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Abstract: We find the analytical form of inertial waves in an incompressible, rotating fluid constrained
by concentric inner and outer spherical surfaces with homogeneous boundary conditions on the
normal components of velocity and vorticity. These fields are represented by Galerkin expansions
whose basis consists of toroidal and poloidal vector functions, i.e., products and curls of products of
spherical Bessel functions and vector spherical harmonics. These vector basis functions also satisfy
the Helmholtz equation and this has the benefit of providing each basis function with a well-defined
wavenumber. Eigenmodes and associated eigenfrequencies are determined for both the ideal and
dissipative cases. These eigenmodes are formed from linear combinations of the Galerkin expansion
basis functions. The system is truncated to numerically study inertial wave structure, varying the
number of eigenmodes. The largest system considered in detail is a 25 eigenmode system and a
graphical depiction is presented of the five lowest dissipation eigenmodes, all of which are non-
oscillatory. These results may be useful in understanding data produced by numerical simulations of
fluid and magnetofluid turbulence in a spherical shell that use a Galerkin, toroidal–poloidal basis as
well as qualitative features of liquids confined by a spherical shell.

Keywords: hydrodynamics; inertial waves; planetary cores

1. Introduction

The desire to understand fluid motion in the Earth’s outer core, and ultimately the
geodynamo, provides the physical motivation for our study. The magnetofluid in the outer
core is primarily liquid iron and although its electrical conductivity and convective turbu-
lence give rise to magnetic fields, we will ignore these here, but will include dissipation.
Furthermore, the fluid will be treated as incompressible, as is usually done in geodynamo
modeling (e.g., [1,2]). Velocity and vorticity will be expanded in terms of ‘toroidal’ and
‘poloidal’ functions, as they were first called and defined by [3]; these will be detailed
presently. Here, we use Galerkin toroidal–poloidal (T–P) expansions to focus on velocity
and vorticity, where ‘Galerkin’ means each term satisfies designated boundary conditions
(e.g., see [4]). (We leave magnetic fields for future study. Understanding magnetohydrody-
namic inertial modes through Galerkin T–P expansions is a further goal and the present
work is viewed as a necessary step in that direction).

Our T–P model is based on that of [5] and is similar to that used by [6,7], although
these authors work with positive and negative helicity Chandrasekhar–Kendall (C–K)
functions [8], which are linear combinations of T–P functions, as will be seen explicitly
in Equation (10) below; also, our model system has an inner boundary, while theirs did
not. When T–P functions are put into C–K form, again as seen in Equation (10), we have
‘eigenfunctions of the curl’ [9,10] that also satisfy the Helmholtz equation and are Galerkin.
The focus of either the T–P or C–K approach is on internal, free-stream turbulence and
neither pretends to accurately address boundary layer motion. However, the work of [11]
indicates that interior solutions for spherical shell flows are independent of b.c.s in the
limit of vanishing Ekman number. In addition, little is known about the nature of the core–
mantle boundary or the inner core boundary, so it is uncertain as to what kind of boundary
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conditions actually apply. Thus, we have the latitude to choose b.c.s that are appropriate
for a T–P expansion of an incompressible fluid confined within a spherical shell.

A critical feature of the velocity and vorticity expansions is that each term will be
required to individually satisfy the Helmholtz equation as well as the b.c.s. Mathematically,
this means that our T–P basis functions are a product of spherical Bessel functions and
spherical harmonics. The benefit of this is that each term in the expansions has a unique
wavenumber associated with it. However, this affects the nature of the boundary conditions
that can be imposed. The first boundary condition will be, of course, that the normal
component of velocity vanishes at the boundaries. Next, the choice of T–P basis functions
that satisfy the Helmholtz equation in a spherical shell leads to the second boundary
condition: the normal component of vorticity also vanishes at the boundaries. What is left
on the bounding surfaces is a two-dimensional potential flow, as will be seen presently
in (29). If the fluid in the spherical shell was compressible, then velocity on the boundaries
could be completely zeroed out by adding another term (related to compressibility) to the
T–P expansion and the flow could be made to obey a no-slip condition (more details will
appear in Section 4) However, we wish to treat the flow as incompressible here, to make
our work commensurate with previous work on the geodynamo.

Thus, we do not use the no-slip or stress-free or inviscid boundary conditions that were
compared by [11], but something else, which we will call homogeneous boundary conditions,
i.e., the normal components of velocity and vorticity vanish at the boundaries. In the case
of no-slip or stress-free, there are conditions on all three velocity components, while for
the inviscid case, there is only one condition, that on the normal component of velocity.
Here, we have the two boundary conditions stated above plus a third boundary condition
intrinsically linked to the condition of incompressibility, i.e., that there is a 2-D potential
flow on the boundaries. (Again, more details are given in Section 4).

At this point, let us set the context for our mathematical model and T–P vector basis
functions (or equivalent C–K functions) that we use, followed by our results.

2. Historical Overview

Historically, it has long been recognized that stars and planets contain turbulent
fluids. Turbulence theory and simulation began by using Fourier transformations by which
the velocity and magnetic fields are represented by their Fourier coefficients. Fourier
analysis, in using expansions in terms of sines and cosines, implies that physical motion
is taking place in periodic box, i.e., a 3-torus which has no boundaries and hence no need
for boundary conditions. Although usually called ‘periodic boundary conditions,’ this
is a misnomer because, again, a 3-torus has no boundaries. The motivation for using
Fourier analysis is well-described by [12], though the topological ramifications are not.
A 3-torus is a self-contained compact, closed space without boundary and there is no
‘outside’ to it, topologically speaking [13]. A 3-torus is a mathematically useful space for
studying fluid motion, though unphysical (except perhaps for our universe as a whole,
which some conjecture may, in fact, be a 3-torus [14]). However, a 3-torus is problematic
when a magnetofluid is the object of study, as there is no outside into which the model
magnetic field can emerge to be compared with geophysical or astrophysical observations.
Nevertheless, the majority of research on fluid and magnetofluid turbulence has relied
on ‘periodic boundary conditions.’ Although inertial waves in a periodic box have been
examined using Fourier methods [15], the vector basis functions are all uncoupled in
the Fourier case, but, as we will see, in the rotating spherical shell, T–P functions are
strongly coupled.

In regard to Galerkin methods, an important move away from Fourier analysis had
been taken by [6,7], who numerically examined incompressible MHD inside a sphere
(no inner boundary) using expansions in terms of positive and negative helicity C–K
functions [8]. (However, [1,2] and others had used non-Galerkin T–P methods previously,
using Chebyshev polynomials instead of Bessel functions for radial dependence). C–K
functions have also been used to treat astrophysical problems in a spherical geometry,
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rather a periodic box [16]. Again, C–K and T–P functions satisfy ‘homogeneous’ boundary
conditions (b.c.s): the velocity and magnetic field, as well as their curls (and the curls of
those, and of those, ad infinitum) all have zero normal components on the boundary. This
is analogous to Fourier analysis, where the velocity and all of its derivatives of every order
are still periodic. A further analogy is that both the Fourier and C–K or T–P basis functions
satisfy the Helmholtz equation, which is essential as it allows a specific wavenumber to
be associated with each basis function. This, in turn, allows us to define precisely what is
meant by the energy or power spectrum in fluid mechanics.

Extending the Galerkin approach of [6,7] was done in [5] by providing the sphere
with an inner boundary upon which homogeneous b.c.s are also applied, but using a T–P
form rather than a C–K form. This system can be set rotating mathematically, giving us
opportunity here to study waves within a spherical shell with homogeneous b.c.s. Using
Galerkin T–P expansions to analyze the linearized Navier–Stokes equation for flows within
a spherical shell with homogeneous b.c.s, leads us to explicit formulas for inertial waves,
which are the new results that we present.

Rotation enters the Navier–Stokes equation through the Coriolis term and linearization
gives the basic equation for inertial waves. Traditionally, for the case of a sphere with
no-slip conditions, these waves have been studied and solutions provided by [17,18],
building on the work of [19], while [20] have used a perturbation expansion to examine
pressure oscillations, finding solutions that are ‘pathological.’ Moreover, in the case of
flow in a rotating spherical shell, Ref. [17] has stated that, “Explicit formulas for all the
eigenmodes in the spherical annulus do not exist. Bryan’s transformation [p. 64], the
essential step in the solution procedure for the spherical container, does not apply and
for this reason very little is known about the inertial waves.” This sentiment concerning
analytical solutions is echoed by [21,22], as well as by [23], who, in their examination
of inertial waves in a rotating spherical shell, used non-Galerkin T–P methods, as radial
cofactors have primarily been Chebyshev polynomials, rather than Bessel functions. This
may have its benefits numerically, but such basis functions do not satisfy the Helmholtz
equation and wavenumbers cannot be precisely associated with them.

Our approach here varies in obvious and significant details from the traditional
approaches that use, for example, no-slip [17] or stress-free conditions [24]. First, we use
‘homogeneous b.c.s’ and choose to avoid conjecturing about the nature of the boundary
between, say, the Earth’s outer core and mantle or between the outer core and inner core,
boundaries which are presently unknown, and possibly unknowable. Second, velocity
and vorticity are represented by Galerkin T–P functions (or the equivalent C–K form), i.e.,
vector basis functions that have as radial cofactors a linear combination of spherical Bessel
functions and vector spherical harmonics.

The results presented here are extensions of our previous work [5,25] in which T–P
expansions using a Galerkin basis as defined by [3] were used, while others may also have
used a general T–P formulation, these were designed for computational efficacy and to
satisfy no-slip b.c.s. For example, radial functions can be Chebyshev polynomials [1,2,23]
or be represented numerically by finite differences [26], but again, these are not Galerkin
methods. Here, we use a Galerkin expansion with spherical Bessel of the first and second
kind (the second kind are also called Neumann functions) that describe radial variation.

Using our model, with velocity and vorticity expanded in terms of Galerkin T–P vector
functions, we are able to find explicit formulas for all the eigenmodes of inertial waves
in an incompressible, rotating fluid contained between concentric spherical surfaces with
homogeneous b.c.s, rather than traditional no-slip or stress-free boundary conditions. Our
method of solution appears robust as we find no pathologies. We determine eigenfrequen-
cies which we compute using Earth-like parameters. We present these results following a
brief discussion of the basic equations and the Galerkin method of solution. As an example,
we consider a dissipative 25 eigenmode system in detail; the method can, of course, be
expanded to any desired number of eigenmodes given sufficient computational resources.
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3. Basic Equations

In non-dimensional form, the linearized incompressible Navier–Stokes equation in a
rotating frame of reference with constant angular velocity Ωo is

∂u
∂t

= −∇p + 2u× ẑ + E∇2u, ∇ · u = 0. (1)

For the Earth, Ωo
∼= 7.27× 10−5 rad/s and E ∼ 10−14 is the Ekman number for the

outer core [27]. Although E is very small, the dissipation term ∇2u will get large at a small
enough length-scale, i.e., large enough wavenumber, which needs to be estimated.

We approximate the outer core to be a spherical shell with inner radius
R1 = 1.22 × 106 m and outer radius R2 = 3.482 × 106 m [27]; R1 is the characteristic
distance and the ratio ro = R2/R1 = 2.85. The non-dimensional Equation (1) will be
examined in a spherical polar coordinate system (r, θ, ϕ), with 1 ≤ r ≤ ro, 0 ≤ θ ≤ π and
0 ≤ ϕ < 2π. The boundary conditions at r = 1 and ro are that the normal components of u
and ω = ∇× u are zero:

r̂ · u|1,ro = 0, r̂ ·ω|1,ro = 0. (2)

Thus, we appear to have two conditions: (a) a Dirichlet condition on ur and (b) a
Neumann condition linking angular derivatives of uθ and uϕ on the model boundaries
(we use the appellations ‘Dirichlet condition’ and ‘Neumann condition’ in a general sense);
conditions (a) and (b) are implicit in the ‘homogeneous b.c.s’ given by (2). It should
be remembered, though, that the curl of the vorticity, the curl of that, etc., also satisfy
homogeneous b.c.s; this is simply a property of T–P (or C–K) expansions. As stated earlier,
a third condition could be imposed if the flow was not considered incompressible.

Again, many different boundary conditions have been employed for geodynamo
studies, although the particular set used often does not appear to have significant effects on
final results, as discussed by [11,28]. Mathematically, the choice (2) allows us to employ the
Galerkin expansion functions that are used for determining the structure of inertial waves
in a rotating spherical shell. As mentioned before, the individual basis functions of T–P
(or C–K) expansions each satisfy a different Helmholtz equation, allowing each to have a
well-defined wavenumber.

4. Galerkin Expansion

It is well-known (e.g., see [29]) that a divergence-less vector field in a spherical geome-
try can be represented as a ‘toroidal–poloidal decomposition’:

u(x, t) = ∇× [rU(r, θ, ϕ, t)] +∇× (∇× [rW(r, θ, ϕ, t)]). (3)

In order to satisfy the Helmholtz equation in a spherical shell, the functions U and W
in (3) must take the form

U(r, θ, φ, t) = ∑
l,m,n

ulmn(t)gl(klnr)Ylm(θ, ϕ), W(r, θ, φ, t) = ∑
l,m,n

wlmn(t)gl(klnr)Ylm(θ, ϕ). (4)

Here, Ylm are spherical harmonics and the gl(klnr) are linear combinations of the
spherical Bessel functions of the first kind, jl(klnr), and of the second kind, nl(klnr) (also
called spherical Neumann functions). The exact form of the gl(klnr) will be given below,
while the wavenumbers kln will be determined by the b.c.s. Note that if the flow were
compressible, we would need to add a term ∇Φ to (3), where Φ would have an expansion
similar to those in (4), with radial derivative zero on the boundaries. Here, we only wish to
outline a novel approach to studying compressible flow, while our main aim is to focus on
incompressible flow.
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Now, putting (4) into (3), we can write the toroidal–poloidal decomposition in the form:

u(x, t) = ∑
l,m,n

[ulmn(t)Tlmn(x) + wlmn(t)Plmn(x)], (5)

Tlmn(x) = clmngl(klnr)r×∇Ylm(θ, ϕ), (6)

∇× Tlmn(x) = Plmn(x), ∇× Plmn(x) = k2
lnTlmn(x), (7)

ul,−m,n(t) = (−1)mu∗lmn(t), wl,−m,n(t) = (−1)mw∗lmn(t). (8)

Here, clmn is a normalizing constant, to be defined presently; also, ∗ denotes com-
plex conjugation. Furthermore, in (5), the overall minus sign that occurred because
∇ × rYlm = −r ×∇Ylm has been dropped. Furthermore, if one wanted to approach
the problem with no-slip b.c.s. and compressibility, then one would still use the vector
expansion functions Tlmn(x) and Plmn(x) in addition to introducing a new set of expansion
functions for the compressible term ∇Φ.

Obviously, ∇ · Tlmn(x) = ∇ · Plmn(x) = 0, while (8) is required by the realness of
u and the definition of the toroidal and poloidal vector functions, Tlmn(x) and Plmn(x)
given below, where it will be seen that the Tlmn(x) and Plmn(x) form an orthogonal set for
1 ≤ r ≤ ro, each member of which will be seen to satisfy the boundary conditions (so that
we have a Galerkin expansion), while the k2

ln are numerical constants and the summation
indices l, m, n range over prescribed, finite range of integer values. It is evident that we
have two sets of essential, generally complex, coefficients (ulmn and wlmn) to represent the
velocity. The flow we are studying has vorticity ω = ∇× u and using the relations given
above, this is

ω(x, t) = ∑
l,m,n

[
k2

lnwlmn(t)Tlmn(x) + ulmn(t)Plmn(x)
]
. (9)

We mention the vorticity because it is used to define the kinetic helicity which, along
with energy, is an ideal invariant for (1) with homogeneous boundary conditions [30].
In what follows, we will use ω to represent angular frequency, but there should be no
confusion as the magnitude of ω will not appear here, although its component ωϕ will.

Note that we could have written (5) and (9) in terms of an explicitly helical set of
vector basis functions:

J±lmn(x) = ±klnTlmn(x) + Plmn(x), ∇× J±lmn(x) = ±kln J±lmn(x). (10)

The J±lmn(x) are Chandrasekhar-Kendall functions [8], and are eigenfunctions of the
curl operator [9,10]. Although we choose to use Tlmn(x) and Plmn(x) instead, our toroidal-
poloidal vector basis functions are essentially the same as those in (10), differing only by a
linear transformation.

In general, the various quantities used above can be defined as follows. First,

Tlmn(x) = ĝl(klnr)Φ̂lm(θ, ϕ), 1 ≤ l ≤ L, −l ≤ m ≤ l, 1 ≤ n ≤ N, (11)

Plmn(x) = −1
r

[√
l(l + 1) ĝl(klnr)Ŷlm(θ, ϕ) +

d
dr

[rĝl(klnr)]Ψ̂lm(θ, ϕ)

]
. (12)
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The orthonormal vector functions Ŷlm(θ, ϕ), Ψ̂lm(θ, ϕ) and Φ̂lm(θ, ϕ) are the (normal-
ized) vector spherical harmonics of [31] and are based on the spherical harmonics Yl,m(θ, ϕ)
described in [32]:

Yl,−m(θ, ϕ) = (−1)mY∗lm(θ, ϕ), (13)

Ŷlm(θ, ϕ) = r̂Ylm(θ, ϕ), (14)

Ψ̂lm(θ, ϕ) =
r√

l(l + 1)
∇Ylm(θ, ϕ), (15)

Φ̂lm(θ, ϕ) = r̂× Ψ̂lm(θ, ϕ). (16)

The radial functions ĝl(klnr) in (11) and (12) form an orthonormal set for n = 1, 2, . . . , N
at each value of l over the range 1 ≤ r ≤ ro, and are linear combinations of the spherical
Bessel and Neumann functions, jl(z) and nl(z) = (−1)l+1 j−l−1(z) (see, e.g., [33]):

ĝl(klnr) = N−1
ln gl(klnr), (17)

gl(klnr) = nl(klnro)jl(klnr)− jl(klnro)nl(klnr), (18)

N2
ln =

1
2k4

ln

(
1
ro

−
[

nl(klnro)

nl(kln)

]2
)

, (19)

gl(kln) = 0, n = 1, 2, . . . , N; l = 1, 2, . . . , L. (20)

Therefore, ĝl(kln) = ĝl(klnro) = 0 and the zeroes kln of gl(z) satisfy

jl(kln)nl(klnro) = nl(kln)jl(klnro). (21)

(An equivalent form of this equation has been studied earlier by [34]). Using the
results above, along with (15) and (16), the normalizing constant in (6) is seen to be
clmn = (

√
l(l + 1)Nln)

−1. The kln in (21) clearly depend on the ratio ro; again, we use
ro ≡ 2.85, which is appropriate for the Earth’s outer core. The kln are easily found numeri-
cally, and for l, n = 1, . . . , 10, they appear in Table 1.

Table 1. Values for kln, gl(kln) = 0, for l, n = 1, . . . , 10.

n = 1 2 3 4 5 6 B 8 9 10

l = 1 1.8638 3.4929 5.1612 6.8434 8.5316 10.223 11.916 13.611 15.306 17.002
2 2.1497 3.6788 5.2927 6.9440 8.6129 10.291 11.975 13.662 15.352 17.043
3 2.5042 3.9411 5.4851 7.0931 8.7339 10.393 12.062 13.739 15.420 17.105
4 2.8910 4.2636 5.7330 7.2884 8.8935 10.527 12.178 13.841 15.511 17.187
5 3.2898 4.6294 6.0300 7.5271 9.0903 10.694 12.323 13.968 15.624 17.289
6 3.6911 5.0227 6.3684 7.8062 9.3227 10.892 12.494 14.119 15.759 17.411
7 4.0909 5.4310 6.7396 8.1218 9.5890 11.119 12.692 14.294 15.916 17.553
8 4.4882 5.8457 7.1347 8.4695 9.8870 11.376 12.917 14.493 16.094 17.714
9 4.8828 6.2618 7.5452 8.8441 10.214 11.661 13.166 14.715 16.293 17.894

10 5.2749 6.6767 7.9642 9.2399 10.569 11.972 13.441 14.959 16.513 18.093

Let us define integrals over radius r as 〈F〉r and over solid angle σ as 〈G〉σ, where

〈F〉r =
∫ ro

1
F(r) r2dr, 〈G〉σ =

∫ π

θ=0

∫ 2π

ϕ=0
G(θ, ϕ) sin θdθdϕ. (22)
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Thus, the integral over the volume of the spherical shell interior is

〈F(r)G(θ, ϕ)〉 =
∫ ro

1

∫ π

θ=0

∫ 2π

ϕ=0
F(r)G(θ, ϕ)r2 sin θdrdθdϕ = 〈F〉r〈G〉σ. (23)

The orthonormality properties of the Galerkin basis functions are

〈ĝl(klnr) ĝl(klkr)〉r = δnk, 〈V̂ (i)
lm · V̂

(j)∗
pq 〉σ = δijδlpδmq, (24)

V̂ (1)
lm = Ŷlm(θ, ϕ), V̂ (2)

lm = Ψ̂lm(θ, ϕ), V̂ (3)
lm = Φ̂lm(θ, ϕ). (25)

Using these and the properties given in (11) and (12), we see that the integrals of
the inner products of Tlmn(x) and Plmn(x) over the volume enclosed by the homogeneous
boundaries are

〈T̂pqs · T̂∗lmn〉 = 〈ĝp(kpsr) ĝl(klnr)〉r〈Φ̂pqs · Φ̂
∗
lmn〉σ = δplδqmδsn, (26)

〈P̂pqs · P̂∗lmn〉 = k2
ln〈T̂pqs · T̂∗lmn〉, (27)

〈T̂pqs · P̂∗lmn〉 = 0. (28)

These will be useful in determining the linear inertial waves of the system.
While we use a model with an inner core, refs. [6,7] perform numerical simulations on

a model with no inner core. The results we present do not depend on whether there is an
inner core or not. The only adjustment necessary is that the radial expansion functions (18)
become gl(klnr) = jl(klnr) when there is no inner core. In this case, the numerical values of
the kln in Table 1 change slightly, but this does not affect our analysis, which is independent
of the exact values of the kln, as these are always distinct and well-ordered solutions of
gl(kln) = 0, as discussed by [35].

As to the flow on the boundary, consider (11) and (12) at r = ro, 1:

Tlmn(x)|ro,1 = 0, Plmn(x)|ro,1 = − kln√
l(l + 1)

rĝ′l(klnr)∇Ylm(θ, ϕ)|ro,1. (29)

This indicates a 2-D potential flow on the bounding surfaces that could be negated if
compressibility was assumed for the fluid, as mentioned earlier in the discussion following
(3) and (4). The development of this possibility is beyond the scope of the present work
and will be deferred.

5. Inertial Waves in a Spherical Shell

If we place Equation (5) into the Navier–Stokes Equation (1), take the inner product
of both sides with T̂∗lmn and P̂∗lmn, then integrate over the spherical shell volume, using the
orthogonality relations (24) and (25), we get

dulmn
dt

= −2ẑ · ∑
p,q,s

[
upqs〈T̂pqs × T̂∗lmn〉+ wpqs〈P̂pqs × T̂∗lmn〉

]
− Ek2

lnulmn, (30)

k2
ln

dwlmn
dt

= −2ẑ · ∑
p,q,s

[
upqs〈T̂pqs × P̂∗lmn〉+ wpqs〈P̂pqs × P̂∗lmn〉

]
− Ek4

lnwlmn. (31)

Note that pressure p does not appear above because 〈(∇p) ·Q∗〉 = 〈∇ · (pQ∗)〉 = 0,
where Q is either T̂lmn or P̂lmn. Here, we see that the dissipative term may be neglected
in a model system with given L and N if Ek2

ln � 1 for l ≤ L and n ≤ N. For Earth-
like parameters, the dissipative term is extremely small and dissipation wavenumber
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kD ∼ kLN ∼ E−1/2 ∼ 107. If the system of Equations (30) and (31) is truncated at
moderate sizes of N and L, where kLN � 107 the dissipative term may be ignored for
earth-like E, though we will study model systems here by making E large enough to have
significant effect.

Now, consider the integral 〈P̂pqs × P̂∗lmn〉. We can use (11) and (12), as well as standard
vector identities, along with Gauss’s divergence theorem and the boundary conditions to
determine that

〈P̂pqs × P̂∗lmn〉 = k2
ln〈T̂pqs × T̂∗lmn〉 = k2

qs〈T̂pqs × T̂∗lmn〉. (32)

These equations lead immediately to(
k2

ps − k2
ln

)
〈T̂pqs × T̂∗lmn〉 = 0. (33)

Since the wavenumbers kln are all distinct, and using the fact that T̂pqs only has
ϕ-dependence through a factor exp(iqϕ), where i =

√
−1, we arrive at

〈T̂pqs × T̂∗lmn〉 = 〈T̂lmn × T̂∗lmn〉δplδqmδsn, (34)

〈P̂pqs × P̂∗lmn〉 = k2
ln〈T̂lmn × T̂∗lmn〉δplδqmδsn. (35)

Next, we must determine ẑ · 〈T̂lmn × T̂∗lmn〉 and then ẑ · 〈P̂pqs × T̂∗lmn〉.
The quantum mechanical angular momentum operator L, whose properties are well

known, is (with h̄ = 1)
L = −ir×∇. (36)

Using this, along with (11) and (15), allows T̂lmn to be expressed as

T̂lmn = i
ĝl(kln)√
l(l + 1)

LYlm. (37)

The differential operator L has the properties

L∗ = −L, L× L∗ = iL∗, ẑ · LYlm = LzYlm = mYlm. (38)

Thus, we have

ẑ · 〈T̂lmn × T̂∗lmn〉 =
1

l(l + 1)
ẑ · 〈LYlm × L∗Y∗lm〉σ (39)

=
1

l(l + 1)
ẑ · 〈L× (YlmL∗Y∗lm)−YlmL× L∗Y∗lm〉σ (40)

=
−i

l(l + 1)
ẑ · 〈YlmL∗Y∗lm〉σ (41)

=
−im

l(l + 1)
. (42)

The first term in (40) vanishes because of the identity
∮

S(dS×∇)× A = 0.
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Now, to determine the cross terms ẑ · 〈P̂pqs× T̂∗lmn〉. Using (11), (12), (15) and (16), along
with the recurrence relations of the spherical Bessel, Neumann and associated Legendre
functions [33], and after much algebra, we find

ẑ · 〈P̂pqs × T̂∗lmn〉 = δmq

(
GpslnClmδl,p+1 − GlnpsCpmδp,l+1

)
(43)

Gpsln = 〈 ĝp(kpsr)
{

lĝl(klnr) + 1
r

d
dr [rĝl(klnr)]

}
〉r, (44)

Clm =

√
l2 − 1

l

√
l2 −m2

4l2 − 1
. (45)

Note that the vector product is antisymmetric when pqs and lmn are interchanged, as
it must be, and that 0 ≤ Clm < 1/2 for l ≥ 1 and |m| < l; for |m| ≥ l, Clm = 0. Furthermore,
note that these cross terms do not vanish when m = 0. Furthermore,

1
r

d
dr

[rĝl(klnr)] =

(
l + 1

2l + 1
δa,l−1 −

l
2l + 1

δa,l+1

)
Dlna(r), (46)

Dlna(r) =
kln
Nln

[nl(klnro)ja(klnr)− jl(klnro)na(klnr)]. (47)

When needed, this will be of use in computing (44).
The cross terms in (30) and (31), which have just been evaluated, pertain to a rotating

spherical shell. Ref. [7] consider a rotating sphere and in that case called these cross terms
‘coupling coefficients’ and although they stated that these were computed numerically,
no analytical determination similar to ours was presented. In our previous work [5], we
did not consider these cross terms at all and in the work presented here, we make up for
this deficiency.

Now, if we put all of these results into the set of ordinary differential Equations (30)
and (31), we correct and expand the Coriolis terms given in [5]:

dulmn
dt

= i
2m

l(l + 1)
ulmn − 2

N

∑
s=1

(Gl−1,slnClmwl−1,ms − Gln,l+1,sCl+1,mwl+1,ms), (48)

dwlmn
dt

= i
2m

l(l + 1)
wlmn −

2
k2

ln

N

∑
s=1

(Gl−1,slnClmul−1,ms − Gln,l+1,sCl+1,mul+1,ms). (49)

Here, we have set E = 0 to eliminate the dissipative term, which can be placed back
later, if desired. The equations above are qualitatively different from the inertial wave
equations that are obtained by Fourier analysis [17,24]. In particular, we see that moving
from a periodic box to a more realistic spherical shell model reveals the intrinsic coupling
amongst the toroidal and poloidal linear modes. For each m, there are two separate, disjoint
sets. In one set, toroidal ulemn with le even couple to poloidal wloms with lo odd; in the other
set, toroidal ulomn couple to poloidal wlems. This result is fundamentally different to the one
derived from Fourier analysis where there is no coupling.

Again, in (48) and (49), modes ulmn and wl′ms are only coupled to modes with the same
m and opposite parity for l and l′. Toroidal modes l, m, n are coupled to poloidal modes
l ± 1, m, s, and all modes with same m are coupled to one another in their respective set;
for a given N and L, each set will have NL eigenmodes. We can examine these coupled
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systems by restricting (48) and (49) to l = 1, 2 and n = s = 1. For m = 0, we have, using
the notation wlmn ≡ klnwlmn,

du101

dt
=

2√
5

G1121

k21
w201,

dw201

dt
= − 2√

5
G1121

k21
u101, (50)

dw101

dt
=

2√
5

G1121

k11
u201,

du201

dt
= − 2√

5
G1121

k11
w101. (51)

For the wave numbers given in Table 1, G11,21 = 2.0671. Using this, the set of coupled
Equations (50) and (51) gives the variables u101 and w201 a dimensional oscillation frequency
of ω

(0)
21 ≈ ±0.860 Ωo and the set (50) and (51) gives u201 and w101 an dimensional oscillation

frequency of ω
(0)
21 ≈ ±0.992 Ωo. (Again, Ωo

∼= 7.27× 10−5 rad/s). Note that u101 and w101
are not coupled and that u201 and w201 are not coupled either. Instead, the Coriolis force
links dipole and quadrupole components here.

Now, let us consider the variables with m = 1 in the reduced system. Their
equations are

du111

dt
= iu111 +

√
3
5

G1121

k21
w211,

dw211

dt
=

i
3

w211 −
√

3
5

G1121

k21
u111, (52)

dw111

dt
= iw111 +

√
3
5

G1121

k11
u211,

du211

dt
=

i
3

u211 −
√

3
5

G1121

k11
w111. (53)

Compared to (50) and (51), these equations have an extra term on the right; without
the coupling terms, the 111 coefficients would have a dimensional angular frequency of
Ωo and the 211 coefficients have a frequency of Ωo/3. However, they are coupled and
the eigenvalues of the coupling matrices provide the actual frequencies. Again using
G11,21 = 2.0671, the set of coupled Equation (52) gives the variables u111 and w211 frequen-

cies of ω
(1)
21 ≈ 1.59 Ωo and −0.255 Ωo, while the set (50) and (51) gives u211 and w111 the

frequencies are ω
(1)
21 ≈ 1.48 Ωo and −0.149 Ωo. (For m = −1, these eigenfrequencies have

their signs reversed). Again, the Coriolis force links dipole and quadrupole components and
allows them to oscillate at frequencies determined by the set of linked multipole equations.

The m = 0 Equations (50) and (51) and m = 1 Equations (52) and (53) define four
independent coupled linear systems of two variables each. However, these systems were
created by ignoring all variables with l > 2. For example, the full equation for u201, rather
than (51), couples it to w301, so that we have

du201

dt
= −2

(
G1121C20

k11
w101 −

G2131C30

k31
w301

)
, (54)

dw301

dt
= −2

(
G2131C30

k31
u201 −

G3141C40

k31
u401

)
. (55)

Thus, even though we can create a closed system for ulmn and wlmn with all l > 2
variables set to zero, a system can be set up with larger L and N, where 1 ≤ l ≤ L and
1 ≤ n ≤ N. The values of L and N, which set the spatial resolution, can be made as
large as computationally practicable, while the closure problem for an ideal system can
be addressed by using a suitable E > 0 to determine the dissipation wave number kD,
which (as in fluid turbulence) should be commensurate with the largest wavenumber of
the system, kLN . We now consider these two topics: resolution and dissipation.

6. General Solution

A uniform approximation of fluid velocity in a spherical shell would ostensibly require
L = N; However, it may be beneficial to produce formulas that allow L and N to be
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independent. In this regard, let us define the following matrix elements (reintroducing
dissipation):

D(lm)
ns =

(
m

l(l + 1)
+ i

E
2

k2
ln

)
δns, A(lm)

ns =
Gls,l+1,nCl+1,m

kln
, B(lm)

ns =
Gln,l+1,sCl+1,m

kl+1,s
. (56)

Using these, (48) and (49) can be written as

dulmn
dt

= 2i
N

∑
s=1

(
D(lm)

ns ulmn + iA(l−1,m)
sn wl−1,ms − iB(lm)

ns wl+1,ms

)
, (57)

dwl+1,mn

dt
= 2i

N

∑
s=1

(
D(l+1,m)

ns wl+1,mn + iB(lm)
sn ulms − iA(l+1,m)

ns ul+2,ms

)
. (58)

(Remember that wlmn ≡ klnwlmn). Let us further define the N × 1 vectors (‘T’ is
transpose),

U
(N)
lm = [ulm1 ulm2 · · · ulmN ]

T , W
(N)
lm = [wlm1 wlm2 · · · wlmN ]

T , (59)

and N × N matrices,

D
(lm)
N =

[
D(lm)

ns

]
, A

(lm)
N =

[
A(lm)

ns

]
, B

(lm)
N =

[
B(lm)

ns

]
, 1 ≤ n, s ≤ N. (60)

Note that ulmn = wlmn = 0 and A(lm)
ns = B(lm)

ns = 0 for m > l.
At this point, we can write (57) and (58) as

dU(N)
lm

dt
= 2i

(
D
(lm)
N U

(N)
lm + iA(l−1,m)T

N W
(N)
l−1,m − iB(lm)

N W
(N)
l+1,m

)
, (61)

dW(N)
l+1,m

dt
= 2i

(
D
(l+1,m)
N W

(N)
l+1,m + iB(lm)T

N U
(N)
lm − iA(l+1,m)

N U
(N)
l+2,m

)
. (62)

Continuing along this line, we construct the following ‘super vectors’:

U(m)
LN =



U
(N)
1m

W
(N)
2m
...

U
(N)
L−1,m

W
(N)
Lm


, U(m)

LN =



W
(N)
1m

U
(N)
2m
...

W
(N)
L−1,m

U
(N)
Lm


, (L even); (63)

U(m)
LN =



U
(N)
1m

W
(N)
2m
...

W
(N)
L−1,m

U
(N)
Lm


, U(m)

LN =



W
(N)
1m

U
(N)
2m
...

U
(N)
L−1,m

W
(N)
Lm


, (L odd). (64)
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We also define the following ‘super matrices’, which are Hermitian if E = 0:

M(m)
LN =



D
(1m)
N −iB(1m)

N 0 0 0 · · · · · ·
iB(1m)T

N D
(2m)
N −iA(2m)

N 0 0 · · · · · ·
0 iA(2m)T

N D
(3m)
N −iB(3m)

N 0 · · · · · ·
0 0 iB(3m)T

N D
(4m)
N −iA(4m)

N · · · · · ·
0 0 0 iA(4m)T

N D
(5m)
N · · · · · ·

...
...

...
...

...
. . . · · ·

...
...

...
...

...
... D

(Lm)
N


, (65)

M(m)
LN =



D
(1m)
N −iA(1m)

N 0 0 0 · · · · · ·
iA(1m)T

N D
(2m)
N −iB(2m)

N 0 0 · · · · · ·
0 iB(2m)T

N D
(3m)
N −iA(3m)

N 0 · · · · · ·
0 0 iA(3m)T

N D
(4m)
N −iB(4m)

N · · · · · ·
0 0 0 iB(4m)T

N D
(5m)
N · · · · · ·

...
...

...
...

...
. . . · · ·

...
...

...
...

...
... D

(Lm)
N


. (66)

Finally, we get to the canonical forms:

dU(m)
LN

dt
= 2iM(m)

LN U(m)
LN ,

dU(m)
LN

dt
= 2iM(m)

LN U(m)
LN . (67)

In the ideal case E = 0, the matrices M(m)
LN and M(m)

LN are Hermitian and thus have real

eigenvalues. Furthermore, for each m there are three ideal invariants, the energies E(m)
LN and

E(m)
LN , as well as the kinetic helicity H(m)

LN because of (56):

E(m)
LN = 1

2U
(m)†
LN U(m)

LN , E(m)
LN = 1

2U
(m)†
LN U(m)

LN , H(m)
LN = 1

2

(
U(m)†

LN KLNU
(m)
LN +U(m)†

LN KLNU
(m)
LN

)
. (68)

Here, H(m)
LN is ‘kinetic helicity’ and KLN is the diagonal matrix

KLN = diag[k11 k12 · · · k1N · · · kL1 kL2 · · · kLN ]. (69)

Each inertial wave vector U(m)
LN or U(m)

LN as a whole conserves energy when E = 0,
but their individual modes do not. In the theory of ideal fluid turbulence [36], the ideal
invariance of total energy and kinetic helicity allow for a statistical description of a model
system; here, the lack of an inertial term u ·∇u in (1) precludes turbulence. However,
it turns out that there are 2LN + 1 ideal invariants for each m, rather than the three in
(68) and (69).

Let S(m)
LN and S(m)

LN be the unitary matrices that diagonalize M(m)
LN and M(m)

LN :

Λ(m)
LN = S(m)

LN M(m)
LN S(m)†

LN , Λ(m)
LN = S(m)

LN M(m)
LN S(m)†

LN . (70)

The superscript ‘†’ denotes, as usual, a Hermitian adjoint. The diagonal matrices

Λ(m)
LN and Λ(m)

LN contain the eigenvalues, which are complex when E > 0. Multiplying
these eigenvalues by 2 yields the non-dimensional eigenfrequencies; when these, in turn
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are multiplied by Ωo, they are the dimensional eigenfrequencies of the eigenmodes of
the system.

The unitary matrices S(m)
LN and S(m)

LN in (70) also produce the eigenmodes of the system

by transforming the vectors U(m)
LN and U(m)

LN defined in (63) and (64):

V(m)
LN = S(m)

LN U(m)
LN , V(m)

LN = S(m)
LN U(m)

LN . (71)

The eigenmodes are the components of V(m)
LN and V(m)

LN and they are linear combinations

of the components of U(m)
LN and U(m)

LN , respectively. Thus, the eigenmodes are combinations
of the various multipoles (dipole, quadrupole, etc.) which comprise the inertial waves of
the system. The extent of this mixing will be considered in the next section for the case
L = N = 5.

In terms of V(m)
LN and V(m)

LN , Equation (67) become

dV(m)
LN

dt
= 2iΛ(m)

LN V(m)
LN ,

dV(m)
LN

dt
= 2iΛ(m)

LN V(m)
LN . (72)

These have immediate solution:

V(m)
LN (t) = exp

(
2iΛ(m)

LN

)
V(m)

LN (0), V(m)
LN (t) = exp

(
2iΛ(m)

LN

)
V(m)

LN (0). (73)

The eigenvectors V(m)
LN (t) and V(m)

LN (t) have components (eigenmodes) with constant
magnitude and periodically varying phase, whereas including an inertial term in (1) would
connect them and subject both to statistical fluctuations. These 2LN magnitudes plus the
kinetic helicity (69) are the ideal invariants of the model system, i.e., when E = 0.

The case where L = 2 and N = 1 have been expressed in (50)–(53), where it was seen
that the eigenfrequencies for the former are different from those for the latter. In general.
For large L and N, the matrices (65) and (66) present a formidable eigenvalue problem,
particularly with respect to accuracy. However, for small L and N, the eigenvalues are
easily found numerically and we now turn to a discussion of these.

7. Eigenfrequencies and Eigenmodes

We have seen some examples already, in 2-dimensional systems (50) and (52) for
modes ulmn wlmn with l ≤ L = 2 and n = N = 1. Again, a more uniform approximation of
fluid velocity in a spherical shell would ostensibly require L = N. So, let us first truncate
(63)–(66) to l, n ≤ L = N = 3 and look at the systems

U(m)
3 = [u1m1 u1m2 u1m3 w2m1 w2m2 w2m3 u3m1 u3m2 u3m3]

T , (74)

U(m)
3 = [w1m1 w1m2 w1m3 u2m1 u2m2 u2m3 w3m1 w3m2 w3m3]

T , (75)

M(m)
33 =


D
(1m)
3 −iB(1m)

3 0

iB(1m)T
3 D

(2m)
3 −iA(2m)

3

0 iA(2m)T
3 D

(3m)
3

, M(m)
33 =


D
(1m)
3 −iA(1m)

3 0

iA(1m)T
3 D

(2m)
3 −iB(2m)

3

0 iB(2m)T
3 D

(3m)
3

. (76)

Let us set E = 0 and m = 0. Using the matrix elements defined in (56), along with
Table 1 and formulas (44)–(47), we compute (using MatLab) the following, where O3 is the
zero 3× 3 matrix,

D
(10)
3 = O3, D

(20)
3 = O3, D

(30)
3 = O3, (77)
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A
(10)
3

∼=

 0.4960 −0.3273 −0.0408
0.1728 0.2764 −0.3249
0.0018 0.2177 0.1898

, A
(20)
3
∼=

 0.6872 −0.2839 −0.0676
0.1643 0.3899 −0.3185
0.0087 0.2190 0.2963

, (78)

B
(10)
3

∼=

 0.4300 0.1641 0.0017
−0.2837 0.2624 0.2123
−0.0354 −0.3085 0.1851

, B
(20)
3
∼=

 0.5899 0.1534 0.0084
−0.2437 0.3639 0.2113
−0.0580 −0.2973 0.2859

. (79)

Now, let us keep E = 0 but set m = 1. Using the matrix elements defined in (56), along
with Table 1 and Equations (44)–(47), we compute (using MatLab) the following, where I3
is the unit 3× 3 matrix,

D
(11)
3 =

1
2
I3, D

(21)
3 =

1
6
I3, D

(31)
3 =

1
12

I3, (80)

A
(11)
3

∼=

 0.4296 −0.2834 −0.0353
0.1497 0.2393 −0.2814
0.0015 0.1885 0.1643

, A
(21)
3
∼=

 0.6479 −0.2677 −0.0637
0.1549 0.3676 −0.3002
0.0082 0.2065 0.2793

. (81)

B
(11)
3

∼=

 0.3724 0.1421 0.0015
−0.2457 0.2272 0.1838
−0.0306 −0.2672 0.1603

, B
(21)
3
∼=

 0.5562 0.1446 0.0080
−0.2298 0.3431 0.1993
−0.0547 −0.2803 0.2695

. (82)

The numerical matrix elements given above are, of course, approximate values and
presented for purposes of illustration and an example for verification. One feature to notice
in the matrices (78), (79), (81) and (82) is that the first element n = s = 1 in each has the
largest magnitude. This property appears to hold for all A(lm)

N and B
(lm)
N , with N ≥ 1.

From the above results, we can form the matrices given in (75) and (76), i.e., M(0)
33 ,

M(0)
33 , M(1)

33 and M(1)
33 . (Again, E = 0 here). The eigenvalues of these, multiplied by 2, are

the eigenfrequencies of associated truncated systems; these eigenfrequencies, written as
vectors, are

ω
(0)
33 = [1.853, 1.369, 0.857, 0.000, 0.000, 0.000, −0.857, −1.369, −1.853], (83)

ω
(0)
33 = [1.785, 1.352, 0.844, 0.000, 0.000, 0.000, −0.844, −1.352, −1.785], (84)

ω
(1)
33 = [2.130, 1.738, 1.305, 0.749, 0.663, 0.647, −0.473, −0.898, −1.362], (85)

ω
(1)
33 = [2.113, 1.743, 1.308, 0.681, 0.612, 0.592, −0.452, −0.857, −1.239]. (86)

Above, ω
(m)
33 are the eigenfrequencies associated with M(m)

33 and ω
(m)
33 are the eigen-

frequencies associated with M(m)
33 for m = 0 and 1; those associated with m = −1 are the

negative of those in (86). Here, these are all real because E = 0; they become complex,
with positive imaginary parts when E > 0. (The ordering of the eigenfrequencies and their
corresponding eigenvectors is arbitrary; above, the choice is most positive to most negative
eigenfrequency, but this is not essential).

The eigenmodes can be found using (71), but this will not be done here; however, the
case L = N = 5 will be considered presently and the structure of the eigenmodes will be
examined graphically. Note the appearance of zero eigenfrequencies in (83) and (84); N
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zero values occur when L is odd, but none when L is even or when |m| > 0 (or when E > 0,
though the real part will be zero for any odd L and become zero if E is large enough, as
will be seen presently).

Earlier, in the discussion following (50) and (51), the eigenfrequencies associated

with M(0)
21 , M(0)

21 were given, and similarly, following (52) and (53), the eigenfrequencies

associated with M(1)
21 , M(1)

21 were given, while above L = N = 3 was considered. Of course,

we can find the eigenvalues of M(m)
LN and M(m)

LN for any values of L and N. As L and N
increase, the number of eigenfrequencies (and eigenmodes) is L× N, and the presentation
of either as an array of numbers would perhaps be overwhelming. Instead, results will be
presented graphically (Figures 1, 5 and 6) in what follows and will be limited to L = N for
L ≤ 5 and m = 0, ±1.
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Figure 1. (colour online)The eigenfrequencies (a) ω
(0)
55 and (b) ω

(0)
55 . Here, the numbering with respect

to I corresponds to that in Table 2 and Figure 5. The eigenfrequencies with negative values of <ω
(0)
55

and <ω
(0)
55 , I = 16, . . . , 25, are found by reflecting I = 1, . . . 10 in (a) and (b) across the vertical axes

<ω
(0)
55 = 0 and <ω

(0)
55 = 0.

8. Undamped and Damped Inertial Waves

Consider the cases with E = 0 and L = N ≤ 5. The case L = 1 is simple: for m = 0,
the eigenfrequencies are zero and for m = ±1, they are ±1 (in units of Ωo). For 2 ≤ L ≤ 5,

we use MatLab to find the eigenfrequencies from M(m)
LL and M(m)

LL . In the case where m = 0,
the eigenfrequencies are presented in Figure 2. There it can be seen that the undamped
eigenfrequencies appear to increase without bound for E = 0. For L = N = 1, 3, 5 there are
1, 3 and 5 zero eigenfrequencies, respectively, although they are on top of each other for
E = 0.

However, in physical body such as the Earth, E, though small, is not zero, but using
E = 10−14 would require L ∼ 107, which from a standpoint of accuracy and computa-
tion time is not very feasible. So, for example, we look at the cases where L = 5 and
0.01 ≤ E ≤ 1.25; the results of doing so gives us the sequence of plots shown in Figure 3.
There, each of the eigenfrequencies has gained a positive imaginary part, leading to damp-
ing of the eigenmode. As E increases, more and more eigenfrequencies get a real part of
zero, indicating overdamping. Thus, as L increases beyond what is shown in Figure 2, the
bounding curve will reach a limit and eventually return to <ω

(m)
LN = 0.



Fluids 2022, 7, 10 16 of 23
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ω
(0)
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(J ): o and ϖ

(0)

LL
(J ): +; J = 1, ... , L

2

L

Figure 2. (colour online) Eigenfrequencies ω
(0)
LL and ω

(0)
LL of undamped eigenmodes associated with

M(0)
LL and M(0)

LL for L = 1 to 5. The smooth curve ω(L) = 0.0159L4 + 0.4027L2 + 1.4825 fits the outer
data but is only used for purpose of illustrating that the eigenfrequencies appear unbounded as
L→ ∞. However, dissipation (E > 0) is eventually important and provides a bounding mechanism,
as shown in Figure 3.
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ω

Figure 3. (colour online) Above, ω signifies either set of eigenfrequencies (◦) ω
(0)
55 or (+) ω

(0)
55 of the

damped eigenmodes associated with M(0)
55 and M(0)

55 . Notice that as E increases from (a–f), more and
more eigenmodes become overdamped, i.e., have ω become purely imaginary. When E is slightly
larger than 1.25, all eigenmodes are overdamped; as E becomes smaller, overdamping starts to occur
when L ∼ E−1/2.

In Figure 4, the damped eigenfrequencies for E = 0.01 and the cases m = 0, ±1 are
presented. Notice that in both Figures 3 and 4, the five zeroes that were superimposed for
the L = 5 case in Figure 2 have now separated due to each gaining a different damping
factor =ω

(0)
55 . The same will occur for the multiple zeros of any odd L when damping

is introduced.
In (71), the matrices S(m)

LN and S(m)
LN used to transform the primary vectors U(m)

LN and

U(m)
LN in eigenvectors V(m)

LN and V(m)
LN , each of the components of which is an eigenmode.

These eigenmodes are combinations of the components (modes) of U(m)
LN and U(m)

LN , as
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defined by (59), (60), (63) and (64); the specific manner in which each mode goes in each

eigenmode is determined by the LN rows (I = 1, . . . , LN) SI of S(m)
LN and SI of S(m)

LN . The

LN elements (J = 1, . . . , LN) SI
J of SI and SI

J of SI are generally complex and for L = N = 5
would give an array of 25 complex numbers, too many perhaps to be very illuminating.

3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8
(a) E = 0.01, m = 0

Re ω

Im
ω

3 2 1 0 1 2 3
0
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0.8
(b) E = 0.01, m = 1

Re ω

Im
ω

3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8
(c) E = 0.01, m = 1

Re ω

Im
ω

Figure 4. (colour online) Above, ω signifies either set of eigenfrequencies (◦) ω
(m)
55 or (+) ω

(m)
55 of the

damped eigenmodes associated with M(m)
55 and M(m)

55 for E = 0.01, comparing the cases (a) m = 0
with (b) m = 1 and (c) m = −1.

Instead, for E = 0.01 and m = 0, we give the eigenfrequencies in Figure 1 and Table 2,
and plot the magnitudes |SI

J | and |SI
J | for the L = N = 5 case in Figure 5, which contains

the 25 magnitudes for each I = 1, . . . , 15; the corresponding eigenfrequencies are given in
Table 2. In the m = 0 case, there is no need to give the magnitudes and eigenfrequencies
for I = 16, . . . , 25 because these are the same as those found in the range I = 1, . . . , 10
(although the complex values for these SI

J and SI
J are different). Similar figures can be made

for the m 6= 0 eigenmodes, but this will not be done here, where the m = 0 case is chosen
as an example.

Table 2. For the case L = N = 5, m = 0 and E = 0.01: Values for the eigenfrequencies ω
(0)
55 (I) and

ω
(0)
55 (I) for I = 1, . . . , 15. The index I = 1 to 15 is ordered to correspond to the largest values of |ω(0)

55 |
or |ω(0)

55 | to their smallest values. We define ω
(0)
55 (I) = −ω

(0)∗
55 (j− 15) and ω

(0)
55 (I) = −ω

(0)∗
55 (I − 15),

I = 16, . . . , 25.

I = 1 2 3 4 5

ω
(0)
55 (I) = 2.63 + i0.09 2.03 + i0.20 1.84 + i0.39 1.62 + i0.54 1.42 + i0.093

ω
(0)
55 (I) = 2.61 + i0.09 2.02 + i0.21 1.82 + i0.39 1.67 + i0.55 1.35 + i0.087

I = 6 7 8 9 10

ω
(0)
55 (I) = 1.03 + i0.61 1.11 + i0.20 1.01 + i0.40 0.88 + i0.55 0.56 + i0.55

ω
(0)
55 (I) = 1.06 + i0.59 0.99 + i0.63 1.08 + i0.20 0.96 + i0.37 0.35 + i0.59

I = 11 12 13 14 15

ω
(0)
55 (I) = 0 + i0.76 0 + i0.51 0 + i0.30 0 + i0.15 0 + i0.056

ω
(0)
55 (I) = 0 + i0.63 0 + i0.51 0 + i0.31 0 + i0.17 0 + i0.085

One interesting feature seen in plots I = 11, . . . , 15, of Figure 5 is that the |SI
J | and

|SI
J | have only three significant magnitudes, while the plots, I = 1, . . . , 10, have many.

Table 3 explores this feature in more detail by showing the actual values, rather than just
the magnitudes, of these large magnitude SI

J and |SI
J |. In Table 3, we see that actual values

are all real and positive. Remember that for I = 11, . . . , 15, <ω
(0)
LN(I) = 0 and <ω

(0)
LN(I) = 0;

thus, these are non-oscillatory eigenmodes.

If we consider the structure of U(m)
LN and U(m)

LN given in (63) and (64), we see that the
three significant magnitudes for the eigenmodes I = 11, . . . , 15, in Figure 5 which have
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<ω
(0)
LN(I) = 0, are the toroidal parts of U(0)

LN and those which have <ω
(0)
LN(I) = 0 are the

poloidal parts of U(0)
LN , while the eigenmodes whose frequencies have zero real part are

almost purely either toroidal or poloidal, the eigenmodes I = 1, . . . , 10, have a mixture of
toroidal and poloidal components; according to Table 2, these also have <ω

(0)
LN(I) 6= 0 and

<ω
(0)
LN(I) 6= 0, and are thus time-dependent eigenmodes.
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Figure 5. (colour online) Magnitudes of components SI
J and SI

J , J = 1, . . . , 25, of rows SI and SI ,

I = 1, . . . , 15, of transformation matrices S(0)55 and S(0)55 , respectively. These are for the case E = 0.01

and the index I = 1 to 15 is ordered to correspond to the largest values of |ω(0)
55 | or |ω(0)

55 | to their
smallest values.
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Table 3. First, to minimize confusion, remember that L = 5 and N = 5; second, I is just an arbitrary
numbering of the L× N = 25 eigenmodes; third, J = N(l − 1) + n, with 1 ≤ l ≤ L and 1 ≤ n ≤ N.
For I = 11, · · · , 15 of Figures 1 and 5, this table has the values for the largest three SI

J and SI
J for each

I. These are the major matrix elements that define the <ω
(0)
55 = 0 and <ω

(0)
55 = 0 eigenmodes, along

with their associated wavenumbers kln, which are drawn from Table 1.

I kln SI
J kln SI

J kln SI
J

15 k11 = 1.864, S15
1 = 0.7612 k31 = 2.504, S15

11 = 0.5007 k51 = 3.290, S15
21 = 0.4009

14 k12 = 3.493, S14
2 = 0.6889 k32 = 3.941, S14

12 = 0.5501 k52 = 4.629, S14
22 = 0.4547

13 k13 = 5.161, S13
3 = 0.6797 k33 = 5.485, S13

13 = 0.5463 k53 = 6.030, S13
23 = 0.4648

12 k14 = 6.843, S12
4 = 0.6494 k34 = 7.093, S12

14 = 0.5597 k54 = 7.527, S12
24 = 0.4977

11 k15 = 8.532, S11
5 = 0.6583 k35 = 8.734, S11

15 = 0.5528 k55 = 9.090, S11
25 = 0.4833

I kln SI
J kln SI

J kln SI
J

15 k11 = 1.864, S15
1 = 0.5851 k31 = 2.504, S15

11 = 0.5302 k51 = 3.290, S15
21 = 0.5608

14 k12 = 3.493, S14
2 = 0.6136 k32 = 3.941, S14

12 = 0.5466 k52 = 4.629, S14
22 = 0.5322

13 k13 = 5.161, S13
3 = 0.6491 k33 = 5.485, S13

13 = 0.5359 k53 = 6.030, S13
23 = 0.5063

12 k14 = 6.843, S12
4 = 0.6859 k34 = 7.093, S12

14 = 0.4970 k54 = 7.527, S12
24 = 0.4551

11 k15 = 8.532, S11
5 = 0.7996 k34 = 7.093, S11

14 = 0.3103 k54 = 7.527, S11
24 = 0.3080

9. Physical Space Eigenfunctions

In order to visualize the non-oscillatory eigenmodes, we find their functional form
in physical space. First, we define arrays containing the expansion functions Tlmn(x) and
Plmn(x):

T
(N)
lm = [Tlm1 Tlm2 · · · TlmN ]

T , (87)

P
(N)
lm =

[
k−1

lm1Plm1 k−1
lm2Plm2 · · · k−1

lmNPlmN

]T
. (88)

We use these to define larger arrays analogous to U(m)
LN and U(m)

LN :

Q(m)
LN =



T
(N)
1m

P
(N)
2m
...

T
(N)
L−1,m

P
(N)
Lm


, Q(m)

LN =



P
(N)
1m

T
(N)
2m
...

P
(N)
L−1,m

T
(N)
Lm


, (L even); (89)

Q(m)
LN =



T
(N)
1m

P
(N)
2m
...

P
(N)
L−1,m

T
(N)
Lm


, Q(m)

LN =



P
(N)
1m

T
(N)
2m
...

T
(N)
L−1,m

P
(N)
Lm


, (L odd). (90)

Now, Equations (1) and (9) for u and ω = ∇× u can be written, using (69), as

u = ∑
m
(−1)m

(
U(−m)†

LN Q(m)
LN +U(−m)†

LN Q(m)
LN

)
, (91)

ω = ∑
m
(−1)m

(
U(−m)†

LN KLNQ
(m)
LN +U(−m)†

LN KLNQ
(m)
LN

)
. (92)
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Here, the factor of (−1)m appears because of (8) and (13).

The arrays Q(m)
LN and Q(m)

LN transform differently from the rule (71) that applies to U(m)
LN

and U(m)
LN :

R(m)
LN = S(m)†

LN Q(m)
LN , R(m)

LN = S(m)†
LN Q(m)

LN , (93)

Z(m)
LN = S(m)†

LN KLNQ
(m)
LN , Z(m)

LN = S(m)†
LN KLNQ

(m)
LN . (94)

In the case m = 0, the elements of U(0)
LN and U(0)

LN are real, while those of S(0)LN and S(0)LN
are generally complex. Under these transformations, (91) and (92) become

u = ∑
m
(−1)m

(
V(−m)†

LN R(m)
LN +V(−m)†

LN R(m)
LN

)
, (95)

ω = ∑
m
(−1)m

(
V(−m)†

LN Z(m)
LN +V(−m)†

LN Z(m)
LN

)
. (96)

However, in this example with L = N = 5 and m = 0, the important elements of

S(0)55 and S(0)55 associated with <ω
(0)
55 = 0 and <ω

(0)
55 = 0 are real (and positive) as Table 3

shows. We can use these values and (93) to find the approximate form of the physical space

eigenfunctions R(0)
55 (I) and R(0)

55 (I) associated with each ω
(0)
55 (I), and Z(0)

55 (I) and Z(0)
55 (I)

associated with each ω
(0)
55 (I), I = 11, . . . , 15. Since m = 0, these have no ϕ-dependence,

plotting their shape on any ϕ = constant slice of the spherical shell will reveal their structure.
For this case, we make use of (11)–(15) to see that ϕ̂ · Pl0n = 0; thus, only the toroidal Tl0n in

(95) and (96) will contribute as ϕ̂ ·R(0)
55 = 0 and ϕ̂ ·Z(0)

55 = 0. Let us define

FI(r, θ) = ϕ̂ ·R(0)
55 (I), GI(r, θ) = ϕ̂ ·Z(0)

55 (I), (97)

hln(r, θ) = ϕ̂ · Tl0n =

√
2l + 1

l(l + 1)
ĝl(klnr)√

4π

d
dθ

Pl(cos θ), h′ ln = klnhln. (98)

Here, Pl(x) is, of course, a Legendre polynomial.
Now, we can examine the physical space eigenfunctions associated with the <ω

(0)
55 = 0

and <ω
(0)
55 = 0 eigenmodes contained in the expansions for velocity (91) and vorticity (92)

using the data in Table 3. In any (r, θ) slice, the velocity eigenfunctions will be denoted
fn(r, θ), n = 1, . . . , 5, where

f1(r, θ) = F15(r, θ) = S15
1 h11(r, θ) + S15

11h31(r, θ) + S15
21h51(r, θ), (99)

f2(r, θ) = F14(r, θ) = S14
2 h12(r, θ) + S14

12h32(r, θ) + S14
22h52(r, θ), (100)

f3(r, θ) = F13(r, θ) = S13
3 h13(r, θ) + S13

13h33(r, θ) + S13
23h53(r, θ), (101)

f4(r, θ) = F12(r, θ) = S12
4 h14(r, θ) + S12

14h34(r, θ) + S12
24h54(r, θ), (102)

f5(r, θ) = F11(r, θ) = S11
5 h11(r, θ) + S11

15h35(r, θ) + S11
25h55(r, θ). (103)
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The vorticity eigenfunctions associated with these are f ′n(r, θ), n = 1, . . . , 5,

f ′1(r, θ) = G15(r, θ) = S15
1 h′11(r, θ) + S15

11h′31(r, θ) + S15
21h′51(r, θ), (104)

f ′2(r, θ) = G14(r, θ) = S14
2 h′12(r, θ) + S14

12h′32(r, θ) + S14
22h′52(r, θ), (105)

f ′3(r, θ) = G13(r, θ) = S13
3 h′13(r, θ) + S13

13h′33(r, θ) + S13
23h′53(r, θ), (106)

f ′4(r, θ) = G12(r, θ) = S12
4 h′14(r, θ) + S12

14h′34(r, θ) + S12
24h′54(r, θ), (107)

f ′5(r, θ) = G11(r, θ) = S11
5 h′15(r, θ) + S11

14h′34(r, θ) + S11
24h′54(r, θ). (108)

Again, the numerical values of the SI
J and SI

J used above can be found in Table 3.
The eigenfunctions fn(r, θ) in (99)–(103) and f ′n(r, θ) in (104)–(108) that represent the

n = 1, . . . , 5 physical space eigenmodes of velocity and vorticity are pictured in Figure 6.
These are non-oscillatory flow patterns specific to the L = N = 5 system that was used as an
example; they are ordered by the smallest (n = 1) to the largest (n = 5) dissipation factors
of the non-oscillatory eigenmodes, which are also the five smallest dissipation factors of the
25 eigenmodes of the whole system. What they indicate is that the non-oscillatory inertial
wave eigenmodes take the form of circular vortex structures that surround the rotation
axis of the spherical shell. This is in contrast to the columnar, axially aligned vortices that
numerical geodynamo simulations of a turbulent magnetofluid show occurring outside the
so-called tangent cylinder of the rotating shell [27,28,37]. However, it must be remembered
that here we are dealing with linear inertial hydrodynamic waves, while the turbulent
geodynamo simulations study a fully nonlinear magnetohydrodynamic (MHD) system. A
connection to nonlinear MHD systems must await an analysis of the MHD analog of the
hydrodynamic inertial wave Equation (1).

(a) uϕ = f1 (b) uϕ = f2 (c) uϕ = f3 (d) uϕ = f4 (e) uϕ = f5

(f) ωϕ = f ′

1 (g) ωϕ = f ′

2 (h) ωϕ = f ′

3 (i) ωϕ = f ′

4 (j) ωϕ = f ′
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Figure 6. Non-oscillatory eigenmodes: Axisymmetric inertial wave structures in a rotating spherical
shell. (a–e) Azimuthal components of velocity uϕ = fn and (f–j) corresponding azimuthal vorticity

component ωϕ = f ′n, n = 1, . . . , 5, associated with the <ω
(0)
55 = 0 eigenmodes I = 15–11 of Table 2

and Figure 5. These are helical flows encircling the rotation axis, which is the left vertical edge in
each plot.
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10. Conclusions

In this paper, we determined the inertial waves found in an incompressible fluid in
a rotating spherical shell with ‘homogeneous’ boundary conditions (b.c.s). A dynamical
system has been defined and it has been shown that this system, with definite values
of L and N, has exact solutions, e.g., definite eigenfrequencies and eigenmodes. If L
and N are changed, then we have a new system which may have different values for
the eigenfrequencies and shapes of eigenmodes. In this context, the question can be
asked as to whether eigenfrequencies converge, at least for the largest scales, to definite
values for a given E, as L and N get larger and larger. The two largest-scale modes for
L = N = 5 are identified by I = 15 as seen in Figure 5; the eigenfrequencies of these two
modes are 0 + i0.056 and 0 + i0.085 as given in Table 2; these have the smallest magnitude
of all eigenfrequencies in the case L = N = 5. Furthermore, in Figure 2, it is evident that
the smallest magnitude ω have Re ω = 0 for all odd L, while for increasing even values
of L, Figure 2 suggests that smallest magnitude ω also have Re ω → 0. This indicates the
convergence of the eigenfrequencies of the largest scale modes: ω → 0. This is interesting,
as it appears that the largest-scale inertial waves are or become stationary as L and N
increase. A fuller examination of this topic is beyond the scope of the present work and
must be deferred.

In summary, we have found the analytical form of inertial waves in an incompressible,
rotating fluid constrained by concentric inner and outer spherical surfaces with homoge-
neous boundary conditions by using a toroidal-poloidal basis equivalent to Chandrasekhar-
Kendall functions. We have discovered formulas and procedures for determining eigen-
modes and associated eigenfrequencies for both the ideal and dissipative cases. These
eigenmodes are formed from linear combinations of the multipole components of the Bessel
function-spherical harmonic series that represents the fluid velocity. We illustrated the use
of our results with specific low-dimensional examples and discussed what may occur as
one moves to larger systems. In particular, we have found in a specific example that the
lowest dissipation eigenmodes, all of which are non-oscillatory, are vortex ring structures
that encircle the rotation axis. Application of the approach presented here to the problem
of determining magnetohydrodynamic inertial wave structure in a spherical shell with
homogeneous b.c.s is expected to further increase our understanding of the geodynamo.

Finally, let us mention a few other points. First, we have outlined an approach to the
case with no-slip b.c.s. and compressibility, where one would still use the vector expansion
functions Tlmn(x) and Plmn(x) in addition to introducing a new set of expansion functions
suitable for including compressibility effects and enforcing the no-slip boundary condition.
Second, the Galerkin basis used here is unique in that each term satisfies a Helmholtz
equation, for the given b.c.s and incompressibility. One could use Chebyshev polynomials
as is done by [1,2], or perhaps Legendre polynomials, but the individual terms no longer
satisfy the Helmholtz equation, i.e., there are no longer unique wavenumbers for the
modes. (Please see [38] for formulas related to Chebyshev and Legendre methods). Third,
the results developed here could be used to analyze data from numerical simulations,
most directly from simulations based on the Galerkin vector basis functions defined in the
paper, but also, data from finite-difference or finite-volume methods could also examined,
particularly, but not necessarily, if these other methods employ the same b.c.s.
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