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Abstract: Against the background of current and future global challenges, such as climate change,
process engineering requires increasingly specific solutions adapted to the respective problem or
application, especially in gas–liquid contact apparatuses. One possibility to adjust the conditions in
this kind of apparatuses is an intelligent and customized structuring, which leads to consistent fluid
properties and flow characteristics within the reactor. In the course of this, the interfacial area for mass
transfer, as well as residence times, have to be adjusted and optimized specifically for the respective
application. In order to better understand and advance the research on intelligent customized
additively manufactured lattice structures (AMLS), the phase distributions and local gas holdups
that are essential for mass transfer are investigated for different structures and flow conditions. For
the first time a tomographic measurement technique is used, the Electrical Capacitance Volume
Tomography (ECVT), and validated with the volume expansion method and a fiber optical needle
probe (A2PS-B-POP) for an air-water system for different modes of operation (with or without co-
current liquid flow in empty or packed state). The ECVT proved to be particularly useful for both in
the empty tube and the packed state and provided new insights into the phase distributions occurring
within structured packings, which would have led to significantly underestimated results based on
the visual reference measurements, especially for a densely packed additively manufactured lattice
structure (5 mm cubic on the tip). Particularly for the modified structures, which were supposed to
show local targeted differences, the ECVT was able to resolve the changes locally. The additional use
of a pump for co-current flow operation resulted in slightly higher fluctuations within the ECVT data,
although local events could still be resolved sufficiently. The final comparison of the empty tube at
rest data with a fiber optical needle probe showed that the results were in good agreement and that
the local deviations were due to general differences in the respective measurement techniques.

Keywords: additively manufactured lattice structures; electrical capacitance volume tomography;
gas holdup

1. Introduction

In process engineering, heterogeneous flow conditions frequently occur in multiphase
contact apparatuses, which can lead to inhomogeneous reaction conditions radially across
the reactor cross-section and the reactor height. The consequences include so-called “chan-
neling”, e.g., by large bubbles or droplets in the course of occurring coalescence [1], as well
as non-uniform catalyst utilization in heterogeneously catalyzed, packed bubble column
reactors [2]. There have been different approaches to address these problems in the past us-
ing conventional fabrication methods, such as the use of monoliths [3], screen or perforated

Fluids 2021, 6, 321. https://doi.org/10.3390/fluids6090321 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-7307-1251
https://orcid.org/0000-0001-5969-2150
https://doi.org/10.3390/fluids6090321
https://doi.org/10.3390/fluids6090321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6090321
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6090321?type=check_update&version=1


Fluids 2021, 6, 321 2 of 17

trays [4,5], packed beds [6–8], or structured packings [9–13], each with different advantages
and disadvantages. Since the rapid rise of additive manufacturing in the last decade and
the steady influx of new technical manufacturing possibilities of this innovative technology,
it is also gaining increasing acceptance in chemical process engineering [14–22]. As a result
of the newly gained degrees of freedom in the design and layout of reactors, new concepts
for the development of customized reactor solutions are on the way [23–27]. One current
research area is the development of Additively Manufactured Lattice Structures (AMLS)
for tailor-made adjustment of fluid properties for gas-liquid contact apparatuses. AMLS
represents a generic term here, which also includes Periodic Open-Cell Structures (POCS).
POCS consist of a unit cell geometry that repeats in a periodically scaled manner, while
AMLS can also be designed to be aperiodic, fractal, or otherwise. Recently, several groups
have been involved in the research of periodic open-cell structures. The groups led by
Freund and Schwieger have carried out studies on process intensification and, for example,
improvement of liquid distribution in trickle-bed reactors [20,21], as well as reaction engi-
neering design, use, and evaluation of these structures [15–17,22]. AMLS and, in particular,
POCS are characterized by several advantages: Their use increases mass transfer while
maintaining a comparatively small pressure drop (high energy efficiency) [28–30] and they
also act as a static mixer [31]. Furthermore, POCS have a high surface-to-volume ratio
and thus additionally enable a targeted use of heterogeneous catalysts or, in the case of a
biochemical reaction, act as a carrier for immobilized enzymes [25]. Additional degrees
of freedom in operation can be achieved by the use of interwoven structures, so-called
“interPOCS” [18], or by the choice of advanced structural materials (smart materials),
e.g., autonomous modes of operation can be achieved using special hydrogels [24].

In preliminary work, by using a fiber optical needle probe (A2PS B-POP) it was
demonstrated that patterning with POCS (cubic on the tip, 6 mm) homogenizes the local
gas holdup ε local (measured radially, above the structure) with an increasing height H to
diameter D ratio and also adjusts the mean bubble diameter (Sauter mean diameter d32)
uniformly across the cross-section. In addition, the influence on the bubble velocity ub in
the course of patterning was investigated [23].

However, it has not yet been possible to measure non-invasively within the struc-
ture to resolve the flow phenomenology inside the structures. To our knowledge to date,
tomographic studies of POCS have been performed at the Helmholtz Zentrum Dresden
Rossendorf (HZDR). Wagner et al. [32] investigated POCS by X-ray computer tomography
in a co-current setup (system: air-water) of a 30 × 30 mm rectangular channel concerning
gas holdup and mean bubble size, but this is relatively laborious due to its high costs
and safety standards. Therefore, in this study, experiments were carried out for the first
time using another non-invasive tomographic measurement technique, Electrical Capaci-
tance Volume Tomography (ECVT). In four different cases with increasing complexity, the
measurement technique is characterized in a 110 mm cylindrical flow tube and compared
to results from the visual reference (global gas holdup by volume expansion method),
as well as in the empty tube from using an optical needle probe (A2PS-B-POP [33]). In
2001, Fransolet et al. [34] showed a study regarding a different measurement technique,
the Electrical Resistance Tomography (ERT). There, measurements of gas holdup were
obtained by using pressure transducers as well as an optical probe and compared with
those obtained by an electrical resistance tomography method, showing good agreement in
an unpacked bubble column of 240 mm diameter. ECVT has been previously applied to a
wide range of two and three phase applications including air-water phase separators [35],
bubble columns [36], trickled beds [37], and slurry bubble columns [38].

Measurements in packed bed systems using additively manufactured lattice structures
are still lacking and will be performed in this work for the first time.

2. Experimental Procedures

In the following, the measurement principle of the ECVT is given. Subsequently, the
experimental setup, as well as the design and conduction of the experiments, are explained.
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2.1. Measuring Technique

ECVT is a volumetric extension of Electrical Capacitance Tomography (ECT). ECT
is a soft field tomography technique that uses low frequency (~50 kHz to 10 MHz), low
voltage (~10–20 V) electric fields to interrogate a region of interest. The ECT sensor is
made of a single layer of capacitance plate electrodes set around the circumference of the
region of interest. The basic principle of an ECT is that of a capacitor, which consists of
two conductive plates and a non-conducting material, termed as dielectric, separating the
two conductive plates. If a voltage is applied to the conductive plates an electric field is
generated in the dielectric material as shown in Figure 1. One of the key properties of
the dielectric material is its ability to store energy. It is termed as its dielectric constant or
commonly known as permittivity ε measured in [Fm−1], which indicates the permeability
of the material for the electric field E. The dielectrics are electrically weak or non-conducting
materials without any moving charges. The capacitance C depends on the plate size area
Ac, the plate spacing dc and the distance between the plates of the available dielectric. The
capacitance C is calculated as:

C =
ε0εr Ac

dc
(1)

where:

ε0 = permittivity of free space or vacuum
εr = relative permittivity of dielectric material
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The dielectric material permittivity during the polarization process is given by:

εr = ε′r + i·ε′′r (2)

where:

ε′r = the quantity of polarizability of the material (decisive for calculating the capacitance
of a capacitor)
ε
′′
r = dielectric losses due to friction

The electric potential and permittivity distribution is described using the
Poisson’s equation [39]:

ε(
→
r )∇2φ(

→
r ) +∇ε(

→
r )∇φ(

→
r ) = −ρ(

→
r ) (3)

where:
→
r = position vector

ε(
→
r ) = dielectric constant (permittivity distribution)
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φ(
→
r ) = potential distribution

ρ(
→
r ) = charge density

The capacitance Cij between two electrodes i and j, where i is the excitation electrode
and j is the grounded, i.e., detection electrode, can be found by integrating and applying
divergence theorem to Equation (3), and given as

Cij = −
1

Vij

‹
Sj

ε(
→
r )∇φ(

→
r )dS (4)

where Vij is the voltage difference between the pair of electrodes and Sj is the area enclosing
the flow domain and the detection electrode [40].

In ECVT, multiple layers of electrodes are utilized along the axis of the sensing
region. There are two main types of excitation methods for capacitance tomography-
charge-discharge and alternating-current (AC). The ECVT system used in this study uses
the AC method. In the AC method, the electric field is created by exciting one of the
capacitance electrode plates with an AC voltage, which then creates a reactionary AC
voltage on all other plates. The AC signal on these detection plates is recorded and
compared to the excitation signal amplitude and phase. Any changes in the amplitude and
phase correspond to the permittivity distribution of the phases in the sensing region. The
system steps through the measurement in sequence such that all plates have operated as an
excitation plate. These measurements are then mapped into a 3D image using a sensitivity
matrix

.
S, the measuring vector λ and the intensity vector (voxel values) gi by means of an

image reconstruction technique.
λ = S·gi (5)

To obtain the intensity vector gi, the inverse of
.
S is needed. Due to the unequal number

of column and row vectors of S, the inverse can only be calculated with sufficient accuracy
using iterative inversion methods [41].

There are several approaches and algorithms for the approximation of the inverse of S,
which are constantly being optimized. One simple method is the Linear Back Projection
(LBP), stated as:

gi = ST ·λ (6)

Although many imaging algorithms are possible such as LBP or Landweber, in this
study we used the 3D Neural Network Multi-criterion Optimization Image Reconstruction
Technique (3D-NNMOIRT), which is well described in the work of Warsito et al. [42].

For a 24 plate sensor, there are 276 combinations to excite and detect plates. When
mapping this data to an 8000-voxel (3D pixel) image, the image reconstruction problem is
ill-conditioned and ill-posed, making the solution non-trivial. 3D-NNMOIRT was used
because, unlike many other iterative techniques, this one does not diverge for increasing
iterations. An additional parameter may be used to tune the sharpness of the images.

The ECVT system used in this study is a commercially available system by the com-
pany Tech4Imaging, which is composed of a passive clamp-on style 24 plate sensor with
4 layers of plates and 6 plates in each layer, a data acquisition system, and a software for
data collection and post processing on a PC. The system requires calibration by taking
reference measurements of the empty and full columns. Each state, empty (100% gas) and
full (100% liquid), is calibrated before each measurement to calculate the phase composition
in each voxel for every time step while/after measuring.

2.2. Experimental Setup

The measured data include time- and space-averaged gas holdup in the entire column
and along the x, y, and z-axis for studying the phase distribution along the axes. Based on
the mode of operation, the experimental setup is divided into two options (regarding liquid
flow mode), namely with stagnant liquid and co-current gas-liquid circulation, which is
shown in Figure 2.
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Figure 2. Experimental setup for the four different cases (liquid flow mode: stagnant or co-currently liquid flow;
with/without packing) including A2PS-B-POP optical needle probe.

The column used is made of acrylic glass with an inner diameter of D = 102 mm and
height of H = 1000 mm. The sensor region is shielded with an electrically grounded metallic
(aluminum) sheet to reduce the external disturbances affecting the sensitive measurements.
The ECVT sensor is positioned such that there is 250 mm (10”) space on either side of
the sensor to improve performance, according to the manufacturer. The fluids used are
deionized water as liquid and air as a gas, and the tests are performed at ambient conditions
(p = 1013± 30 hPa, T = 20± 1 ◦C). A predetermined level of liquid in the column is filled (up
to 250 mm) above the ECVT sensor top position for stagnant liquid mode. For co-current
liquid flow mode, the liquid is allowed to overflow the column through side nozzles fitted
at 350 mm above the top of the sensor. The POCS are arranged such that they cover the
whole sensor region within the column, which helps achieving the best results using the
ECVT. Additionally, a cubic on the tip POCS of 6 mm unit cell size and a height of 100 mm
(termed as Rectifier) is placed at the bottom of the column and is used to stabilize and
homogenize the flow before reaching the sensor, especially in liquid circulation mode.

One of the most widely used validation methods for gas holdup measurements is
the determination of the change of liquid level during the bubbling process. To facilitate
this, a measuring tape is fixed on the column above the sensor region. The position
of the gas sparger (nozzle tip of 2 mm opening) is fixed (40 mm from the bottom). For
the mode with liquid co-current circulation, a centrifugal pump is used (Type: Rover
Pompe BE–M 20 IP 55), and the tests are run for two different superficial liquid velocities
namely, 8.8 × 10−3 ms−1 and 20 × 10−3 ms−1. The gas-phase superficial velocity is varied
between 2.6 × 10−3 ms−1 and 15.5 × 10−3 ms−1 for each of the cases and controlled using
a Bronkhorst M-14 mass flow controller.

An overview of the experimental conditions can be found in Table 1.

Table 1. Experimental conditions.

Temperature
T

[◦C]

Pressure
p

[Pa] × 102

Superficial Liquid Velocity
ul

[m·s−1] × 10−3

Superficial Gas Velocity
ug

[m·s−1] × 10−3

20 ± 1 1013 ± 30 {0, 8.8, 20} {2.6, 5.2, 7.7, 10.3, 12.9, 15.5}
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The structures needed for the experiments were stereo-lithographically manufactured
from clear standard resin (V4) using a Form-3 3D printer by Formlabs Inc. The details of
the tested structures can be seen in Figure 3:
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Figure 3. Investigated structures: (A) Cubic regular with a unit cell size of 6 mm, (B) Cubic on the tip
with a unit cell size of 6 mm, (C) Cubic on the tip with a unit cell size of 5 mm, (D) Cubic regular
with dissimilar sizes on either side (5 mm and 6 mm); all structures have a strut thickness of 1 mm.

Cubic regular: The structures shown in Figure 3A,D have a lower flow resistance due
to their open geometric pattern compared to the cubic on the tip oriented structures (cf.
Figure 3B,C). The uniform geometry is modified to have a combination of two different
grid spaces (dissimilar) as shown in Figure 3D. Using such a modification, a difference
in gas holdup over the cross section can be expected due to the difference in the tailored
bubble sizes on each side. Larger bubbles will be stable in the larger cell size section (6 mm)
compared to the (5 mm) cell size section resulting in bubbles having a higher rising velocity
due to their bigger volume and lower flow resistance of the packing. The higher rising
velocity should cause a lower gas holdup.

Cubic on the tip: Figure 3B,C shows the cubic on the tip structures of unit cell size of
5 mm and 6 mm, respectively, with a strut thickness of 1 mm. This type of structure has a
higher drag to the two-phase flow compared to the regular cubic hexahedron structures.
Here, the gas meanders through the structures rather than flowing unhindered. Moreover,
considering that the free available cross sectional area is lower for the 5 mm than the 6 mm,
we can expect some hindrance and therefore a higher gas holdup in the former than in
the latter.
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Each of the above-mentioned POCS was tested for the global and localized gas holdup
for both modes of operation (with and without co-current flow). All ECVT measurements
were conducted for 1000 frames and analyzed for all cases, which corresponds to 25 s of
acquisition time at 40 frames per second.

2.3. Visual Reference Method

One common and simple method for determining the overall gas holdup in a bubble
column is to investigate the change in the liquid level using a fixed measurement tape
on the column. This method is commonly known as volume expansion method [43], also
termed in this work as the visual reference method.

The gas holdup εG based on liquid height/level is given by Equation (7):

εG =
hR − h0

hR
(7)

where:

hR = liquid level during gas bubbling
h0 = initial liquid level without gas bubbling

At low superficial gas velocities, the method provides reliable values for the gas
holdup, however, at higher superficial gas velocities due to fluctuation and excessive
turbulence, the values need to be approximated. The image analysis tool Image J2 (Fiji) is
used for getting the best approximation of the liquid level change, and hence the reference
of the global gas holdup. The average arithmetic mean is used as reference value. Similarly,
the minimum and maximum values corresponding to the minimum (lower) and maximum
(upper) levels are observed during the entire duration of the experiment. One example of
the fluctuation of the liquid level at uG = 5.2 × 10−3 ms−1 is shown in Figure 4, where the
yellow line marks the initial liquid level before bubbling gas, and the red line indicates the
change in liquid level during the gas bubbling. The basic reading error can be estimated
at approximately 10%. For the circulating liquid (Cases 3 and 4), the gas holdups are
determined by simultaneously closing the gas and liquid flow valves and measuring
the change in the liquid level. In this case, the basic reading error can be estimated at
approximately 5% of the measured gas holdup.
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Figure 4. Determination of the change in liquid level ((A) Initial level (yellow), (B) Lower reference
during bubbling (red), (C) Mean reference during bubbling (red), (D) Upper reference during
bubbling (red)) at uG = 5.2 × 10−3 ms−1.

Table 2 summarizes the considered cases:

Table 2. Overview about the investigated cases.

Case: Liquid Flow Mode: Packing:

1 Bubble Column w/o POCS

2 Bubble Column POCS

3 Co-current Flow w/o POCS

4 Co-current Flow POCS
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3. Results and Discussion

In the following, the results of the investigations and the validation of the ECVT by
means of the volume expansion method are presented and discussed based on four cases
(Table 2). In the Supporting Information (SI), Table S1 summarizes all measured average
total gas holdup data as well as the mean deviation for all cases studied for comparison.

3.1. Case 1: Aerated System without Packing

In the first case, the empty pipe is investigated according to the experimental setup
(Figure 2) by ECVT and results are validated with the global gas holdups of the volume
expansion method. Figure 5 shows the data obtained by the two methods for different
superficial gas velocities. The differences are due to the turbulence that develops in the
course of the gas-liquid dynamics in the empty pipe, including backflow effects, vortex
formations, and the formation of large bubbles [1]. In comparison, the values are matchiing
well and the deviations cannot be assigned to the respective measurement methods. This
is especially true for the highest superficial gas velocity considered, where the formation
of large bubbles leads to stronger bulges in the visual reference measurement (volume
expansion method). An exemplary evaluated video based on the evaluated ECVT data is
attached to the SI (Video S1) as well as for Case 2c (Video S2), Case 3 (Video S3) and Case
4b (Video S4).
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3.2. Case 2: Aerated System with Packing

In the second set of experiments (Case 2), the ECVT data of a bubble column packed
with different structures according to Figure 3 are examined and compared with the volume
expansion method.

3.2.1. Gas Holdup Distribution for 6 mm Cubic Regular

Due to the free and almost unhindered bubble rise made possible by the regular
structure and the wide grid space, the ECVT data correspond almost perfectly to the data
of the volume expansion method. Furthermore, the deviations are even smaller compared
to the empty column (Figure 5), since the turbulence, as well as the effects described above,
are significantly weakened in the course of the structuring, see Figure 6a).
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3.2.2. Gas Holdup Distribution for 6 mm Cubic on the Tip

The structuring with a cubic periodic open-cell structure placed on the tip leads to the
fact that the bubbles have to meander through the structure and thus stay longer inside
the structure. This increases the local gas holdup inside the structures, which is why the
ECVT data (locally) are slightly higher (+16% mean deviation) than the volume expansion
measurements (see Figure 6b). Figure 7 shows the spatially resolved gas holdup for the
aerated empty tube compared to the 6 mm cubic on the tip structure (Case 2). One can
see that, for the empty column (Figure 7a–c), the gas mainly occurs in the middle at all
investigated superficial gas velocities. Besides, in Figure 7d–f one can see the increased
local gas holdup in the middle of the evaluated images, additionally tending to a better
radial distribution especially in the Z = 10 plane.

3.2.3. Gas Holdup Distribution for 5 mm Cubic on the Tip

If the cell size is reduced, this has two major effects: First, the two-phase flow resistance
of the structure increases, which reduces the bubble velocities. On the other hand, the rising
bubbles are assumed to be tailored to smaller bubble diameters, so that the bubbles are also
exposed to smaller buoyancy forces due to the smaller volume. Both effects increase the
local gas holdup considerably, which can be seen from the ECVT data shown in Figure 6c).
Here, the comparison with the volume expansion method comes to a far underestimated
local gas holdup within the structure (+248%) and at the same time shows why the use of a
local, non-invasive measurement technique is mandatory. The difference arises from the
fact that the volume expansion method takes into account the entire volume between the
gas sparger tip and the evaluated water meniscus, whereas the ECVT measures only the
local volume of the packing within the sensor region.
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3.2.4. Gas Holdup Distribution for 5 mm/6 mm Modified Cubic Structure Regular

In the last structural geometry considered, the regular structure is provided with 5 mm
cells in one half and 6 mm cells in the other. Here, the free bubble ascent is possible almost
unhindered, as in the first structure examined (cubic regular). This is also reflected in the
comparative data (see Figure 6d). The special feature here, however, is the specific influence
of the modification on the radial distribution of the gas holdup within the structure. To
illustrate this, the radially averaged gas holdup profiles are plotted in Figure 8. In fact, the
ECVT data reflect the expected results. One can see the shift of the two peaks by changing
the flow resistance from the initial state (red), where less flow resistance occurs on the left
side due to the bigger and more open cells, to the rotated one (blue). For both cases (initial
and rotated orientation) the videos are attached to the SI (Videos S5 and S6). In addition,
Figure 9 shows exemplarily the high reproducibility of the ECVT measurement technique
using a dissimilar POCS at three different trials.

3.3. Case 3: Aerated System with Co-Current Liquid Flow without Packing

In the following experiments (Case 3), the liquid phase is additionally pumped in
co-current flow, so that the gas velocity is further increased, initially in the empty tube. In
addition, the influence of the moving polar liquid (water) on the sensitive measuring system
(ECVT) is to be investigated. Visual validation is also performed by volume expansion
method, but in this case in a reverse way: when the gas and liquid volume flows stop
simultaneously, the water level drops (instead of rising). As a result, the fluctuations of
the water surface no longer occur and the measured values therefore no longer show error
bars. Nevertheless, ±5% reading error can be assumed here. Figure 10a) shows that the
standard deviations of the ECVT data increase with increasing superficial gas velocity and
that there are considerable fluctuations in the measurement system compared to the fluid
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at rest. Furthermore, the gas holdup measured with the ECVT also seems to underestimate
the global gas holdup on average (42% deviation on average). To exclude the type of pump
used as the reason, the behavior has also been investigated for different pump types (gear
pump versus centrifugal pump) and the corresponding data under the same operating
conditions are attached to the SI (Figure S1), as well as an evaluated video showing the
noise of the measurement when running in circulation. The flowing polar liquid seems to
disturb the signal and enhances the deviation at all (cf. Video S3), since it’s not affected by
the type of the pump.
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3.4. Case 4: Aerated System with Co-Current Liquid Flow with Packing

In the fourth step (Case 4), the column is additionally packed with different additive
manufactured lattice structures and operated in a co-current flow. Compared to the empty
pipe measurement (Case 3), the standard deviations in the ECVT data are lower, analogous
to the first two cases (Cases 1 & 2). In general, a slight decrease in gas holdup is evident in
all cases considered (see Figure 10). This is consistent with expectations, as the gas velocity
is increased and hence a shorter residence time in the column leads to a lower gas holdup.

3.4.1. Gas Holdup Distribution for 6 mm Cubic on the Tip

Comparing 6 mm cubic on the tip of Case 2 with Case 4 (Figures 6b and 10b), it
is noticeable that in this case the ECVT data deviates more from the volume expansion
measurements (107% instead of 16%). From a look at the cross-sections of the top views of
the respective structures (cf. Figure 5), it is suggested that the liquid bulk phase always has
the opportunity to pass directly through the structure on unobstructed paths compared
to the dispersed phase with a certain tailored bubble size. This leads to an increased
retention of gas within the structure and thus the ECVT data locally within the structure
deviates more from the globally determined data. In this case, the ECVT provides valuable
information about the local gas-liquid dynamics, and validation of the ECVT data with
those of the volume expansion measurements is insufficient.

3.4.2. Gas Holdup Distribution for 5 mm Cubic on the Tip

In Case 4, 5 mm cubic on the tip (Figure 10c), a smaller difference between ECVT data
and visual reference measurements is evident compared to 2c (cf. Figure 6c). This is to
be expected since the additional momentum forces push all gas out of the structure and
equilibrium is reached without bubbles adhering within the structure anymore. However,
as the superficial gas velocity increases, the curves drift further apart, because the associated
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increase in resistance is more severe for the bubbles than for the liquid, which can more
easily pass through the structure as described above.

3.4.3. Gas Holdup Distribution for 5 mm/6 mm Modified Cubic Structure Regular

In Case 4, modified cubic structure regular (Figure 10d), a similar behavior as for the
empty pipe measurements (Case 3) can be observed since the bubbles can nearly pass
the modified structure unhindered due to the regular and open shape of the unit cells.
The local ECVT data slightly underestimate the volume expansion measurements (higher
noise in liquid circulation flow mode). In addition, the structuring also leads to smaller
fluctuations here compared to the empty pipe.

3.5. Comparison with A2PS-B-POP

The local gas holdups data of the ECVT (blue) are compared with the volume expan-
sion method (min and max in gray) and the radially recorded profile of an A2PS-B-POP
fiber optical needle probe (black) at the same location as the ECVT measurements (see
Figure 11). In addition, a correlation for the local gas holdup for bubble columns after
Ueyama and Miyauchi [44] is used, as stated in Equation (8). Bothe [45] used this correla-
tion before to model industrial two-phase flows in bubble column reactors. The local gas
holdup εG of the dimensionless radius φ is approximated by means of b as fitting parameter
in the range of 1.8 to 2.3. Both cases (b = 1.8 and b = 2.3) are plotted as well in Figure 11.

εG(φ) = εG
b + 2

b

(
1− φb

)
(8)

It can be seen that the profile of the fiber optical probe widely matches the expected
profile in terms of shape. However, the probe slightly overestimates the local gas holdup
compared to the maximum level values from the visual reference. The ECVT data, on
the other hand, agree better with the visual reference measurement data, but the ECVT
measurement technique significantly overestimates the values near the wall. This is due
to the fact that the ECVT is a soft-field measurement technique, where the calculated and
measured voxels always depend directly on the respective neighboring voxels. Therefore,
peaks, or local outbursts, are not well captured. In addition, the entire profile is significantly
smoother due to the averaging. Nevertheless, the agreement is good. The ECVT technique
is reliable in stationary operating states but should-as of now-not be used for areas close to
the wall or the determination of local peaks.
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4. Conclusions

The use of Electrical Capacitance Volume Tomography (ECVT) to determine the local
phase distributions was compared with the volume expansion measurements for different
modes of operation (with or without co-current liquid flow in empty or packed state).
The ECVT proved to be particularly useful for both in the empty tube and the packed
column and provided new insights into the phase distributions occurring within structured
packings, which would have led to significantly underestimated results based on the
visual reference measurements, especially for a densely packed additively manufactured
lattice structure (5 mm cubic on the tip). Particularly for the modified structures, which
were supposed to show local targeted differences, the ECVT was able to resolve the
changes locally. The additional use of a pump for co-current flow operation resulted in
slightly higher fluctuations within the ECVT data, although local phenomena could still be
resolved relatively well. The final comparison of the empty tube data at rest with a fiber
optical needle probe (A2PS-B-POP) showed that the data to be validated were essentially
the same and that the local deviations were due to general differences in the respective
measurement techniques.

In future work, 3D velocimetry [40] which is also possible with the ECVT measurement
technique and equipment, will be tested and used to resolve the phase velocities within
the additively manufactured lattice structures and will also be tested and validated in
successively more complex cases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/fluids6090321/s1, Figure S1: ECVT using gear versus centrifugal pump, Table S1: Summary
and comparison of the average overall gas holdup for Case1-4; ECVT data versus visual reference
(VR), mean values and overall mean deviation. Supplementary videos can be found in https:
//zenodo.org/record/5195997#.YTcFW99CRPY, Video S1: Case 1, Video S2: Case 2c, Video S3: Case
3, Video S4: Case 4b, Video S5: Less dense packing to the left side, Video S6: Less dense packing to
the right side.

Author Contributions: Conceptualization, C.S. and V.P.T.; methodology, C.S.; software, B.S.; val-
idation, C.S., V.P.T. and B.S.; formal analysis, C.S., V.P.T. and B.S.; investigation, C.S. and V.P.T.;
writing—original draft preparation, C.S.; V.P.T. and B.S.; writing—review and editing, M.J., M.H.,
B.S., Q.M. and M.S.; visualization, C.S.; supervision, M.J., M.H., Q.M. and M.S.; project administra-
tion, M.S.; funding acquisition, M.H. and M.S. Parts of this manuscript have already been presented
as oral presentation by C.S. at the 2021 annual meeting of the ProcessNet Computational Fluid
Dynamics and Multiphase Flow groups. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Hamburg Authority for Science, Research, and Equal Treat-
ment (BWFG), grant number LFF-FV 43.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The project is associated with the joint research project “New reactor technolo-
gies for chemical and biochemical synthesis processes” as well as the i3-Lab “Smart reactors” as
the follow-up project. The authors gratefully acknowledge the financial support, which was given
by Hamburg Authority for Science, Research, and Equal Treatment (BWFG) under grant number
LFF-FV 43. We would also like to thank Josh Keller for his efforts in setting up and running the
test apparatuses at Tech4Imaging. We acknowledge support for the Open Access fees by Hamburg
University of Technology (TUHH) in the funding programme Open Access Publishing.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/fluids6090321/s1
https://www.mdpi.com/article/10.3390/fluids6090321/s1
https://zenodo.org/record/5195997#.YTcFW99CRPY
https://zenodo.org/record/5195997#.YTcFW99CRPY


Fluids 2021, 6, 321 15 of 17

Glossary

Symbols
a (m−1) specific surface area
Ac (m2) capacitor plate size area
C (F) capacitance
d32 (mm) Sauter mean diameter
d (mm) column diameter
dc (mm) distance between the capacitor plates
h (mm) reactor height
gi (Fm−1) intensity vector
r (mm) radial position
→
r (-) position vector
R (-) normalized radial position
S (-) sensitivity matrix
ub (ms−1) mean bubble velocity
uG (ms−1) superficial gas velocity
uL (ms−1) superficial liquid velocity
.

VG (Lmin−1) gas flow rate
Greek symbols
εG (-) local gas holdup
ε0 (Fm−1) permittivity of free

space or vacuum
εr (Fm−1) relative permittivity of

dielectric material
ε(
→
r ) (Fm−1) dielectric constant

(permittivity distribution)
ε′r (Fm−1) the quantity of polarizability

of the material
ε′′r (Fm−1) dielectric losses due

to friction
λ (Fm−1) measuring vector
φ (-) dimensionless radius
φ(
→
r ) (-) potential distribution

ρ(
→
r ) (Cm−3) charge density

Sub- and Superscripts
local local
global global
Abbreviations
AC Alternating-current
AMLS Additively manufactured

lattice structures
A2PS B-POP A2 Photonic Sensors B-POP

optical needle probe
ECT Electrical capacitance

tomography
ECVT Electrical capacitance

volume tomography
ERT Electrical resistance

tomography
HZDR Helmholtz Zentrum

Dresden Rossendorf
POCS Periodic open-cell

structures
VR Visual reference
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