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Abstract: In the present study, the diffraction and the radiation problems of water waves by a surface-
piercing porous cylindrical body are considered. The idea conceived is based on the capability of
porous structures to dissipate the wave energy and to minimize the environmental impact, developing
wave attenuation and protection. In the context of linear wave theory, a three-dimensional solution
based on the eigenfunction expansion method is developed for the determination of the velocity
potential of the flow field around the cylindrical body. Numerical results are presented and discussed
concerning the wave elevation and the hydrodynamic forces on the examined body for various values
of porosity coefficients. The results revealed that porosity plays a key role in reducing/controlling
the wave loads on the structure and the wave run-up, hence porous barriers can be set up to protect
a marine structure against wave attack.

Keywords: porous cylindrical body; Darcy’s law; diffraction and radiation problems; hydrodynamics;
wave run-up

1. Introduction

Over the past few decades, a substantial research interest has been driven towards
the effectiveness of porous structures in reducing both the transmitted and reflected wave
heights. By comparing with impermeable bodies, the wave loads on porous structures are
relatively reduced, whereas the wave reflections are decreased, hence porous surfaces can
be set up to protect a marine structure against wave attack.

Considering the porous effect, this was initially studied in terms of porous rubble-
mound breakwaters, applied to protect harbors and shores from wave action. Indicative
studies on the wave reflection/transmission and dissipation of energy inside porous
breakwaters, applying proper eigenfunction expansions in the water region in front and
within the porous medium, and behind the breakwater, were performed by [1–4], to name
a few. In [5], the theory of wave transmission and reflection by an infinitely long porous
structure was extended for oblique wave incidence, whereas in [6] a semi-porous cylindrical
breakwater was examined, using the eigenfunction expansion method, concluding that the
wave loads on the breakwater were reduced due to the semi-porous portion of the cylinder.
Subsequently, several studies followed, examining theoretically and experimentally the
induced wave-flow in a porous breakwater and its capability to dissipate the wave energy
and to minimize the environmental impact [7–11]. Furthermore, porous plates have
also been studied in the literature due to their capability of free exchange of water or
marine species. Initially, a porous-wavemaker theory was developed in [12] and [13]
to analyze small-amplitude surface waves produced by oscillations of a porous plate,
whereas the reflection and transmission of waves of small amplitude by a rigid porous
plate fixed in an open channel of a constant depth were presented in [14]. In [15], a
boundary element method was applied on the wave diffraction of a submerged porous
plate demonstrating that a plate with a proper porosity could attenuate the reflection while
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keeping the transmission at a low level. Several studies have followed, dealing with the
solution of scattered and radiation problems of submerged and/or floating elastic porous
disks, i.e., [16–20]. In addition, in [21,22], the hydroelastic behavior of a flexible submerged
porous plate has been studied for wave energy absorption.

As for the interaction of waves with permeable/porous cylindrical bodies, Wang
and Ren [23] were the earliest to study the wave interactions with a concentric surface
piercing porous outer cylinder protecting an impermeable inner cylinder. They concluded
that the presence of the outer porous cylinder reduced the hydrodynamic forces on the
inner cylinder as compared to their counterparts when it was exposed to a direct wave
impact. In [24], an analytical methodology on evaluating the wave kinematics and loads
on vertical piles with porous bottom protection was introduced, whereas in [25] the water–
wave interactions with an array of surface-piercing, bottom-mounted porous cylinders
were evaluated using the eigenfunction expansion method. This study was extended
in [26] for the case of a floating porous cylinder, concluding that the permeability and
the size of the porous region have a considerable influence on the hydrodynamic forces.
The wave diffraction problem around a cylinder with an upper porous wall and an inner
impermeable column was examined in [27]. The results from this study demonstrated
that the increase on the porous coefficient of the outer column reduced the wave elevation
around the cylinder and the wave loads on it. Comparisons between experimental and
numerical results were presented in [28] concerning the diffraction of linear waves around
a group of dual porous cylinders, and in [29] regarding the hydrodynamics of a bottom
seated impermeable cylinder encircled by a porous cylindrical surface. A semi-submerged
porous circular cylinder was examined in [30] by means of the eigenfunction expansion.
Applying the Haskind relations, a new component of damping was found, caused by the
porosity in addition to the conventional wave radiating damping. Park et al., [31] solved
the diffraction problem of an array of truncated porous circular cylinders to calculate the
exciting forces on each body, whereas in [32,33] the wave interactions with a single or
arrays of porous circular cylinders with or without an inner porous plate were theoretically
and experimentally investigated. In addition, an array of partially porous, surface-piercing
cylindrical bodies were examined in [34]. Here, the partial porous cylinder was composed
of a porous-surfaced body near the free surface and an impermeable-surfaced body with
an end-capped rigid bottom below the porous region. An optimal ratio of the porous
portion to the impermeable portion was adopted to design an efficient body with minimal
hydrodynamic impact. The effects of the porous coefficient—the cylinder’s draught and
radius and the water depth on the hydrodynamic loads of a truncated compound cylinder
with an upper porous sidewall and an inner impermeable column—were examined in [35].
The study focused on the selection of proper geometrical parameters in order to decrease
the hydrodynamic loads on the porous cylinder. Furthermore, wave forces on porous
geometries with linear and quadratic resistance laws were presented in [36,37], whereas
in [38] the image method was applied to study the effect of a vertical breakwater on the
hydrodynamics of a bottom-mounted surface-piercing porous cylinder placed in front of the
wall. Recently, the diffraction and radiation problems of a semi-porous truncated cylinder
in finite water depth was solved in [39–41], employing the method of the separation
of variables and matched eigenfunction expansions for the velocity potentials around
the cylinder. Additionally, in [42] a boundary element method model was presented on
structures composed of solid and porous surfaces applying a linear or quadratic pressure-
velocity relation, whereas an efficient method to remove irregular frequencies in the wave-
porous structure interactions based on the null-field approach was presented in [43].

Porous cylinders are also related to fish-farm cages, the performances of which, in
currents and waves, have been widely studied in the literature. Noteworthy examples
of recent works in chronological order are [44–49]. In these studies a porous flexible
circular cylinder is assumed, simulating the fish net. Furthermore, semi-porous truncated
cylindrical structures have been adopted for semi-submergible fish-cage solutions, in which
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the coaxial cylindrical body is conceived to support the possible installation of a Wind
Turbine or to mount tendons of a TLP type mooring system [50,51].

In the present study, a floating porous cylindrical body is examined that consists of a
compound cylinder with an upper porous sidewall and an inner cylindrical impermeable
column (see Figure 1). The porous surface is assumed to be inflexible and free-surface pierc-
ing, whereas the body bottom is considered to be impermeable. A theoretical formulation
is presented, which is suitable for solving the linearized diffraction and radiation problems
around the porous body in the frequency domain. The method of matched axisymmetric
eigenfunction expansions is used to solve the relevant hydrodynamic problems in surge,
heave, and pitch. According to this method, the flow field around and inside the body
is subdivided into coaxial ring-shaped fluid regions, in each of which appropriate series
representations of the velocity potential can be established. The linear Darcy’s law is
applied for the boundary conditions on the porous surface, whereas the various potential
solutions are matched by the requirements for continuity of the hydrodynamic pressure
and radial velocity along the vertical boundaries of adjacent fluid regions, as well as by
fulfilling appropriate kinematical conditions at the impermeable vertical walls of the body.
The accuracy of the present method is validated with comparisons of available data from
the literature concerning the exciting forces and the hydrodynamic coefficients of similar
porous bodies, as the examined one.

Subsequently, this work is focused on the theoretical estimation of the drift forces
on the examined floating porous cylindrical body in the presence of regular waves. Drift
forces are second-order forces, time independent if the motion of the body is harmonic or
slowly varying if the body is subjected to the action of random waves. They are generally
small in magnitude compared to their first-order oscillatory counterparts; as a result, they
do not influence the body’s oscillatory motions. On the other hand, in situations where
there is a lack or very small hydrostatic restoring forces, the drift forces may cause large
excursions of the body from its mean position if they act over sufficiently long periods of
time. In the present work the direct integration method [52] is applied for the evaluation
of the drift forces acting on the examined porous body. It is clearly demonstrated by the
presented results that, depending on the wave frequency of the incoming wave train, the
presence of the porous surface can reduce the wave loads on the body.

The present work is structured as follows: Section 2 formulates the solution of the
corresponding diffraction and radiation problems, whereas in Section 3 the hydrodynamic
forces and the mean second-order forces, i.e., the drift forces, are evaluated. Section 4 is
dedicated to the presentation of the wave loads on the porous body for several values of
porous coefficients. Finally, the conclusions are drawn in Section 5.

2. Formulation of the Hydrodynamic Problem

A porous free-surface piercing cylindrical body with a vertical axis of symmetry and
impermeable bottom is exposed to the action of regular waves with amplitude (H/2), wave
number k and frequencyω, in a constant water depth d. The distance between the bottom
of the porous body and the seabed is denoted by h, whereas the distance between the
bottom of the porous surface and the seabed is denoted by h1. The radius of the cylindrical
porous surface is denoted by α, and the radius of the coaxial cylinder by b. A cylindrical
co-ordinate system is introduced with origin at the seabed, coinciding with the body’s
vertical axis of symmetry (see Figure 1). Viscous effects are neglected, and the fluid is
assumed incompressible and the flow irrotational. The motions of the fluid and the body
are assumed to be small, so that the linearized diffraction and radiation problems can
be considered.

The examined porous cylindrical body is assumed to perform a three-degree of free-
dom motion in the wave propagation plane under the action of regular waves, i.e., two
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translational (surge, ξ1, heave, ξ3) and one rotational (pitch, ξ5). The fluid flow is described
by the velocity potential:

Φk(r, θ, z; t) = Re
[

ϕk(r, θ, z)e−iωt
]
, k = I, I I, I I I (1)

The potential in Equation (1) is formulated separately in each of the three fluid
regions surrounding the body, i.e., (a) fluid region I: r ≥ a; 0 ≤ z ≤ d; (b) fluid region II:
b ≤ r ≤ a; h1 ≤ z ≤ d; and (c) fluid region III: 0 ≤ r ≤ a; 0 ≤ z ≤ h (see Figure 1). It
follows that:

ϕk(r, θ, z) = ϕ0(r, θ, z) + ϕk
7(r, θ, z) + ∑

j=1,3,5

.
ξ j0 ϕk

j (r, θ, z), k = I, I I, I I I (2)

In Equation (2), ϕ0 stands for the velocity potential of the undisturbed incident
harmonic wave, whereas ϕk

7 denotes the scattered wave potential for the body restrained
in waves. Further, we denote:
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ϕk
D(r, θ, z) = ϕ0(r, θ, z) + ϕk

7(r, θ, z), k = I, I I, I I I (3)

Furthermore, in Equation (2), ϕk
j (j = 1, 3, 5) is the radiation potential resulting from the

forced body oscillations in the j-th mode of motion with unit velocity amplitude, whereas
.
ξ j0 is the complex velocity amplitude of body motion in the j-th direction.

The undisturbed velocity potential of an incident wave train propagating along the
positive axis can be expressed using Jacobis’s expansion, i.e.,:

ϕ0(r, θ, z) = −iω
H
2

cos h(kz)
ksin h(kd)

∞

∑
m=0

εmim Jm(kr) cos(mθ) (4)

In Equation (4), Jm denotes the m-th order Bessel function of first kind and εm the
Neumann’s symbol, whereas the frequency ω and the wave number k are connected by
means of the dispersion relation.

Similar to Equation (4), the diffraction potential of the flow field around the porous
body equals to:

ϕk
D(r, θ, z) = −iω

H
2

∞

∑
m=0

εmimΨk
Dm(r, z) cos(mθ) (5)

As far as the radiation potentials are concerned, these can be expressed, in accordance
with Equation (5), as:

ϕk
1(r, θ, z) = Ψk

11(r, z) cos(θ); ϕk
3(r, θ, z) = Ψk

30(r, z); ϕk
5(r, θ, z) = Ψk

51(r, z) cos(θ) (6)
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In Equations (5) and (6), the functions Ψk
lm, l = D, 1, 3, 5; k = I, I I, I I I are the principal

unknowns of the problem, in which the first subscript l = D, 1, 3, 5, denotes the respective
boundary value problem, whereas the second one indicates the values of modes m that
should be taken into account within the solution process.

The complex velocity potentials ϕk
j , (j = 1, 3, 5), k = I, II, III have to satisfy the Laplace

equation in the corresponding fluid domain together with the zero normal velocity on the
seabed and the free-surface boundary condition, i.e.,:

∂ϕk
j

∂z
= 0; z = 0; k = I, I I I and−ω2 ϕk

j + g
∂ϕk

j

∂z
= 0; z = d; k = I, I I (7)

Additionally, the kinematic conditions on the body’s impermeable wetted surface, S,
in its average position, should be satisfied, i.e.,:

∂ϕk
7

∂n
= −∂ϕ0

∂n
; on S and

∂ϕk
j

∂n
= nj; on S; j = 1, 3, 5 (8)

Additionally, the Sommerfeld radiation condition has to be fulfilled at the far-field
for the radiation and scattering potentials (j = 1, 3, 5, 7) [53]. In Equation (8), ∂/∂n
denotes the derivative in the direction of the outward unit normal vector, n, to the
mean wetted- surface of the body and nj is the generalized normal vector defined as:
(n1, n2, n3) = n; (n4, n5, n6) = r × n, where r is the position vector with respect to the
origin of the coordinate system.

On the sidewall porous surface of the cylindrical body, the fluid flow passing through
the porous surface is assumed to obey Darcy’s law. It should be noted that the normal
flow velocity is continuous and linearly proportional to the pressure difference through the
porous boundary [25]. Hence, the boundary condition on the permeable wetted surface is:

∂ϕI I
j

∂r
= nj +

γ

µ
ρiω

[
ϕI I

j − ϕI
j

]
; on r = a; j = 1, . . . , D (9)

In Equation (9), µ is the coefficient of the dynamic viscosity, γ is a material constant
having the dimensions of length expressed as function of surface permeability and its
length and ρ is the fluid density, respectively [12], whereas the nj term is introduced in
Equation (8). Introducing G = γ

kµ ρω, where k is the wave number, Equation (9) can be
written as:

∂ϕI I
j

∂r
= nj + ikG

[
ϕI I

j − ϕI
j

]
; on r = a; j = 1, . . . , D (10)

The dimensionless porous coefficient G is a complex number, i.e., G = Gr + iGi, with
Gr being its real and Gi its imaginary part [54]. It expresses a measure of the porosity effect.
For G = 0 the porous surface is assumed to be impermeable, whereas for G � 1 the surface
is, literally, completely permeable to fluid (i.e., no presence of the surface). Furthermore,
the parameter G is considered to be a real number when the resistance effect dominates
over the inertial effect of the fluid inside the porous material. On the other hand, when the
inertial effect dominates over the resistance effect, G becomes an imaginary number [42].
Equations (9) and (10) are valid for a small solidity ratio at which the fluid inertial effect is
predominant. By a set of experiments in [36], the porous coefficient G was related to the
opening rate τ of the material (i.e., the ratio between the area of the opening holes and the
total area) as well as the wave slope ε = kH

2 , i.e.,:

G =

(
17.8

ε + 143.2
)

τ2

2π(1 + 1.06τ)
(11)

In the present paper a linear pressure drop is assumed across the porous boundary.
Nevertheless, several studies (i.e., [36,37,42] to name a few) assume a quadratic pressure
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drop across the porous surface. In quadratic formulation the linear drag term is neglected
and the pressure drop is assumed to be the sum of a quadratic drag term due to turbulent
dissipation and an inertial term due to acceleration of the flow through the openings.

Moreover, both the velocity potential and its derivative
∂ϕk

j
∂r ; (j = 1, 3, 5, D) must be

continuous at the vertical boundaries of adjacent fluid regions (see Figure 1). Accordingly,
it follows that:

ϕI
j = ϕI I I

j ; r = a; for 0 ≤ z ≤ h and
∂ϕI

j

∂r
=

∂ϕI I I
j

∂r
; r = a; for 0 ≤ z ≤ h (12)

∂ϕI
j

∂r
=

∂ϕI I
j

∂r
; r = a; for h1 ≤ z ≤ d (13)

The determination of the velocity potential Ψk
lm, l = D, 1, 3, 5; k = I, I I, I I I for an

impermeable compound cylindrical body has been presented thoroughly in previous
studies [53,55,56], to name a few. Thus, since the same process is followed here for the
case of a porous cylindrical body, the solution methodology is not further detailed in the
present work. Nevertheless, in the following, the appropriate series representations of
the functions Ψk

lm for the wave potentials in each fluid region around the porous body are
presented:

Infinite fluid domain (Type I): r ≥ a; 0 ≤ z ≤ d

1
δj

ΨI
lm(r, z) = f I

lm(r, z) +
∞

∑
i=0

FI
lm,i

Km
(
aI

i r
)

Km
(
aI

i a
)Zi(z) (14)

where:

f I
Dm(r, z) =

(
Jm(kr)− Jm(ka)

Hm(ka)
Hm(kr)

)
Z0(z)

dZ′0(z)
, and f I

11(r, z) = f I
30(r, z) = f I

51(r, z) = 0 (15)

In Equations (14) and (15), Hm, Km stand for the m-th order Hankel function of the first
kind and the modified Bessel function of the second kind, respectively, whereas δj equals
to: δD = δ1 = δ3 = d; δ5 = d2. Furthermore, the eigenfunctions Z0(z) and Zi(z) read:

Z0(z) =
[

1
2
[1 +

sin h(2kd)
2kd

]

]−1/2
cosh(kz), Zi(z) =

[
1
2
[1 +

sin
(
2aI

i d
)

2aI
i d

]

]−1/2

cos
(

aI
i z
)

(16)

The terms aI
i are roots of the transcendental equation: ω2

g + aI
i tan

(
aI

i d
)
= 0. This

equation has an imaginary and an infinite number of real roots. Here, the imaginary root
aI

0 = −ik, k > 0, and the positive real roots are considered.
Second fluid domain (Type II): b ≤ r ≤ a; h1 ≤ z ≤ d

1
δj

ΨI I
lm(r, z) = f I I

lm(r, z)+
∞

∑
i=0

(
RI I

mi(r)FI I
lm,i + R∗I I

mi (r)F∗I I
lm,i

)
Zi(z− h1) (17)

In Equation (17) the f I I
lm term equals to [53]:

f I I
Dm(r, z) = f I I

11(r, z) = 0, f I I
30(r, z) =

z
d
− 1 +

g
dω2 , f I I

51(r, z) = − r
d2 [(z− d) +

g
ω2 ] (18)

The terms RI I
mi, R∗I I

mi , are functions in the radial direction that involve modified Bessel
functions, and they are given in Appendix A. The eigenfunctions Zi read:

Z0(z− h1) =

[
1
2

(
1 +

sin h
(
2kI I(d− h1)

)
2kI I(d− h1)

)]−1/2

cosh
(

kI I(z− h1)
)

(19)
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Zi(z− h1) =

[
1
2

(
1 +

sin
(
2aI I

i (d− h1)
)

2aI I
i (d− h1)

)]−1/2

cos(ai(z− h1)) (20)

The aI I
i terms are roots of the equation: ω2 + gaI I

i tan
(
aI I

i (d− h1)
)
= 0, with the

imaginary one aI I
i = −ikI I considered to be first.

Third fluid domain (Type III): 0 ≤ r ≤ a; 0 ≤ z ≤ h

1
δj

ΨI I I
lm (r, z) = f I I I

lm (r, z) +
∞

∑
n=0

εnFI I I
lm,n

Im
( nπ

h r
)

Im
( nπ

h a
) cos

(nπ

h
z
)

(21)

The f I I I
lm term equals to [53]:

f I I I
Dm(r, z) = f I I I

11 (r, z) = 0, f I I I
30 (r, z) =

z2 − 0.5r2

2hd
, f I I I

51 (r, z) =
−r
(
z2 − 0.25r2)

2hd2 (22)

In Equation (22), Im is the m-th order modified Bessel function of first kind.
Applying the Galerkin’s method the expressions for the velocity potential are matched

by continuity requirements of the hydrodynamic pressure and radial velocity along the
common vertical boundaries of adjacent fluid regions (see Equations (12) and (13)), as well
as by fulfilling the kinematic conditions at the vertical walls (porous or impermeable) of the
body (see Equations (8) and (10)). This formulation delivers the linear systems of equations
for the determination of the unknown Fourier coefficients, Fk

lm,i, l = D, 1, 3, 5; k = I, I I, I I I
in each fluid domain. This numerical procedure is briefly described in Appendix B.

3. Hydrodynamic Forces

Having determined the velocity potential in each fluid region around the porous
cylindrical body, the hydrodynamic forces in the x and z directions and the overturning
moment around y axis can be determined from the pressure distribution given by the
linearized Bernoulli’s equation.

The horizontal exciting forces, Fx, on the porous body can be decomposed into four
terms: (a) the horizontal exciting forces on the coaxial cylinder, Fxb, i.e., for h1 ≤ z ≤ d,
and r = b; (b) the horizontal exciting forces on the inner side of the porous surface, Fxa− ,
i.e., for h1 ≤ z ≤ d, and r = a−; (c) the horizontal exciting forces on the outer side of the
porous surface, Fxa+ , i.e., for h1 ≤ z ≤ d, and r = a+; and (d) the horizontal exciting forces
on the impermeable surface, Fxim, i.e., for h ≤ z ≤ h1, and r = a. These can be summarized
according to:

Fx = −2πiρω2d
H
2

a

 d∫
h

1
d

ΨI
D1(a, z)dz−

d∫
h1

1
d

ΨI I
D1(a, z)dz +

b
a

d∫
h1

1
d

ΨI I
D1(b, z)dz

 (23)

The vertical forces acting on the porous cylindrical body, FZ, are equal to the sum
of the forces on the upper surface, i.e., b ≤ z ≤ a, z = h1 and the lower surface, i.e.,
0 ≤ z ≤ a, z = h. Hence:

FZ = 2πρω2d
H
2

 a∫
0

1
d

ΨI I I
D0(r, h)dr−

a∫
b

1
d

ΨI I
D0(r, h1)dr

 (24)

The overturning moment on the porous body, M, around a horizontal axis lying at an
arbitrary distance z = e from the seabed, is composed by Ms and Mb that originate from the
pressure distribution on the body’s vertical walls (i.e., porous and impermeable) and on its
impermeable bottom, respectively:
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Ms = −2πiρω2d
H
2

a

 d∫
h

1
d

ΨI
D1(a, z)(z− e)dz−

d∫
h1

1
d

ΨI I
D1(a, z)(z− e)dz +

b
a

d∫
h1

1
d

ΨI I
D1(b, z)(z− e)dz

 (25)

Mb = −2πiρω2d
H
2

 a∫
0

1
d

ΨI I I
D1(r, h)r2dr−

a∫
b

1
d

ΨI I
D1(r, h1)r2dr

 (26)

The hydrodynamic reaction forces and moments acting on the examined porous
cylindrical body in the i-th direction due to its sinusoidal motion with frequency ω and
unit amplitude in the j-th direction, are obtained by:

fi,j = −ρω2
x

S

Ψl
jm(r, z) cos(mθ)nidS, l = I, I I, I I I and i, j = 1, 3, 5 (27)

In Equation (27), the ni term is being defined by Equation (8), whereas m = 0 stands
for the symmetric modes of motion, i.e., for the heave radiation problem, while m = 1 refers
to the antisymmetric motion-radiation problems (surge and pitch).

The complex force fi,j may be written in the form:

fi,j = ω2αij + iωbij (28)

where αij, bij, are the added mass and damping coefficients, respectively, both real and
dependent on frequency ω.

Aside from the hydrodynamic forces of first-order on a porous cylindrical body, the
present paper also deals with the evaluation of the drift wave loads, F(2), on the porous
body. Herein, the direct integration method is applied [52], providing expressions for
all the components of the second-order steady forces and moments. This method was
extended in [57–59] to account for missing quadratic terms of hydrostatic nature. The drift
forces are derived by the direct integration of the fluid pressure upon the instantaneous
wetted surface of the porous body, retaining all terms up to the second order.

F(2) = −1
2

ρg
∫

WL

[ζr]
2ndl + MR

→..
Xg +

x

S

1
2

ρ|∇Φ|2ndS +
x

S

ρ
→
X∇ΦtndS− 1

2
ρgAWL

[
(ξ5)

2
](

X0
G3 − d

)
k (29)

In Equation (29), the bars denote the time average, whereas S is the body’s mean
wetted surface. The terms ρ and g denote the water density and the gravity acceleration,
respectively. The term n is the unit normal pointing outwards of the body, M is the

generalized mass matrix, and
→
X is the vector of the first-order translations at a point on the

body’s wetted surface, which is composed by the superposition of translational motions of
the bodies’ center of gravity and the rotations around it. Additionally, the term R stands

for the rotational transformation matrix, whereas the term
→..
Xg is the first-order translational

acceleration of body’s center of gravity and ζr is the first-order relative wave elevation with
respect to the transposed static water line, WL, of the body. The term X0

G3 is the vertical
distance of the center of gravity, G, from the seabed; the term ξ5 is the first order pitch
motion about the reference point G. Finally, Φ is given in Equation (1), while Φt denotes its
time derivative.

4. Numerical Results
4.1. Validation

This section is dedicated to confirming the validity of the presented theoretical method
and its numerical implementation. The results from the present methodology are compared
with corresponding data, which are available in the literature. The depicted numerical
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results are obtained using the HAMVAB code [60] developed in Fortran. The CPU time for
each wave frequency related to the diffraction and the radiation problems is less than a
second. Herein, for the case of the I and II ring elements, I = 40 terms were used, while for
the III ring element n = 60 terms, whereas the modes m = 7.

In Figure 2 the exciting forces on a floating porous cylindrical body without the
presence of the coaxial cylinder (i.e., b = 0, see Figure 1) are presented and compared
with the results reported in [32]. Here, the examined cylinder is of radius α and draught
(d − h1)/α = 2. The cylinder is situated in a liquid domain of depth d = 100α/3. The non-
dimensional porous coefficient G is assumed to be a real number and equal to G = 1.432.
The thickness of the impermeable bottom of the cylinder is assumed to be negligible, i.e.,
h1 ≈ h, and the wave train is considered propagating at zero angle. The depicted numerical
results concerning the exciting wave forces have been normalized by ρgα2(H/2), while the
exciting wave moments have been normalized by ρgα3(H/2). Furthermore, in Figure 3 the
hydrodynamic coefficients of the examined porous cylinder are presented and compared,
again, with the results reported in [32]. The coefficients have been normalized by (ρα3) and
(ωρα3) for the added mass and damping terms, respectively.

Fluids 2021, 6, x FOR PEER REVIEW 9 of 22 
 

is less than a second. Herein, for the case of the I and II ring elements, I = 40 terms were 
used, while for the III ring element n = 60 terms, whereas the modes m = 7. 

In Figure 2 the exciting forces on a floating porous cylindrical body without the pres-
ence of the coaxial cylinder (i.e., b = 0, see Figure 1) are presented and compared with the 
results reported in [32]. Here, the examined cylinder is of radius α and draught (d − h1)/α 
= 2. The cylinder is situated in a liquid domain of depth d = 100α/3. The non-dimensional 
porous coefficient 𝐺 is assumed to be a real number and equal to 𝐺 = 1.432. The thick-
ness of the impermeable bottom of the cylinder is assumed to be negligible, i.e., h1 ≈ h, and 
the wave train is considered propagating at zero angle. The depicted numerical results 
concerning the exciting wave forces have been normalized by ρgα2(Η/2), while the excit-
ing wave moments have been normalized by ρgα3(Η/2). Furthermore, in Figure 3 the hy-
drodynamic coefficients of the examined porous cylinder are presented and compared, 
again, with the results reported in [32]. The coefficients have been normalized by (ρα3) 
and (ωρα3) for the added mass and damping terms, respectively.  

The drift forces on a floating porous cylinder (i.e., b = 0) are also presented. For com-
parisons, the results reported in study [61] are exploited. The examined cylinder of radius 
α and draught (d − h1)/α = 1, is floating at water depth d = 3α. The thickness of the imper-
meable bottom of the cylinder is assumed to be negligible, i.e., h1 ≈ h. Two different non-
dimensional values of the porous coefficient 𝐺 are considered, i.e., 𝐺 = 0 and 𝐺 = 1.353. 
Figure 4 shows the non-dimensional horizontal drift force on the porous cylinder that is 
given, normalized by 2ρgα(Η/2)2/π.  

Figures 2 and 3 show a favorable agreement between the calculations obtained by the 
present method and the results reported in [32]. The same holds for the calculations of the 
drift loads depicted in Figure 4. Here, comparisons are made with the results reported in 
reference [61]. Therefore, it can be concluded that the present model can effectively antic-
ipate the hydrodynamic loads and the hydrodynamic coefficients associated with the con-
cerned porous cylindrical body.  

 
Figure 2. Comparison of the present method results against those from Zhao et al. [32], concerning 
the exciting forces and moments on a porous cylinder. 

  
(a) (b) 

Figure 3. Comparison of the present method results against those due to Zhao et al. [32], concerning the hydrodynamic 
coefficients of a porous cylinder: (a) hydrodynamic added mass in surge and heave; (b) hydrodynamic damping coeffi-
cients in surge and heave. 

0.00

0.50

1.00

1.50

2.00

2.50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Fx
,F

z/
(ρ

gα
2 (Η

/2
))

Μ
y/

(ρ
gα

3 (Η
/2

))

kα

Fx Present method Fx Zhao et al. 2011

Fz Present method Fz Zhao et al. 2011

My Present method My Zhao et al. 2011

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

α 1
1,

33
/(ρ

α3 )

kα

a11 Present method a11 Zhao et al., 2011

a33 Present method a33 Zhao et al., 2011

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

b 1
1,

33
/(ω

ρα
3 )

kα

b11 Present method b11 Zhao et al., 2011

b33 Present method b33 Zhao et al., 2011

Figure 2. Comparison of the present method results against those from Zhao et al. [32], concerning
the exciting forces and moments on a porous cylinder.
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Figure 3. Comparison of the present method results against those due to Zhao et al. [32], concerning the hydrodynamic
coefficients of a porous cylinder: (a) hydrodynamic added mass in surge and heave; (b) hydrodynamic damping coefficients
in surge and heave.

The drift forces on a floating porous cylinder (i.e., b = 0) are also presented. For
comparisons, the results reported in study [61] are exploited. The examined cylinder of
radius α and draught (d − h1)/α = 1, is floating at water depth d = 3α. The thickness of the
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impermeable bottom of the cylinder is assumed to be negligible, i.e., h1 ≈ h. Two different
non-dimensional values of the porous coefficient G are considered, i.e., G = 0 and G = 1.353.
Figure 4 shows the non-dimensional horizontal drift force on the porous cylinder that is
given, normalized by 2ρgα(H/2)2/π.
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Figure 4. Comparison of the present method results against those from Zhao et al. [61], concerning
the horizontal drift forces on a porous cylinder.

Figures 2 and 3 show a favorable agreement between the calculations obtained by the
present method and the results reported in [32]. The same holds for the calculations of the
drift loads depicted in Figure 4. Here, comparisons are made with the results reported
in reference [61]. Therefore, it can be concluded that the present model can effectively
anticipate the hydrodynamic loads and the hydrodynamic coefficients associated with the
concerned porous cylindrical body.

4.2. Test Cases
4.2.1. Coaxial Bottom-Mounted Porous Cylindrical System

The method developed in the present study is initially applied for a bottom-mounted,
surface-piercing, impermeable cylinder surrounded by an exterior porous cylindrical cell.
The porous cylindrical surface has radius α, while the radius of the coaxial impermeable
cylinder is b = 0.5α. Here, h1 = h = 0 (i.e., the porous surface is assumed to be bottom-
mounted). An incident wave train is considered, propagating at an angle of zero in a fluid
field of depth d = 3b. Several values of opening ratios τ are examined. Table 1 lists practical
values of τ as a function of the porous coefficient G (see Equation (11)) for wave slope
ε = 0.05 [36]. The G values are considered in Figures 5–7 and are used to evaluate their
effect on the hydrodynamic loads exerted on the body. Additionally, the G = 0 and the
G � 1 cases are examined, in which the porous surface is assumed to be impermeable and
fully permeable, respectively.

Table 1. Porous coefficient G and the corresponding opening rate τ of the porous surface for ε = 0.05,
based on Equation (11).

τ 0.037 0.08 0.12 0.22 0.41 0.60

G 0.100 0.468 1.015 3.118 9.309 17.482
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Figure 5. Effect of the porous coefficient G on the horizontal exciting wave loads on a porous bottom-mounted cylindrical
body: (a) horizontal exciting forces; (b) horizontal exciting moments.
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Figure 6. Effect of the porous coefficient G on the mean drift forces on a porous bottom-mounted
cylindrical body. The results are compared against those reported in [62].
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Figure 7. Effect of the porous coefficient G on the wave run up of the porous cylindrical system.

The effect of the porous coefficient on the horizontal exciting forces and the overturing
moments, as well as on the drift forces is considered in Figures 5 and 6. The results
have been normalized by ρgb2(H/2), ρgb3(H/2), ρgb(H/2)2, respectively. Additionally, in
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Figure 7 the wave run up outside the porous surface, as being described in the right hand
side of Equation (7), normalized by the wave amplitude, is depicted against kb, for various
values of G.

Figure 5 shows that the wave loads on the impermeable system (i.e., G = 0) are
generally greater than those on the porous cylindrical system since, in the latter case, the
incident wave energy is absorbed by the pores on the outer cylindrical surface. Furthermore,
as the G values increase, the exciting wave loads on the system decrease. The reduction
is more pronounced at long waves, i.e., kb < 0.8. Hence, at these wave numbers the wave
loads can be effectively controlled by applying porous-material-surfaces outside a vertical
bottom-mounted cylinder. Furthermore, a peculiar behavior for the exciting forces and
moments is observed at kb ≈ 0.67. In the vicinity of the specific wave number, the exciting
forces and moments attain a sharp decrease. In addition, this effect is more profound for
lower values of G. At kb≈ 0.67, which corresponds to a wave frequency equal to 1.13 rad/s,
where a resonance in the fluid motion between the inner and outer cylinders occurs. The
wave frequency in which this phenomenon is encountered was determined in [63], where
sloshing effects in moving containers were examined.

Concerning the drift forces on the porous cylindrical system, it can be seen that
for G > 0 the variation pattern of the drift forces differs from that for G = 0 (Figure 6).
Specifically, Figure 6 shows that the drift forces behave reverse proportionally with G.
Furthermore, the values of F(2) are bounded by the values of G = 0 and G � 1, i.e., by
the values of the drift forces corresponding to the case of an impermeable outer cylinder
and the ones of the impermeable internal coaxial cylinder, without the presence of the
outer porous surface, respectively. Additionally, a peak is observed at kb ≈ 0.67, in which
sloshing phenomena at the water area between the outer and the inner cylinder occur. This
effect is more profound for small values of G. In addition, it is shown that for G = 0.1, F(2)

exhibits a series of peaks around kb = 1.341; 1.979, etc. At these wave numbers the velocity
potential fulfills the continuity relation between the inner and the outer fluid region as
if the outer surface were fully permeable, allowing the undisturbed transmission of the
incoming waves from the outer to the inner fluid domain without wave dissipation [62].

The wave-dissipation effect of the outer porous surface is also depicted in Figure 7,
which shows the wave run-up on the surface. This effect is significantly weakened, at the
corresponding wave numbers, i.e., kb = 1.341; 1.979 for G = 0.1. However, as the G values
increase, the wave run-up obtains a smooth variation pattern (i.e., without presenting tense
peaks), tending to the results of a fully permeable outer surface, for G > 9.309.

4.2.2. Bottom-Mounted Porous Compound Cylindrical Body

In the present subsection a cylindrical system is considered with radii α, b = 0.5α, and
d = 3b. Here, also, h = 0 and h1 = 1.5b (see Figure 1). The examined porous coefficients are
limited to the range of (0., 0.47) (i.e., G = 0., 0.05, 0.1, 0.25, 0.47) with the aim to investigate
whether the aforementioned peculiar behavior of the outer porous surface of a bottom-
mounted cylinder (i.e., diffraction or dissipation effect of water waves) is encountered in the
examined compound cylindrical body case as well. Figures 8 and 9 depict the normalized
horizontal exciting forces and moments, as well as the horizontal drift forces, on the porous
body, respectively. The normalized factors are presented in Section 4.2.1. Furthermore, in
Figure 10, the wave run up ζ/(H/2) outside the porous surface is presented as a function
of kb for the examined G values.
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Figure 8. Effect of the porous coefficient G on the horizontal exciting wave loads on a porous bottom-mounted compound
cylindrical body: (a) horizontal exciting forces; (b) horizontal exciting moments.
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Figure 9. Effect of the porous coefficient G on the mean drift forces on a porous bottom-mounted
compound cylindrical body.
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Figure 10. Effect of the porous coefficient G on the wave run up of a porous bottom-mounted
compound cylindrical body.
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The results of Figure 8 demonstrate clearly that the porous coefficient affects signifi-
cantly the exciting loads also for the examined case of a bottom-mounted porous compound
cylindrical body. It is easily seen that as the porous coefficient is increased, the horizontal
exciting forces behave reversely, tending to those for a truncated impermeable cylinder
for G � 1. This is not the case, however, for the overturning exciting moments, which
increase by analogy of the porous coefficient. It is worthwhile to mention that the exciting
moments of a bottom-mounted compound cylindrical body (i.e., G� 1 case) obtain larger
values than those of a bottom-mounted vertical cylinder (i.e., G = 0 case). Furthermore,
it is noted that both the horizontal exciting forces and overturning moments exhibit a
peculiar behavior at kb ≈ 0.45 (i.e., corresponding to a wave frequency ω ≈ 0.88 rad/s).
The specific wave number, which corresponds to wave lengths close to those of the free
fluid motion in a cylindrical container with bottom, leads to resonance situations of wave
motions (see [63]). However, for G = 0 and G� 1 this phenomenon is not observed, due to
the fact that for G = 0 the bottom-mounted cylinder is assumed to be impermeable, whereas
for G� 1 the porous cylindrical surface is assumed to be fully permeable. Additionally, as
the G values increase the resonance effect on the exciting forces is reduced. The exciting
moments behave reversely. Similar resonance phenomenon due to sloshing can be also
observed in the works of [40,64].

Figure 9 shows the effect of G on the horizontal drift forces on the above examined
cylindrical body. Clearly, as the G values increase the drift forces are reduced for values
of kb greater than 0.4. However, the opposite trend seems to hold for small values of kb,
i.e., kb < 0.4, where the drift forces for G = 0.47 obtain higher values than those for G = 0.05,
0.1, 0.25. Furthermore, at kb ≈ 0.45 and 1.2, small peaks are observed. Regarding the peak
at kb ≈ 0.45 this corresponds to the resonance of the fluid motion in the area between the
porous and the impermeable surface. As far as the peak at kb ≈ 1.2 is concerned, this is
due to the enhanced wave action upon the interior impermeable column originated by the
incoming wave which is undissipated by the porous surface.

The effect of G on the wave run-up on the examined porous system is shown in
Figure 10. Starting with the variations of the porous coefficient, it can be seen that as G de-
creases the ζ/(H/2) values decrease as well. Furthermore, the locations (i.e., wavenumbers)
where sloshing resonances occur (i.e., at kb ≈ 0.45) as well as where the wave transmission
is undissipated by the porous surface (kb ≈ 1.2), are notable.

4.2.3. Free Floating Porous Compound Cylindrical Body

In this subsection a free floating porous compound cylindrical body of an outer radius
α and an inner radius b = 0.5α is assumed. The distance between the bottom of the body
from the seabed is h = 1.25b, whereas the distance of the bottom of the porous sidewall
from the seabed equals to h1 = 0.75b. The body is floating at a water depth d = 3b. The
above examined porous coefficients, i.e., G = 0., 0.05, 0.1, 0.25, 0.47, are also considered
herein. The effect of the porous coefficient on the hydrodynamic behavior of the examined
porous body is shown in Figures 11–13, where the variations of the normalized horizontal
exciting forces and overturning moments, as well as the surge added mass and damping
coefficients, along with the horizontal drift forces, on the porous system, are depicted. The
α11, b11 terms, defined in Equation (28), are normalized by ρV and ρωV, respectively, where
V stands for the impermeable volume of the body.
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Figure 11. Effect of the porous coefficient G on the horizontal exciting wave loads and overturning moments on a floating
porous compound cylindrical body: (a) horizontal exciting forces; (b) overturning moments.
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Figure 12. Effect of the porous coefficient G on the horizontal hydrodynamic coefficients of a floating porous compound
cylindrical body: (a) added mass; (b) damping coefficient.
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Figure 13. Effect of the porous coefficient G on the mean drift forces on a floating porous compound
cylindrical body.

Starting with the horizontal exciting wave forces, Fx, in Figure 11a it can be seen
that they exhibit a similar variation with the increase of G such as the one discussed in
Sections 4.2.1 and 4.2.2. Specifically, as G increases the values of Fx decrease, tending
toward those of a floating compound cylindrical body without the outer porous surface,
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for G� 1 (see Figure 11a). Furthermore, the sloshing resonance is also notable at kb ≈ 0.4
(i.e., corresponding to ω ≈ 0.80 rad/s), where the exciting forces for G = 0.05, 0.1, 0.25, 0.47
attain a peak [63]. It is observed that as G decreases these peaks become sharper. This is
not the case for G = 0.0 and G� 1 for which the exciting forces attain a smooth variation
pattern. Regarding the overturning moments My, (Figure 11b), it can be seen that as G
increases, My increases as well, tending toward the values of a floating compound cylinder,
for G� 1 In addition, the resonance at kb ≈ 0.4 is also notable. However, this phenomenon
is significantly reduced as G decreases.

Figure 12 depicts the hydrodynamic coefficients of the examined porous system in
the surge direction for each value of G For the case of the impermeable cylinder, i.e., for
G = 0, the added mass is augmented by the fluid mass enclosed between the inner and the
outer cylindrical body. Figure 12a shows that the added mass, as defined above, for every
examined G, varies between the two bounding cases, i.e., G = 0 and G� 1. It should be
noted, however, that the motion of the inner fluid at kb≈ 0.4 causes a peculiar phenomenon
on the values of the added mass. Specifically, at the neighborhood below the corresponding
wave number, the added mass initially increases, whereas above this wave number it
decreases rapidly. This effect is affected by the G term, since for larger G values these
resonances decrease. Figure 12b shows the damping coefficient of the examined porous
system. It can be seen that the damping coefficient is not bounded by the limiting cases
G = 0 and G� 1. This is due to the existence of the additional porous damping, which
increases the values of the total damping coefficient [42]. Furthermore, as the porosity term
G increases, the damping decreases. A sharp increase is also depicted at kb ≈ 0.4 due to the
increased fluid motion, which is less significant as the porosity values increase.

The effect of the porous coefficient on the horizontal drift forces on the porous system
is shown in Figure 13. It can be seen that the drift forces behave reverse proportionally
with G. In addition, several peaks are depicted, i.e., at kb ≈ 0.4, 1.025. The peak at kb ≈ 0.4
is due to the sloshing motion of the fluid between the outer and the inner cylinder, whereas
in the vicinity of kb ≈ 1.025 certain components of the incoming waves can be completely
transmitted into the inner region.

In Figure 14 the wave run-up outside the porous cylindrical surface is depicted for
various examined porous coefficients. It can be seen that the presence of the outer porous
surface has a constructive effect on reducing the wave run-up outside the porous body.
Specifically, as G increases, the wave run-up decreases. Furthermore, the resonant locations
(i.e., at kb ≈ 0.4 and kb ≈ 1.025) are notable.
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Figure 14. Effect of the porous coefficient G on the wave run up on a floating porous compound
cylindrical body.
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5. Conclusions

The present study dealt with a theoretical model for the investigation of the hydrody-
namics of a porous vertical compound cylindrical body in the presence of regular waves.
Within the realm of the linear wave theory, a three-dimensional theoretical solution based
on the eigenfunction expansion method is developed for the determination of the velocity
potential of the flow field around the cylindrical body, whereas a linear resistance law is
used to connect the pressure drop across the porous shell with the normal velocity. The
main conclusions drawn from the study are:

• The presence of the porous cylindrical surface reduces the hydrodynamic forces on
the inner cylinder, as well as the wave run up. This could be beneficial for minimizing
the environmental impact on pile-supported marine structures;

• Sloshing phenomena due to the fluid motion in the fluid volume confined between the
porous surface and the inner cylinder are notable. Accordingly, sloshing phenomena
create resonant peaks in the trends of the hydrodynamic loads and the wave elevations;

• In addition, resonances at specific wave numbers are encountered in the drift forces
and the wave run-up. At the corresponding wave numbers, the porous surface cannot
dissipate the wave energy, thus enhancing the wave impact on the porous system;

• The presence of the outer porous cylinder causes an increase on the hydrodynamic
forces and added mass, which are bounded by the limiting cases G = 0 and G� 1 On
the other hand, the damping coefficient is not bounded by these limiting cases due
to the existence of the additional porous damping, which increases the values of the
total damping coefficient;

• The chosen porosity plays a key role in reducing/controlling the forces and moments
on a system under consideration by dissipating the wave energy. The permeability of
the outer porous surface increases with the increase of G, enhancing the wave impact
on the inner cylinder. Hence, G needs to be chosen so as to have the optimum impact
on the inner cylinder in addition to reducing the resonance effects.

The present theoretical analysis will be further developed in order to account for
quadratic dissipation of a porous body of arbitrary shape and number of porous sur-
faces. Furthermore, the analysis will be also extended to account for the wave interaction
phenomena among arrays of floating porous cylindrical bodies.
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Nomenclature

H
2 Wave amplitude

k Wave number
ω Wave frequency
d Constant water depth
h Distance between the bottom of the body and the seabed
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h1 Distance between the bottom of the porous surface and the seabed
α Radius of the porous cylindrical surface
b Radius of the coaxial cylinder
ϕk Velocity potential around the porous body, k = I, II, III
ϕ0 Velocity potential of the undisturbed incident regular wave
ϕk

7 Scattered velocity potential
ϕk

D Diffraction velocity potential
ϕk

j Radiation velocity potential, j = 1,3,5
.
ξ j0 Complex velocity amplitude of body motion in j-th direction
Jm m-th Bessel function of first kind
εm Neumann’s symbol
Ψk

lm Principal unknowns of the diffraction and radiation problems, ` = D, 1, 3, 5; k= I, II, III
S Body’s impermeable wetted surface
nj Generalized normal vector
µ Dynamic viscosity
γ Material constant
ρ Fluid density
G Porous coefficient
τ Opening rate of the material
ε Wave slope
Hm m-th order Hankel function of first kind
Km m-th order modified Bessel function of second kind
Zj Orthonormal eigenfunctions
Im m-th order modified Bessel function of first kind

Fk
lm,i

Fourier coefficients defined by the solution of the corresponding diffraction and
radiation problems

Fx Horizontal exciting forces
Fz Vertical exciting forces
M Overturning moment
fi,j Hydrodynamic reaction forces
aij Added mass coefficients
bij Damping coefficients

F(2) Mean drift wave forces
g Gravity acceleration
M Generalized mass matrix
→
X First-order translations vector
R Rotational transformation matrix
→..
Xg

First-order translational accelerations of body’s center of gravity

ζr Relative wave elevation
x0

G3 Vertical distance of the body’s center of gravity from the seabed

Appendix A

Values of the functions RI I
mi, R∗I I

mi , defined in Equation (17):

RI I
mi =

Im
(
aI I

i r
)
Km
(
aI I

i b
)
− Im

(
aI I

i b
)
Km
(
aI I

i r
)

Im
(
aI I

i a
)
Km
(
aI I

i b
)
− Im

(
aI I

i b
)
Km
(
aI I

i a
) ; R∗I I

mi =
Im
(
aI I

i a
)
Km
(
aI I

i r
)
− Im

(
aI I

i r
)
Km
(
aI I

i a
)

Im
(
aI I

i a
)
Km
(
aI I

i b
)
− Im

(
aI I

i b
)
Km
(
aI I

i a
) (A1)

For b = 0, i.e., absence of the coaxial cylindrical body, the functions RI I
mi, R∗I I

mi , are
reduced to:

RI I
mi =

Im
(
aI I

i r
)

Im
(
aI I

i a
) ; R∗I I

mi = 0 (A2)
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Appendix B

Here is given a brief presentation of the numerical procedure that was followed
to evaluate the unknown Fourier coefficients, Fk

lm,i, l = D, 1, 3, 5; k = I, I I, I I I in each
fluid domain.

The condition for the continuity of the potential at the boundaries of neighboring
elements (i.e., element type I and III) is expressed through Equation (12). It follows that:

∞

∑
i=0

FI
lm,iZi(z) = f I I I

lm (a, z) +
∞

∑
n=0

εnFI I I
lm,n cos

(nπ

h
z
)

; for 0 ≤ z ≤ h (A3)

After multiplying both sides of Equation (A3) with 1
h cos

( vπ
h z
)

and integrating over
[0,h], the following equation in a matrix notation is obtained:{

FI I I
lm,n

}
= {Ql}+

[
LI,I I I

iv

]{
FI

lm,i

}
; for 0 ≤ z ≤ h (A4)

In Equation (A4)
{

FI
lm,i

}
,
{

FI I I
lm,n

}
are both complex vectors, the elements of which are

the unknown Fourier coefficients of the I and III ring element type, whereas
[

LI,I I I
iv

]
is a

(N ×M) matrix given by:
For aI

i =
vπ
h 6= 0, then:

LI,I I I
iv =

1
2

[
1
2
[1 +

sin
(
2aI

i d
)

2aI
i d

]

]−1/2

(A5)

for aI
i 6=

vπ
h , then:

LI,I I I
iv = (−1)v

[
1
2
[1 +

sin
(
2aI

i d
)

2aI
i d

]

]−1/2
aI

i h

(aI
i )

2h2 − v2π2
sin
(

aI
i h
)

(A6)

It should be noted that:
∫ h

0
1
h cos

( vπ
h z
)

cos
( nπ

h z
)
dz =

{ 1
2 , f or nπ

h = vπ
h

1, f or n = v = 0
. Further-

more, the term {Ql}, l = 1, 3, 5, D in Equation (A4) is a complex vector, that is equal to:

QD = Q1 = 0; Q3 =

 −(−1)v h
dv2π2 , for v 6= 0

− h
6d + a2

4dh , for v = 0
; Q5 =

 (−1)va h
d2v2π2 , for v 6= 0

ah
6d2 − a3

8d2h , for v = 0
(A7)

Concerning the continuity of the velocity potential at the I and the II neighboring ring
elements, given in Equation (10), it holds that:

∂ f I I
lm(r,z)

∂r

∣∣∣∣
r=a

+
∞
∑

i=0

(
∂RI I

mi(r)
∂r

∣∣∣∣
r=a

FI I
lm,i +

∂R∗I I
mi (r)
∂r

∣∣∣∣
r=a

F∗I I
lm,i

)
Zi(z− h1) = U I I

l

+ikG
[

f I I
lm(a, z) +

∞
∑

i=0
FI I

lm,iZi(z− h1)

]
− ikG

∞
∑

i=0
FI

lm,iZi(z)

Here U I I
l equals to : U I I

D = U I I
3 = 0; U I I

1 = 1
d ; U I I

5 = z−e
d2

(A8)

After multiplying both sides of Equation (A8) with 1
d−h1

Zv(z− h1) and integrating
over [h1, d], the following equation in a matrix notation is obtained:[[

Dmj
]{

FI I
lm,j

}
+ [D∗mj]

{
F∗I I

lm,j

}]
+
{

PI I
l

}
= ikG{Ql}+ ikG

{
FI I

lm,j

}
− ikG

[
LI,I I

iv

]{
FI

lm,i

}
(A9)

where PI I
l = a

d−h1

∫ d
h1

∂ f I I
lm(r,z)

∂r

∣∣∣∣
r=a

Zv(z− h1)dz− a
d−h1

∫ d
h1

U I I
l Zv(z− h1)dz
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In Equation (A9),
[

LI,I I
iv

]
is a (N ×M) matrix given by:

for ai 6= av, then:

LI,I I
iv =

[
1
2 [1 +

sin(2aI
i d)

2aI
i d

]

]− 1
2
[

1
2 [1 +

sin(2aI I
v (d−h1))

2aI I
v (d−h1)

]

]− 1
2

1
(d−h1)

(
(aI

i )
2−(aI I

v )
2
)

[
aI

i sin
(
aI

i d
)

cos
(
aI I

v (d− h1)
)
− aI

i sin
(
aI

i h1
)
− aI I

v cos
(
aI

i d
)

sin
(
aI I

v (d− h1)
)] (A10)

for aI
i = aI I

v then:

LI,I I
iv =

[
1
2 [1 +

sin(2aI
i d)

2aI
i d

]

]− 1
2
[

1
2 [1 +

sin(2aI
i (d−h1))

2aI
i (d−h1)

]

]− 1
2

1
2(d−h1)[

(d− h1) cos
(
aI

i h1
)
+ 1

2aI
i

sin
(
aI

i (2d− h1)
)
− 1

2aI
i

sin
(
aI

i h1
)] (A11)

Furthermore, {Ql}, l = 1, 3, 5, D in Equation (A9) is a complex vector, that is equal to:

QD = Q1 = 0; Q3 = 1
h1d(aI I

i )
2

[
1
2 [1 +

sin(2aI I
i (d−h1))

2aI I
i (d−h1)

]

]− 1
2

Q5 = − a
h1d2(aI I

i )
2

[
1
2 [1 +

sin(2aI I
i (d−h1))

2aI I
i (d−h1)

]

]− 1
2

(A12)

The condition for continuity of the radial derivative of the potential at the bound-
aries of neighboring elements I–III and I–II is expressed through Equations (12) and (13).
Furthermore, the kinematic condition on the vertical impermeable surface of the body, as
described in Equation (8), must be satisfied as well. Multiplying both sides of equations
with the weight function 1

d Zv(z) and integrating over the region of their validity, that is
[0,h1] and [h1,d], respectively, and adding the resulting expressions, the following equation
in a matrix form is obtained:

[Ami]{FI
lm,i}+

{
Bl,m

}
+
{

PI I I
l

}
=

h
d

[
LI,I I I

nv

]
[εn][Amn]{FI I I

lm,n}+
d− h1

d

[
LI,I I

jv

][[
Dmj

]
{FI I

lm,j}+
[

D∗mj

]
{F∗I I

lm,j}
]

(A13)

In Equation (A13) the term [Ami] is a (N × N) square matrix given by:

Ami = aI
i a

∂Km
(
aI

i r
)

∂r

∣∣∣∣∣
r=a

1
Km
(
aI

i a
) (A14)

Additionally, the term [εn] is a diagonal matrix with εn = 1, for n = 1 and εn = 2, for
n > 1, whereas the [Amn] is a (M ×M) square matrix the elements of which are given by:

Amn = a
nπ

h
∂Im
( nπ

h r
)

∂r

∣∣∣∣∣
r=a

1
Im
( nπ

h a
) (A15)

The term
[

LI,I I I
nv

]
is given in Equations (A5) and (A6), whereas the term

{
Bl,m

}
, l =

1, 3, 5, D, is a complex vector, the elements of which are equal to:

BD,m = − 2i
πdHm(ka)Z′0(d)

δ0,v; B1,m = B3,m = B5,m = 0 (A16)
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In Equation (A16) δ0,v stands for the Kronecker’s delta function and the terms
[
Dmj

]
,

[D∗mj] are (M ×M) diagonal matrices defined by:

Dmj = a
∂RI I

mi
∂r

∣∣∣∣∣
r=a

, D∗mj = a
∂R∗I I

mi
∂r

∣∣∣∣∣
r=a

(A17)

where RI I
mi, R∗I I

mi are given in Equations (A1) and (A2).
The term

{
PI I I

l
}

, l = 1, 3, 5, D in Equation (A13) is a complex vector, that is equal to:

PI I
l = − a

d

h∫
0

∂ f I I I
lm (r, z)

∂r

∣∣∣∣∣
r=a

Zv(z)dz− a
d

h1∫
h

U I I
l Zv(z)dz− a

d

d∫
h1

∂ f I I
lm(r, z)

∂r

∣∣∣∣∣
r=a

Zv(z)dz

Especially on the vertical boundary r = b the kinematic condition (Equation (8)) must
be satisfied, i.e., [

[Dmj]{FI I
lm,j}+ [D∗mj]{F∗I I

lm,j}
]
+ {PI I

l } = 0 (A18)

The matrices
[
Dmj

]
, [D∗mj] of Equation (A9) are defined in Equation (A17) for r = b,

whereas
{

PI I
l
}

, l = D, 1, 3, 5 is a complex vector, that is equal to:

PI I
D = PI I

3 = 0; PI I
1 = −

[
1
2 [1 +

sin(2aI I
i (d−h1))

2aI I
i (d−h1)

]

]− 1
2

1
d(d−h1)

sin
(
aI I

i (h1 − d)
)
;

PI I
5 = −

[
1
2 [1 +

sin(2aI I
i d)

2aI I
i d

]

]− 1
2

1
(d−h1)d2(aI I

i )
2

[
2 cos

(
aI I

i (d− h1)
)

+
(

aI I
i

g
ω2 + aI I

i d− aI I
i e
)

sin
(
aI I

i (d− h1)
)
− 2
]

(A19)

The solution of the system of Equations (A4), (A9), (A13) and (A18) yields the un-
known Fourier coefficients Fk

lm,i, l = D, 1, 3, 5; k = I, I I, I I I.
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