactions. Heat efflux also leads to a
sufficient increase of the Mach stem size. Real gas effects that result in a decrease in the
“effective” gas adiabatic index at Mach stem shifts the regular/Mach transition border at
the same direction and also increases the Mach stem height but not sufficiently. Ionization
and plasma formation in flows with Mach reflection can be subjects of further studies.

In this study, we conduct a comparative analysis of methods of quick approximate
analytical prediction of the Mach shock height in the planar steady supersonic flow and
both the axisymmetric and asymmetric one, which have been developed since the 1980s and
are still being actively modernized now. A new analytical model based on modern results
in the shock interaction theory is proposed, and its results are compared with preceding
models, numerical data, and experimental data. Potential results of the proposed models
can be applied to supersonic gas jet flow studies, as well as for designing convergent
supersonic inlets, supersonic nozzles, prospective ramjets, and other aerospace facilities.
It can be useful also for verifying CFD hydrocodes and further progress in numerical
methods (for example, it is applicable to the adaptation of the classic Godunov method for
steady supersonic flows, which belongs to Ivanov and Kraiko, see [37,38]).
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2. Model and Methods
2.1. Triple Point Problem

Let us consider the single Mach reflection from a symmetry plane in inviscid steady su-
personic flow of perfect gas, which takes place in the narrowing channel between two wedges
(Figure 1a) or in an overexpanded planar jet flow out of a supersonic nozzle (Figure 1b).

Figure 1. Patterns of flows with Mach reflection: (a) in a narrowing channel between two wedges;
(b) in overexpanded gas jet flow. Here, M is the Mach number of unperturbed flow; 1 (AT) is the
incident shock; 2 (TB) is the reflected one; 3 (TO) is the main shock (Mach stem); T is the triple point; τ

is the emanating slipstream; βτ is the local slope angle of the slipstream τ; θ1 and θ2 are flow deflection
angles on shocks 1 and 2; θ3T is the flow deflection angle on shock 3 at triple point T; ω1 and ω2 are
slope angles of the shocks 1 and 2 to flow velocity vectors upstream them; ω3T is the slope angle of the
shock 3 in triple point T; h is the width of the channel; yT is the sought Mach stem height; (r,φ ) are the
distance and the polar angle in cylindrical coordinate system centered in point A; HB is the first-family
acoustical characteristic that comes into point B; I if flow region behind the incident shock 1; II (BTC) is
the flow region downstream the reflected shock that can be approximated as Prandtl–Meyer flow with
straight first-family characteristics; III is the flow region behind the Mach stem (“virtual nozzle” with
critical section C∗O∗ ); IV is the expansion fan; V (Figure 1a) is the refracted expansion fan resulting
in the interaction of wave IV with the curvilinear shock BB1; VI is the reflection zone o expansion
wave; VII is the reflected wave; BC is the first acoustical characteristic of the expansion wave that
turns the slipstream τ; τ1 and τ2 (Figure 1a) are weak tangential discontinuities; 8 (B1B2, Figure 1a) is
the resulting shock after the interaction with the expansion wave IV.
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The incident shock 1 (AT) forms in the unperturbed flow with Mach number M. The
incident shock strength J1 (relation of the static pressures downstream the shock and before
it) and flow deflection angle θ1 are the basic characteristics of the shock 1; they correlate
between themselves as it follows:

tan|θ1| =

√
(1 + ε)M2 − J1 − ε

J1 + ε

(1 − ε)(J1 − 1)
(1 + ε)M2 − (1 − ε)(J1 − 1)

(1)

Here, ε = (γ − 1)/(γ + 1), and γ is the ratio of gas specific heats (γ = 1.4 in all
further calculations).

The reflection of the shock 1 is Mach one according to the von Neumann criterion. It
means that the incident shock strength belongs to the range

JN ≤ J1 ≤ JT . (2)

The minimum shock strength JN corresponds to the formation of the so-called “sta-
tionary Mach configuration” with normal Mach stem TO. Equation (3) [39]

3
∑

n=0
En Jn

N = 0,

E3 = 1 − ε, E2 = −
[(

1 + ε − ε2 + ε3)M2 + (1 − ε)
(
1 − ε + ε2)],

E1 = ε
[
(1 + ε)M2 + 1 − ε

]
·
[
(1 − ε)M2 − 2 + ε

]
,

E0 = (1 − ε)
(

M2 − 1
)(
(1 + ε)M2 − ε

)
,

(3)

determines the incident shock strength value that corresponds to the Mach/regular reflec-
tion transition. The largest admissible shock strength J1 = JT corresponds to triple-shock
configuration with reflected shock 2 (TB), which is normal to the flow upstream of it. This
transitional shock strength value satisfies the equation [18,19]

M4 − rM2 + (JT − 1)(JT + 2 − ε)/(1 − ε) = 0,

r = (JT − 1)(JT + 2 − ε)/(JT + ε) + (JT + ε)/(1 + ε) + (1 + εJT)
2/
[
(1 − ε)(JT + ε)2

] (4)

Shock reflections at J1 > JT are known as the von Neumann one and the Vasilev
one [6]; usually, they do not appear in steady flows, especially at moderate and large
Mach numbers.

On the stipulation that the inequality in Equation (2) is satisfied, a single Mach
reflection appears in the triple point T. The condition of flow collinearity and the equality of
static pressures across the emanated slipstream τ lead to the following system of equations
that determines the parameters of the reflected shock 2 (TB) and the main shock (Mach
stem) 3 (TO):

θ1 + θ2T = θ3T , J1 J2T = J3T , (5)

Here, J2T and J3T are, correspondingly, the strengths of shocks 2 and 3 in point T; the
following relations analogous to Equation (1) determine the flow deflection angles θ2T and
θ3T in that point:

tan|θ2T | =
√

(1 + ε)M2
1 − J2T − ε

J2T + ε
(1 − ε)(J2T − 1)

(1 + ε)M2
1 − (1 − ε)(J2T − 1)

,

tan|θ3T | =
√

(1 + ε)M2 − J3T − ε
J3T + ε

(1 − ε)(J3T − 1)
(1 + ε)M2 − (1 − ε)(J3T − 1) .

(6)

(deflection angles are positive if flow turns counterclockwise). Flow Mach numbers (M1
after the incident shock 1, as well as M2T and M3T after the corresponding shocks in the
triple point vicinity), satisfy the following formulas:
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M1 =

√
(J1 + ε)M2 − (1 − ε)(J2

1 − 1)
J1(1 + εJ1)

, M2T =

√
(J2T + ε)M2

1 − (1 − ε)(J2
2T − 1)

J2T(1 + εJ2T)
,

M3T =

√
(J3T + ε)M2 − (1 − ε)(J2

3T − 1)
J3T(1 + εJ3T)

.

(7)

In further considerations, we postulate that the flow behind the incident shock 2 should
be supersonic (i.e., M2 ≥ 1). It leads to following limitation of incident shock strength:

JN ≤ J1 ≤ JS (8)

which is a little stricter than Equation (2). The incident shock strength JS corresponds to
the critical flow velocity behind the irregularly reflected shock. The high-order algebraic
equation for its value is more complicated. (It is of the 10th order in regard to M2 and of the
14th order in regard to JS. See, for example, its numerical solution and analysis in [18,23].)

The angles ω1, ω2T , and ω3T of shock inclination to flow direction upstream them (see
Figure 1a,b) can be calculated as it follows:

J1 = (1 + ε)M2 sin2 ω1 − ε, J2T = (1 + ε)M2
1 sin2 ω2T − ε, J3T = (1 + ε)M2 sin2 ω3T − ε

As the reflected shock 2 and the Mach stem 3 have non-zero geometrical curvature,
their strengths J2 and J3 are variable functions that change from the values J2T and J3T in
the triple point to the values J2B and J3O in points B and O, correspondingly. The flow
deflection angles θ2 and θ3 in voluntary points of shock fronts obey as it follows:

tan θ2 =

√
(1 + ε)M2

1 − J2 − ε

J2 + ε

(1 − ε)(J2 − 1)
(1 + ε)M2

1 − (1 − ε)(J2 − 1)
,

tan|θ3| =

√
(1 + ε)M2 − J3 − ε

J3 + ε

(1 − ε)(J3 − 1)
(1 + ε)M2 − (1 − ε)(J3 − 1)

,

as well as shock slope angles ω2 and ω3 in their voluntary points:

J2 = (1 + ε)M2
1 sin2 ω2 − ε, J3 = (1 + ε)M2 sin2 ω3 − ε,

and Mach numbers M2T and M3T in regions II and III just after the curved shocks:

M2 =

√
(J2 + ε)M2

1 − (1 − ε)
(

J2
2 − 1

)
J2(1 + εJ2)

, M3 =

√
(J3 + ε)M2 − (1 − ε)

(
J2
3 − 1

)
J3(1 + εJ3)

.

Therefore, Equations (1) and (4)–(7) at additional restrictions of Equation (2) or
Equation (8) allow us to calculate the parameters of all shocks and flow features behind
them. The decision at the triple point is evident and exact for the inviscid flow. It is well-
studied parametrically [18,40–42] and often used in various analytical models [24–28,43–45].
However, it does still not determine the geometrical size of the Mach stem and the shape
of other shocks and discontinuities consequently. This problem remains unsolved [46] and
needs consideration of other details of the complex flow.

2.2. “Virtual Nozzle” below the Slipstream

The slipstream τ (also known as the contact discontinuity or the tangential one), which
is directed at angle β3T = θ1 + θ2T to the horizontal plane in point T, bounds the region III
of initially subsonic flow. According to von Neumann criterion of Mach reflection, β3T < 0.
The Guderley reflection that theoretically appears at β3T > 0, in fact, does not form in real
steady flows [6].

Due to small flow gradients across region III, this flow can be usually treated as isen-
tropic and quasi-one-dimensional one, analogous to the quasi-one-dimensional flow along
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convergent-divergent (“de Laval”) supersonic nozzle. The analogy with the supersonic noz-
zle is even more complete because the slipstream τ turns upside down under the influence
of the expansion fan IV (Figure 1b) or the refracted expansion fan V (Figure 1a) so that its
slope angle βτ = 0 at point C∗. Contemporarily, as laboratory [12,13] and numerical [47,48]
tests witness, the flow velocity in the subsonic pocket TOO∗C∗ after the section O∗C∗
becomes supersonic. Thus, the term “virtual nozzle” [48] is the relevant characteristic of
the flow in region III.

The coincidence of the contact discontinuity turn, and the transition of flow down-
stream the Mach stem to supersonic speeds is the key condition in numerous analy-
tical [24–28,43–46] and numerical [47–49] models for the estimation of Mach stem size
yT . As the Mach stem estimation is too small, the gas stream in zone III reaches a critical
velocity sooner than the turn of the slipstream occurs; on the contrary, if current estimation
of yT is too large, the slipstream turns at a subsonic flow below it (βτ = 0 at M3 < 1).

As we accept the quasi-one-dimensional model for region III after the Mach shock,
the width y of this region determines the Mach number M3τ below the slipstream in the
corresponding section:

y∗/y = q(M3τ), (9)

so that
y/yT = q(M3)/q(M3τ). (10)

Here, q(M) = M ·
[
1 + ε

(
M2 − 1

)] − 1/2ε is the dimensionless isentropic flow
rate function, y∗ in Equation (8) is the width of region III in its “critical section” O∗C∗,
and M3 is the averaged flow Mach number after the curved shock 3 (M3 = M3T at first
approximation). The static pressure p at both sides of the slipstream and other flow
parameters below it can be determined by isentropic formulas, for example:

p/pT = π(M3τ)/π(M3) = π(M2τ)/π(M2T); (11)

Here, π(M) =
(

1 + γ − 1
2 M2

) − γ/(γ − 1)
is the isentropic function of pressure, and

M2τ is the flow Mach number in any point just upside the upstream.
If Mach stem height yT is sufficiently large comparing with flow cross-section size

at whole, and flow gradients across region III are not negligible, some methods of flow
averaging can be applied. At the very first, Mach number M0 after the normal Mach shock
at point O can be used in Equations (9) and (10) instead of the Mach number M3T just after
the triple point; some averaged (between M0 and M3T) values can be used also. However,
because M3T is really the initial Mach number below the slipstream that is to be correctly
used in conditions of pressure equality at both its sides, the approximation that M3 ≡ M0
is very disputable. As a compromise, the initial static pressure at the left side of subsonic
zone III can be estimated not as pressure just after the triple point but as an averaged
integral pressure [43]:

p3 =

yT∫
0

pl
3(y)dy/yT . (12)

Classic shock relations supplemented by the parabolic approximation of the Mach
shock shape can determine the local pressure pl

3(y) in any point after the curved Mach
stem in Equation (11).

The original method of averaging the flow in the subsonic pocket is proposed and
applied in [26,28]. Based on the first-order approximation of the stream to be averaged,
authors derived the following relation to estimate the initial averaged Mach number:

M3 =
2(ρ3Tu3T cos ω3T + ρOuO)

(ρ3T + ρO)(a3T + aO)
. (13)
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Here, ρ3T , u3T , and a3T are the gas density, flow velocity, and sound speed in zone III
just after the triple point; ρO, uO, and aO are the corresponding parameters after the normal
shock; ω3T is the slope angle of the Mach stem in the triple point.

Except Equations (11) and (12), some classical methods of flow averaging are also con-
tained in [50]. We do not discuss the inevitable slipstream smearing and possible formation
of Kelvin–Helmholtz instability along the contact discontinuity in this study [48,51], but it
can be of sufficient interest later.

2.3. Approximation of Flow Downstream the Reflected Shock

Azevedo and Liu [43] proposed that it is the heading acoustical characteristic BC
of the second family that falls onto the slipstream τ in the critical section of region III
(i.e., that C ≡ C∗ in Figure 1a,b). All angles of inclination in the triangle BTC are easily
calculable then:

- the angle of inclination of the slipstream τ to the horizontal plane is permanently
equal to θ3T = θ1 + θ2T (5);

- the inclination angle of the reflected shock TB is equal to ω2T − θ1;
- the angle of inclination of the first incident characteristic BC can be taken as β2B −

µ(M2B) ≈ θ3T − µ(M3T) (in point B), or θ3T − µ(M2C∗), or any value averaged
between above-mentioned ones. Here, µ(M) = arcsin(1/M) is the Mach angle, and
M2C∗ is the flow Mach number that should be in the critical point C∗ above the slip-
stream τ. According to static pressure equality on the slipstream, that Mach number
can be calculated from the relation π(M2C∗)/π(M2T) = π(M3C∗ = 1)/π(M3T).

Compared to the experimental results in [12,13], large (up to 50%–100%) errors in
estimations provided by [43] are revealed. The primary reasons of those inadmissible
mistakes are the following:

- the contact discontinuity τ is really the curvilinear one. Its slope angle is variable, and
it is rather small initially (at the triple point). Therefore, an error in the slipstream
slope angle estimation influences the estimation of length and width of the subsonic
pocket crucially. Let us imagine, for example, a variation of the slipstream slope angle
βτ from β3T = − 2◦ to βτ = − 10◦ in point C. If we consider it constant, we mistake
the length and width of the subsonic pocket several times. Therefore, neglecting slope
angle variation leads to very large underestimation of the Mach stem size;

- the turn of the slipstream τ influenced by the incident expansion wave IV or V occurs
not instantaneously but along the finite sector CC∗. As we neglect the length of the
sector CC∗, it also leads to sufficient discrepancies.

The approximation [44] of flow in region II by Grib–Ryabinin method [52] based on
the Lagrangian tangent transformation complicated the mathematical model sufficiently,
but difference between results of [43,44] is only 2–4% as it is demonstrated in [51], so the
errors of Mach stem size estimation are basically preserved.

It is firstly proposed in [45,53] and applied afterwards in [25,28,54] to treat a flow in re-
gion II after reflected shock as a Prandtl–Meyer flow with straight acoustical characteristics
of the first family. The proposed model is similar to the “shock-expansion method” [55–57],
but it is applied not only for pressure estimation but also for restoring the whole geometry
and corresponding features of all discontinuities. According to the Prandtl–Meyer invari-
ant and condition of pressure equality across a slipstream, the following relations proven
in [58] take place on the slipstream τ:

dyτ

dx
= tan βτ , (14)

dβτ

dx
= −

χM2
3τ

√
M2

2τ − 1 tan βτ

M2
2τ

(
M2

3τ − 1
)
yτ

, (15)
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dM2τ

dx
=

ϕ(M2τ) tan βτ

(1 − ε)M2τ

(
M2

3τ − 1
)
yτ

, (16)

dM3τ

dx
=

ϕ(M3τ)M2
3τ tan βτ

(1 − ε)
(

M2
3τ − 1

)
yτ

. (17)

Here, M2τ and M3τ are the local Mach numbers above the slipstream and below it,
correspondingly; ϕ(M) = 1 + ε

(
M2 − 1

)
; yτ(x) is the equation for slipstream shape;

βτ(x) is the local angle of slipstream slope; χ = +1 is the factor of the wave direction.
Equations (13)–(16) should be integrated until the slipstream interacts with the incident

characteristic BC. As demonstrated in [53], we can reconstruct the shape of that curvilinear
incident characteristic, solving the equations

dβw
dw =

2
√

M2
2w − 1

M2
2w

· N2,

dM2w
dw = − 2χ(1 + ε(M2

2w − 1))
(1 − ε)M2w

· N2,

dµ2w
dw =

2χ(1 + ε(M2
2w − 1))

(1 − ε)M2
2w

√
M2

2w − 1

(18)

along its direction w (see Figure 1a,b). Here, βw is the local flow angle; M2w is the local
Mach number; µ2w = arcsin(1/M2w) is the Mach angle; N2 is the local streamline curvature.
The equation

N2 = −
Ψ(1 − ε)

(
M2

2w − 1
)

M2
3w sin(βw + χµ2w) sin βw

M2
2w

[
M2w M2

3w sin βw ·Ω + χΨ(1 − ε)
√

M2
2w − 1

(
M2

3w − 1
)

sin(βw + χµ2w)
] ,

Ω = yC1 − yTq(M3T)/q(M3w),

determines the latter quantity in the voluntary point C1. Here, Ψ = + 1 because zone II
is considered an expansion wave; M3w depends on M2w like M3τ depends on M2τ , see
Equations (9) and (10).

The results of the integration of Equations (13)–(16) witnessed [53,58] that the con-
tact discontinuity τ is always convex upwards, so its inclination to the horizontal plane
increases along its length in the whole sector TC. The incident characteristic BC is a weak
discontinuity, not a strong one, so the instantaneous turn of the slipstream at point C of its
incidence is impossible.

2.4. Reflected Shock Curvature

As the expansion flow in region II influences the preceding reflected shock TB, its
shape is curvilinear, and its strength (J2) and inclination angle to the incoming flow (ω2)
are variable. However, as it is proven, for example, in [8,57], the reflected disturbances
in overtaking the shock–expansion interaction are very small (they are of third order
compared to the shock wave and expansion one) and can be neglected. Consequently, the
shape of the reflected shock can be restored in the following way: the flow direction at
any point behind the shock should correspond to the flowfield in the following overtaking
expansion wave II. The basics of this method and corresponding relations can be found
in [53,59].

Moreover, the strength of the influencing expansion flow at region BTH is rather
small compared to other waves and shocks. As a result, a change in the slope angle of the
reflected shock TB is usually not more than 1◦. Really, for example, at M = 5 and σ1 = 40◦

in the jet flow problem (dimensionless Mach stem size yT/h = 0.390 according to flow
calculations by the method of characteristics for supersonic part of the flowfield [47,58])
reflected the shock inclination angle ω2T = 40.857◦ and inclination angle of the same shock
at point B of its intersection with the jet boundary ω2B = 40, 395◦. At M = 5 and σ1 = 40◦,
while the method [49,60] leads to the value yT/h = 0.589, corresponding shock slope angles
are equal to ω2T = 47.492◦ and ω2B = 47.043◦. For this reason, if we consider the reflected
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shock TB as the straight one, with the slope angle permanently equal to its inclination angle
in the triple point, as it is accepted in numerous studies [24–26,28,43,44,54,61,62], it does
not lead to substantial error in Mach stem size.

If we do not intend to neglect the curvature of the reflected oblique shock, the method
of its conjugation with the following overtaking expansion wave discussed in [53,59] can
be proposed. The shape of shock 2 can be found in the polar coordinate system (r, φ)
connected with point A from the solution of the following equations:

dr
dφ

= r · cot(ω2 + θ1 − φ), (19)

dω2

dφ
=

r
sin(ω2 + θ1 − φ)

·Θ · ∂ω2

∂θ2
. (20)

Here, r is the distance from point A to the current point of shock surface; ω2 is the
current shock slope angle; Θ = M2 · KS · sin(µ2 − ω2 + θ2); µ2 = arcsin(1/M2); M2 is
the current Mach number after the shock; θ2 is the current flow deflection angle; KS is the
curvature of the streamline at the expansion wave after the shock:

KS = −
(1 − ε)

(
M2

2 − 1
)

M2
3 sin(β + µ2) sin β

M2
2

[
M2M2

3 sin β ·Ω + (1 − ε)
√

M2
2 − 1

(
M2

3 − 1
)

sin(β + µ2)
] ;

∂ω2

∂β2
=

M4
1
(
(1 − ε) cos4 ω2 −

(
1 − 2ε2) cos2 ω2 − ε2) − 2ε(1 − ε)M2

1 sin2 ω2 − (1 − ε)2

(1 − ε)
[
M4

1((1 + ε) cos4 ω2 − (1 + 2ε) cos2 ω2 + ε) − M2
1(2(1 − ε) cos2 ω2 − (1 − 2ε)) − (1 − ε)

] ,

β = θ1 + θ2 is the current flow direction angle after the shock; q(M3) is the flow rate func-
tion; M3 depends on M2 according to Equations (9) and (10); Ω = y − yTq(M3T)/q(M3);
and M3T is the flow Mach number after the Mach stem in the vicinity of the triple point.

Equations (18) and (19) are to be integrated from the value ϕT = − ω1 at the triple
point T (other initial conditions also correspond to the triple point) to the negative value
ϕB = θ1 at point B.

The results achieved due to Equations (18) and (19) insufficiently (usually on 0.01–0.02◦

for value of the angle ω2B) differ from the results of calculations by the method of charac-
teristics. This method allows determining not only coordinates of the point B but also all
flow parameters (for example, flow angle β2B and Mach number M2B) after the shock at
that point.

2.5. Interaction of the Reflected Shock with the Rear Expansion Fan

At least two ways exist to construct the shape of the reflected shock at the region of
its interaction with the expansion fan IV of the opposite direction (see Figures 1a and 2,
which cover this type of interaction specifically). The first of them was elaborated in [63,64]
and applied later in [61,62] and further studies. It supposes the equality of static pressure
and the co-direction of flow velocity vectors after the resulting shock B1B2 and refracted
expansion wave V that falls afterwards onto the slipstream τ. The second one [64,65]
supposes that the resulting shock B1B2 after point B2 is a straight one (i.e., it has zero
geometrical curvature). Both methods lead to a second-order ordinary differential equation
for the shape of the interacting shock BB1. They also allow determining the flow parameters
in the expansion wave V.

The implementation of the first method [63,64] looks as it follows. The so-called shear
layer, bounded by weak tangential discontinuities τ1 and τ2, divides the flows that came
through: centered expansion wave IV and resulting shock 8 (B1B2), at one side; reflected
shock 2 (TB) and refracted wave V that are also considered like the Prandtl–Meyer flow at
the other side of the shear layer. The conditions of pressure equality and flow co-direction
downstream the resulting shocks and waves can be written in form:

J2B J5 = J4 J8, (21)
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θ2B + θ5 = θ4 + θ8, (22)

At the oblique shocks considered in Equations (19) and (20),

tan|θ2B| =

√
(1 + ε)M2

1 − J2B − ε

J2B + ε

(1 − ε)(J2B − 1)
(1 + ε)M2

1 − (1 − ε)(J2B − 1)
, (23)

tan|θ8| =

√
(1 + ε)M2

4 − J8 − ε

J8 + ε

(1 − ε)(J8 − 1)
(1 + ε)M2

4 − (1 − ε)(J8 − 1)
, (24)

In Prandtl–Meyer flows IV and V,

θ4 = ν(M4) − ν(M1), θ5 = ν(M2) − ν(M2B), J4 = π(M4)/π(M1),
J5 = π(M2)/π(M2B).

(25)

In Equations (20)–(24), M4 and M5 are flow Mach numbers after the waves IV and V; J8
and θ8 are the strength of the resulting shock 8 in point B1 and corresponding flow deflection
angle. As the result of the solutions of Equations (20)–(24), we determine the strength
J8 of the resulting shock and its slope angle, as well as the strength J5 of the refracted
wave V, the Mach number M5 after it, and the slope angle of its rear straight acoustic
characteristic because it is inclined at Mach angle to flow velocity vector determined due
to Equation (21).

Figure 2. Oblique shock interaction with an expansion fan (fragment of Figure 1a with additional
symbols). Here, I is the flow region downstream of the incident shock (M1 is the flow Mach number
in that zone); II is the flow region downstream of the reflected shock 2; IV is the rear expansion fan (D
is its center; ξ is its voluntary straight second-family characteristic); V is the refracted expansion fan
(ζ is its voluntary second-family characteristic); BB1 is the curvilinear shock under influence of wave
IV; 8 (B1B2 ) is the resulting shock after that influence; τ1 and τ2 are weak tangential discontinuities
that border a shear layer between them; ω2 and θ2 are, correspondingly, the slope angle and flow
deflection angle on the shock 2; M2B is the flow Mach number in point B immediately after that shock.

Without any additional stipulations, we can consider shock interaction with its part
instead of the whole expansion wave of the opposite direction until the voluntary straight
characteristic ξ (see Figure 2). This characteristic with the local Mach number Mξ in inclined
at angle θ1 + ν

(
Mξ

)
− ν(M1) − µ

(
Mξ

)
to the horizontal axis.

Solving the system which is completely analogous to Equations (20)–(24), we can
obtain: flow Mach numbers an both sides of the interacting shock BB1 at its voluntary point;
its inclination angle, which leads to equation for y′BB1

(x) determining shock shape; the
inclination angle of the voluntary characteristic ς of the refracted wave V (see Figure 2); the
flow direction and Mach number along that characteristic. As it is demonstrated in [53,65],
the obtained solutions are almost indiscernibly close to the exact one.
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The second method [64,65] is based on the assumption that the oblique reflected shock
is almost straight (i.e., it has zero curvature) just before point B (shock 2) and just after
point B1 (shock 8). Differential conditions of dynamic compatibility [17,65,66] together
with the precise decision of oblique shock–weak discontinuity interaction problem [67], in
this case, allow the precise estimation of the geometrical curvature of the shock BB1 in its
voluntary point. It leads to second-order ordinary differential equation, which determines
shock shape, strength, Mach numbers, and other variable flow parameters at both its sides
with, as shown in [53,65], almost the same accuracy or a little better.

2.6. Expansion Wave Incidence and Reflection from the Slipstream

Turn of the slipstream τ to the horizontal direction in point C∗ (see Figure 1a,b) under
the influence of expansion wave IV (Figure 1b) or refracted expansion wave V (Figure 1a)
cannot be described analytically with absolute accuracy. Authors of numerous approximate
analytical models usually substitute the analytical research to numerical analysis, applying
the numerical method of characteristics worked out for isentropic [24–26,28,61,62] and
non-isentropic [49,60] flows. On the other hand, we cannot neglect the finite length of the
sector CC∗ because it leads to sufficient errors in Mach stem size as in [43,44]. Therefore,
the interaction of the incident expansion wave with the slipstream should be studied
additionally and obligatorily.

The analytical method to research the expansion wave reflection from the slipstream
is described and discussed in [45,53,59]. Limiting ourselves to reflection of the centered
wave and keeping the nomenclature of the study [60], as is shown in Figure 3, let us discuss
this method, which can be generalized to non-centered wave reflection as it occurs in flow
between two wedges.

Figure 3. The incidence of expansion wave IV onto the border of the quasi-one-dimensional flow
region III (fragment of Figure 1b with additional symbols). Here, τ is the slipstream (βC is its slope
angle in point C); III is the “virtual nozzle” (C∗O∗ is its “critical section”; M3C is the flow Mach
number just below point C; M3N is the flow Mach number in the voluntary point N just below the
slipstream); IV is the incident expansion wave (BC is its heading characteristic; MBC is the Mach
number on the characteristic BC; M4 is the flow Mach number on voluntary incident characteristic
BN1); VI is the region of interaction; VII is the reflected wave.

Calculations of the supersonic part of the flow reveal that the flow non-uniformities
(the term accepted in [17,65]) after the reflected shock are small compared to the intensive
variation of flow parameters in region IV (see Figure 1). For example, the sector TC of
slow deflection of the stream at tangential discontinuity is several times longer than the
sector CC∗ of its opposite turn. Therefore, we can consider the flow parameters at the
characteristic BC as averaged and uniform. The characteristic line BC itself can be treated
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as a straight one, and flow in region IV can be studied as a centered Prandtl–Meyer wave
with straight characteristics of the second family.

The border characteristic BC is also a weak discontinuity: streamlines suffer a finite
break on curvature when crossing that line. In particular, the curvature of the slipstream
τ changes abruptly and, as a rule, becomes positive in point C. Therefore, the tangential
discontinuity τ abruptly becomes convex downwards.

The averaged flow Mach number MBC at the characteristic BC is determined as follows:

MBC = 1/sin
(

βC + arctan∆xy + nπ
)
. (26)

Here, n = 0 at xC > xB; n = 1 elsewhere; ∆xy = (yC − yB)/(xC − xB); and βC is
the flow direction angle in point C.

The following relation is correct for the voluntary straight characteristic BN1 inside
expansion fan IV:(

yN1 − yB
)
/
(
xN1 − xB

)
= tan(βD + ν(M4) − ν(MBC) − µ(M4)). (27)

Here, ν(M) = 1/
√

εarctan
√

ε(M2 − 1) − arctan
√

M2 − 1 is the Prandtl–Meyer
function.

Equation (21) determines the flow Mach number M4 at this voluntary incident char-
acteristic. Numerical results of [53] allow recognizing the characteristic line BN straight
not only in region IV but also at sector N1N inside region VI. Connecting the flow de-
flection angle in the incident Prandtl–Meyer wave (IV) and in the reflected one (VII), it
is easy to derive the following equation for the shape of the sector DC of the tangential
discontinuity τ:

y′τ(xτ) = tan(βC + 2ν(M4) − ν(MBC) − ν(MN)), (28)

So that, at the same time, the equation analogous to Equation (21)

(yτ − yB)/(xτ − xB) = tan(βC + ν(M4) − ν(MBC) − µ(M4)) (29)

determines the flow Mach number M4 in the incident wave. The Mach number MN at the
upper side of the slipstream is to be determined from the condition of equality of the static
pressures similar to Equation (10):

π(MN)/π(MBC) = π(M3N)/π(M3C), (30)

Additionally, the Mach number M3N at the lower side of the slipstream is to be
determined by the mass conservation law in the following form:

yN/yC = q(M3N)/q(M3C). (31)

Equation (22), in addition to Equations (20), (21) and (23)–(25), allows constructing the
slipstream after point C until the flow below it would not reach the critical velocity value
(i.e., until M3N = 1).

Applying the decision of oblique shock interaction with the expansion fan of the
opposite direction reached in [63,64], it is easy to generalize Equations (20)–(25) for the
slipstream under the influence of the refracted non-centered wave.

2.7. General Algorithm

The equations discussed above allow calculating the shock-wave structure of the
whole studied flow, if only the governing conditions (values of the undisturbed flow Mach
number M, the slope angle σ1 of the incident shock, and the ratio γ of the gas specific heats)
are given. One unknown quantity (Mach stem height yT) is to be appointed iteratively. The



Fluids 2021, 6, 305 13 of 17

following final algorithm was proposed for accurate estimation of Mach stem height in gas
jet flows [45,53,59] and flows in restricting channels [53]:

1. Values of M, ω1, and γ are given. The problem of Mach reflection of the shock 1 is
decided using the triple-shock theory (1–8). In this way, the strengths J2 and J3 of the
reflected shock and the Mach one in the vicinity of the triple point, as well as Mach
numbers M2T and M3T downstream of those shocks, and the initial inclination angle
β3T of the slipstream τ are to be determined.

2. Some initial estimation value of yT (Mach stem height at the first iteration) is to be
appointed (pre-estimated).

3. The shape of the reflected shock at sector TB can be determined by Equations (18)
and (19). Those equations are to be integrated until the overexpanded jet boundary or
the point of shock intersection with the first characteristic of the tail expansion fan
(i.e., till the point B). The flow Mach number M2B and flow direction angle β2B after
the shock in point B are to be calculated.

4. Equations (13)–(16), which determine the shape of the slipstream τ at its sector TC
(as well as flow features on both its sides), are to be integrated. Equation (17), which
determine the shape of the first incident characteristic BC (and flow features along
it), are to be decided simultaneously until point C of the intersection of the incident
characteristic with the slipstream.

5. Only in the problem of the flow between two wedges, we need to decide the problem
of the oblique shock interaction with the expansion fan. Applying the methods
elaborated by Li and Ben-Dor [63] or by Meshkov and Omelchenko [64], we restore
the shape of the interacting shock BB1 and flow parameters in the refracted expansion
wave V.

6. Flow characteristics at the first border characteristic BC of the incident expansion fan
are to be averaged. Equations (20)–(25) determine the shape of the slipstream τ at its
sector CC∗. We solve this equation until one of two following conditions would not
be fulfilled: full horizontal turn of the slipstream τ (βτ = 0) or increase in the flow
velocity of its lower side to the critical value (M3τ = 1). In the first case, the current
Mach stem height yT is considered as too large; at second case, it is considered as
too small.

7. With the above-mentioned conclusion about the value of yT , we correct the proposing
Mach stem height and return to point 3. The result of the last iteration (when achieving
enough accuracy) is considered the final one.

Therefore, the problem of Mach stem height calculation (and corresponding analysis
of the whole flowfield) is reduced to its estimation in the boundary value problem for
several ordinary differential equations.

Our calculation demonstrated that there are no numerical instabilities at reasonably
given flow parameters, at least, in overexpanded supersonic jet flow with a Mach number
M > 2 when the incident shock strength satisfies the inequality in Equation (8). The
selection of the Mach stem size with ordinary PC and chosen widespread software (MAT-
LAB 2017) takes about one minute, while it takes several hours to select the Mach stem
size applying the second-order method of characteristics at every step. The direct CFD
calculation with well-known hydrocodes (for example, ANSYS Fluent applied in [32] to
similar problem) takes about two hours at the same PC, but it does not allow estimating the
Mach stem size and shape of other gasodynamic discontinuities due to insufficient shock
resolution of widely used shock-capturing methods.

3. Results

The results of the calculation of the Mach stem size yT in overexpanded jet flow
(divided on nozzle half-width h) are presented in Table 1 (see also Figure 4) for flow Mach
number M = 5 and various angles ω1 of the incident shock inclination [59]. The results
achieved by the numerical method of characteristics for all supersonic flowfields [49] are
presented in the last string of Table 1; they differ approximately on 0.5%. The authors also
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realized the second-order method of characteristics for the supersonic part of the flow. The
results of comparison between the authors’ numerical and analytical data are presented in
Figure 4, and the difference between them also does not exceed 1%. Consequently, proposing
the approximate analytical method has very large accuracy. For example, at the similar
problem of Mach reflection in planar narrowing channel imitating the air inlet [43,44],
the results of the actual approximate analytical solutions differs from numerical and
experimental data by 30%–40% and even by 90%. Flow calculations at Mach numbers
M = 3 and M = 4 demonstrated even larger accuracy than Table 1 presents.

Table 1. Comparison of analytical method with numerical results.

ω1,◦ 31 35 39 43 47 51 55 59

yT/h, proposed method 0.046 0.243 0.363 0.455 0.532 0.602 0.673 0.753

yT/h, method of characteristics 0.046 0.245 0.364 0.457 0.536 0.607 0.677 0.756

Figure 4. Values of dimensionless Mach stem height (yT/h) determined analytically (solid line) and
numerically (stars) vs. the strength of the incident shock (J1 ).

As Figure 4 demonstrates, the Mach stem height is a continuous function of the angle
ω1, starting from the value yT = 0 at ω1 = 30.796◦, which corresponds to the von Neumann
criterion of shock reflection transition.

We should remark that, at large values of the incident shock (ω1 = 47◦ and larger),
expansion fan IV does not completely turn the slipstream to the horizontal direction with
the contemporary transition of flow in region III through the critical velocity. The presented
solutions are based on the artificial prolongation of the expansion fan. We suppose that
gas flow in the “virtual nozzle” can remain subsonic at very deep overexpansion (flow
separation inside the nozzle is not studied here).

The values of the dimensionless Mach stem height in the narrowing channel are given
in Figure 5 depending on the incident shock inclination angle (ω1) at flow Mach number
M = 3.98. The results shown in Figure 5 lie within measurement errors of the experimental
data of [12], whilst the results of the analytical model [28] differ from them by 20–25%, and
discrepancies of approximate models [43,44] are even more.
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Figure 5. The values of the dimensionless Mach stem height (yT/|AD|) at gas flow in the narrowing
channel vs. incident shock inclination angle (ω1). The flow Mach number M = 3.98; large crosses are
the experimental data of [12]; curve 1 corresponds to the engineering approach of [43]; circles and
approximating curve 2 correspond to the method of [44]; curve 3 are the results of method [28]; curve
4 are data of [53].

4. Conclusions

Based on the results of the decision of the separate problems outnumbered earlier,
including the triple-point solution, the conjugation of Prandtl–Meyer wave with preceding
overtaking shocks and with quasi-one-dimensional flow, and the interaction of the incident
expansion wave with the slipstream, we worked out a new complex analytical model for
supersonic flow with Mach reflection. The results obtained for supersonic overexpanded
jet flow demonstrated its high accuracy, especially in the determination of the Mach stem
size value.

The next necessary step for adaptation of this analytical model for real flows in ramjets
and detonation engines is to consider the impulse heat influx at the Mach stem, as well
as real gas effects at large Mach numbers. It can also be useful to apply the amendments
made by Russian, Chinese, and Indian authors for asymmetrical and axisymmetric flows
with irregular shock reflection.
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