Machine Learning Augmented Two-Fluid Model for Segregated Flow
Abstract
:1. Introduction
1.1. Review of Two-Fluid Hydraulic Models for Segregated Flow
1.2. Application of Machine Learning in Multiphase Flow Modeling
2. Methods
2.1. Model Development
2.2. Dataset Description
2.3. Machine Learning Algorithms
2.4. Model Evaluation—Accuracy Metrics
3. Results
4. Summary
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AC | Gas core occupied cross-sectional area, m2 |
AL | Liquid film occupied cross-sectional area, m2 |
Ap | Pipe cross-sectional area, m2 |
d | Pipe inner diameter, m |
dL | Liquid hydraulic diameter, m |
dC | Gas core hydraulic diameter, m |
(dp/dL)total | Total pressure gradient, Pa/m |
(dp/dL)L | Liquid phase pressure gradient, Pa/m |
(dp/dL)C | Gas core pressure gradient, Pa/m |
(dp/dL)f | Frictional component of pressure gradient, Pa/m |
(dp/dL)g | Gravitational component of pressure gradient, Pa/m |
fC | Gas wall friction factor, - |
fG-SP | Gas wall friction factor for single phase pipe flow, - |
fI | Interfacial friction factor, - |
fL | Liquid wall friction factor, - |
fL-SP | Liquid wall friction factor for single phase pipe flow, - |
FE | Entrainment fraction, - |
g | Gravitational acceleration, m/s2 |
hL | Liquid film thickness, m |
HL | Total liquid holdup, - |
Re | Reynolds number, - |
SC | Gas wetted perimeter, m |
SI | Interfacial perimeter, m |
SL | Liquid wetted perimeter, m |
vL | Average liquid velocity, m/s |
vC | Average gas core velocity, m/s |
vSg | Gas superficial velocity, m/s |
vSL | Liquid superficial velocity, m/s |
ε | Pipe roughness, m |
θ | Inclination angle from horizontal, ° (degree) |
μG | Gas viscosity, Pa·s |
μL | Liquid viscosity, Pa·s |
ρC | Gas core density, kg/m3 |
ρg | Gas density, kg/m3 |
ρL | Liquid density, kg/m3 |
σ | Surface tension, N/m |
τWC | Gas core wall shear stress, Pa |
τI | Interfacial shear stress, Pa |
τWL | Average liquid wall shear stress, Pa |
ϕ | Liquid wall friction factor coefficient, - |
AAE | Absolute Average Error |
AAPRE | Average Absolute Percent Relative Error |
ANN | Artificial Neural Network |
CV | Cross-Validation |
EDA | Exploratory Data Analysis |
IQR | Inter-Quartile Range |
MAE | Mean Absolute Error |
ML | Machine Learning |
PDE | Partial Differential Equation |
RF | Random Forest |
RMSE | Root Mean Squared Error |
XGBoost | eXtreme Gradient Boosting |
Appendix A
Case # | Geometrical Parameter | Wall Friction Factor, fL | Interfacial Friction Factor, fI |
---|---|---|---|
New Model | Zhang and Sarica (2011) | New ML Model from Current Study | New ML Model from Current Study |
Case 02 | Taitel and Dukler (1976) | Churchill (1977) | Cohen and Hanratty (1968) |
Case 03 | Taitel and Dukler (1976) | Churchill (1977) | Hart et al. (1989) |
Case 04 | Taitel and Dukler (1976) | Churchill (1977) | Kowalski (1987) |
Case 05 | Taitel and Dukler (1976) | Churchill (1977) | Taitel and Dukler (1976) |
Case 06 | Taitel and Dukler (1976) | Churchill (1977) | Vlachos et al. (1997) |
Case 07 | Taitel and Dukler (1976) | Churchill (1977) | Wallis (1969) |
Case 08 | Taitel and Dukler (1976) | Churchill (1977) | Wallis Modified (1969) |
Case 09 | Taitel and Dukler (1976) | Churchill (1977) | Whalley and Hewitt (1978) |
Case 10 | Taitel and Dukler (1976) | Churchill (1977) | Oliemans et al. (1986) |
Case 11 | Taitel and Dukler (1976) | Churchill (1977) | Fore et al. (2000) |
Case 12 | Taitel and Dukler (1976) | Churchill (1977) | Dallman et al. (1979) |
Case 13 | Taitel and Dukler (1976) | Churchill (1977) | Ambrosini et al. (1991) |
Case 14 | Taitel and Dukler (1976) | Churchill (1977) | Hamersma and Hart (1987) |
Case 15 | Taitel and Dukler (1976) | Churchill (1977) | Chen et al. (1997) |
Case 16 | Taitel and Dukler (1976) | Churchill (1977) | Andritsos and Hanratty (1987) |
Case 17 | Taitel and Dukler (1976) | Churchill (1977) | Andritsos et al. (2008) |
Case 18 | Taitel and Dukler (1976) | Churchill (1977) | Zhang et al. (2003) |
Case 19 | Taitel and Dukler (1976) | Churchill (1977) | Brito (2015) |
Case 20 | Taitel and Dukler (1976) | Churchill (1977) | Grolman and Fortuin (1997) |
Case 21 | Zhang and Sarica (2011) | Churchill (1977) | Cohen and Hanratty (1968) |
Case 22 | Zhang and Sarica (2011) | Churchill (1977) | Hart et al. (1989) |
Case 23 | Zhang and Sarica (2011) | Churchill (1977) | Kowalski (1985) |
Case 24 | Zhang and Sarica (2011) | Churchill (1977) | Taitel and Dukler (1976) |
Case 25 | Zhang and Sarica (2011) | Churchill (1977) | Vlachos et al. (1997) |
Case 26 | Zhang and Sarica (2011) | Churchill (1977) | Wallis (1997) |
Case 27 | Zhang and Sarica (2011) | Churchill (1977) | Wallis Modified (1969) |
Case 28 | Zhang and Sarica (2011) | Churchill (1977) | Whalley and Hewitt (1978) |
Case 29 | Zhang and Sarica (2011) | Churchill (1977) | Oliemans et al. (1986) |
Case 30 | Zhang and Sarica (2011) | Churchill (1977) | Fore et al. (2000) |
Case 31 | Zhang and Sarica (2011) | Churchill (1977) | Dallman et al. (1979) |
Case 32 | Zhang and Sarica (2011) | Churchill (1977) | Ambrosini et al. (1991) |
Case 33 | Zhang and Sarica (2011) | Churchill (1977) | Hamersma and Hart (1987) |
Case 34 | Zhang and Sarica (2011) | Churchill (1977) | Chen et al. (1997) |
Case 35 | Zhang and Sarica (2011) | Churchill (1977) | Andritsos and Haratty (1987) |
Case 36 | Zhang and Sarica (2011) | Churchill (1977) | Andritsos et al. (2008) |
Case 37 | Zhang and Sarica (2011) | Churchill (1977) | Zhang et al. (2003) |
Case 38 | Zhang and Sarica (2011) | Churchill (1977) | Brito (2015) |
Case 39 | Zhang and Sarica (2011) | Churchill (1977) | Grolman and Fortuin (1997) |
References
- Ullmann, A.; Brauner, N. Closure Relations for Two-fluid Models for Two-phase Stratified Smooth and Stratified Wavy Flows. Int. J. Multiph. Flow 2006, 32, 82–105. [Google Scholar] [CrossRef]
- Shoham, O. Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes; Society of Petroleum Engineers: Houston, TX, USA, 2006. [Google Scholar]
- Taitel, Y.; Dukler, A.E. A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-liquid Flow. AIChE J. 1976, 22, 47–55. [Google Scholar] [CrossRef]
- Shoham, O.; Taitel, Y. Stratified Turbulent-turbulent Gas-liquid Flow in Horizontal and Inclined Pipes. AIChE J. 1984, 30, 377–385. [Google Scholar] [CrossRef]
- Kowalski, J.E. Wall and Interfacial Shear Stress in Stratified Flow in a Horizontal Pipe. AIChE J. 1987, 33, 274–281. [Google Scholar] [CrossRef]
- Andritsos, N.; Hanratty, T. Interfacial Instabilities for Horizontal Gas-liquid Flows in Pipelines. Int. J. Multiph. Flow 1987, 13, 583–603. [Google Scholar] [CrossRef]
- Andritsos, N.; Hanratty, T.J. Influence of Interfacial Waves in Stratified Gas-liquid Flows. AIChE J. 1987, 33, 444–454. [Google Scholar] [CrossRef]
- Hart, J.; Hamersma, P.; Fortuin, J. Correlations Predicting Frictional Pressure Drop and Liquid Holdup during Horizontal Gas-liquid Pipe Flow with a Small Liquid Holdup. Int. J. Multiph. Flow 1989, 15, 947–964. [Google Scholar] [CrossRef]
- Hamersma, P.; Hart, J. A Pressure Drop Correlation for Gas/liquid Pipe Flow with a Small Liquid Holdup. Chem. Eng. Sci. 1987, 42, 1187–1196. [Google Scholar] [CrossRef]
- Chen, X.T.; Cal, X.D.; Brill, J.P. Gas-Liquid Stratified-Wavy Flow in Horizontal Pipelines. J. Energy Resour. Technol. 1997, 119, 209–216. [Google Scholar] [CrossRef]
- Zhang, H.-Q.; Sarica, C. A Model for Wetted-Wall Fraction and Gravity Center of Liquid Film in Gas/Liquid Pipe Flow. SPE J. 2011, 16, 692–697. [Google Scholar] [CrossRef]
- Oliemans, R.; Pots, B.; Trompé, N. Modelling of Annular Dispersed Two-phase Flow in Vertical Pipes. Int. J. Multiph. Flow 1986, 12, 711–732. [Google Scholar] [CrossRef]
- Alves, I.; Caetano, E.; Minami, K.; Shoham, O. Modeling Annular Flow Behavior for Gas Wells. SPE Prod. Eng. 1991, 6, 435–440. [Google Scholar] [CrossRef]
- Gazley, C. Interfacial Shear and Stability in Two-Phase Flow. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 1948. [Google Scholar]
- Rastogi, A. Onset of Liquid Loading in Large Diameter Inclined Pipes. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2020. [Google Scholar]
- Alsaadi, Y.; Pereyra, E.; Torres, C.; Sarica, C. Liquid loading of highly deviated gas wells from 60° to 88°. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar] [CrossRef]
- Guner, M.; Pereyra, E.; Sarica, C.; Torres, C.F. An Experimental Study of Low Liquid Loading in Inclined Pipes from 90° to 45°. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 1–5 March 2015. [Google Scholar] [CrossRef]
- Fan, Y. A Study of the Onset of Liquid Accumulation and Pseudo-Slug Flow Chracterization. Ph.D. Thesis, University of Tulsa, Tulsa, OK, USA, 2017. [Google Scholar]
- Rodrigues, H.T.; Pereyra, E.; Sarica, C. Pressure Effects on Low-Liquid-Loading Oil/Gas Flow in Slightly Upward Inclined Pipes: Flow Pattern, Pressure Gradient, and Liquid Holdup. SPE J. 2019, 24, 2221–2238. [Google Scholar] [CrossRef]
- Blasius, H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeits. Math. Phys. 1907, 56, 1–37. [Google Scholar]
- Churchill, S.W. Friction-Factor Equation Spans All Fluid-Flow Regimes. Chem. Eng. J. 1977, 84, 91–92. [Google Scholar]
- Hall, N.A. Thermodynamics of Fluid Flow; Longmans Green: New York, NY, USA, 1957. [Google Scholar]
- Massey, B.S. Mechanics of Fluids; Chapman and Hall: Boston, MA, USA, 1989. [Google Scholar]
- Colebrook, C.F. Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws. J. Inst. Civ. Eng. 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Barnea, D. Transition from Annular Flow and from Dispersed Bubble Flow—Unified Models for the Whole Range of Pipe Inclinations. Int. J. Multiph. Flow 1986, 12, 733–744. [Google Scholar] [CrossRef]
- Kanin, E.; Osiptsov, A.; Vainshtein, A.; Burnaev, E. A Predictive Model for Steady-state Multiphase Pipe Flow: Machine Learning on Lab Data. J. Pet. Sci. Eng. 2019, 180, 727–746. [Google Scholar] [CrossRef] [Green Version]
- Buist, J.; Sanderse, B.; Van Halder, Y.; Koren, B.; Van Heijst, G. Machine Learning for Closure Models in Multiphase Flow Applications. In Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019), Crete, Greece, 24–26 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Mi, Y.; Ishii, M.; Tsoukalas, L. Flow Regime Ddentification Methodology with Neural Networks and Two-phase Flow Models. Nucl. Eng. Des. 2001, 204, 87–100. [Google Scholar] [CrossRef]
- Shaban, H.; Tavoularis, S. Measurement of Gas and Liquid Flow Rates in Two-phase Pipe Flows by the Application of Machine Learning Techniques to Differential Pressure Signals. Int. J. Multiph. Flow 2014, 67, 106–117. [Google Scholar] [CrossRef]
- Osman, E.-S.A. Artificial Neural Network Models for Identifying Flow Regimes and Predicting Liquid Holdup in Horizontal Multiphase Flow. SPE Prod. Facil. 2004, 19, 33–40. [Google Scholar] [CrossRef]
- Li, X.; Miskimins, J.L.; Sutton, R.P.; Hoffman, B.T. Multiphase Flow Pattern Recognition in Horizontal and Upward Gas-Liquid Flow Using Support Vector Machine Models. In Proceedings of the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, 27–29 October 2014. [Google Scholar] [CrossRef]
- Ezzatabadipour, M.; Singh, P.; Robinson, M.D.; Guillen-Rondon, P.; Torres, C. Deep Learning as a Tool to Predict Flow Patterns in Two-Phase Flow. arXiv 2017, arXiv:1705.07117. Available online: Https://arxiv.org/pdf/1705.07117 (accessed on 1 August 2021). [Google Scholar]
- Guillen-Rondon, P.; Robinson, M.D.; Torres, C.; Pereya, E. Support Vector Machine Application for Multiphase Flow Pattern Prediction. arXiv 2018, arXiv:1806.05054. Available online: Http://arxiv.org/abs/1806.05054 (accessed on 1 August 2021). [Google Scholar]
- Mask, G.; Wu, X.; Ling, K. An Improved Model for Gas-liquid Flow Pattern Prediction Based on Machine Learning. J. Pet. Sci. Eng. 2019, 183, 106370. [Google Scholar] [CrossRef]
- Hernandez, J.S.; Valencia, C.; Ratkovich, N.; Torres, C.F.; Muñoz, F. Data Driven Methodology for Model Selection in Flow Pattern Prediction. Heliyon 2019, 5, e02718. [Google Scholar] [CrossRef] [Green Version]
- Seong, Y.; Park, C.; Choi, J.; Jang, I. Surrogate Model with a Deep Neural Network to Evaluate Gas–Liquid Flow in a Horizontal Pipe. Energies 2020, 13, 968. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S. A Machine Learning Model to Find a Near-Optimal Set of Closure Relationships for the Multiphase Unified Model. Ph.D. Thesis, The University of Tulsa, Tulsa, OK, USA, 2020. [Google Scholar]
- Lin, Z.; Liu, X.; Lao, L.; Liu, H. Prediction of Two-phase Flow Patterns in Upward Inclined Pipes via Deep Learning. Energy 2020, 210, 118541. [Google Scholar] [CrossRef]
- Mukherjee, H. An Experimental Study of Inclined Two-Phase Flow. Master’s Thesis, The University of Tulsa, Tulsa, OK, USA, 1979. [Google Scholar]
- Magrini, K.L. Liquid Entrainment in Annular Gas-liquid Flow in Inclined Pipes. Master’s Thesis, The University of Tulsa, Tulsa, OK, USA, 2009. [Google Scholar]
- Yuan, G. Liquid Loading of Gas Wells. Master’s Thesis, The University of Tulsa, Tulsa, OK, USA, 2011. [Google Scholar]
- Fan, Y. An Investigation of Low Liquid Loading Gas-Liquid Stratified Flow in Near-Horizontal Pipes. Ph.D. Thesis, The University of Tulsa, Tulsa, OK, USA, 2005. [Google Scholar]
- Gokcal, B. An Experimental and Theoretical Investigation of Slug Flow for High Oil Viscosity in Horizontal Pipes. Ph.D. Thesis, The University of Tulsa, Tulsa, OK, USA, 2008. [Google Scholar]
- Brito, R. Effect of Medium Oil Viscosity on Two-Phase Oil-Gas Flow Behavior in Horizontal Pipes. Master’s Thesis, The University of Tulsa, Tulsa, OK, USA, 2012. [Google Scholar]
- Brill, J.P.; Chen, X.T.; Flores, J.G.; Marcano, R. Transportation of Liquids in Multiphase Pipelines under Low Liquid Loading Conditions; Final Report; The Pennsylvania State University: University Park, PA, USA, 1995. [Google Scholar]
- Guner, M. Liquid Loading of Gas Wells with Deviations from 0° to 45°. Master’s Thesis, The University of Tulsa, Tulsa, OK, USA, 2012. [Google Scholar]
- Meng, W. Low Liquid Loading Gas-Liquid Two-Phase Flow in Near-Horizontal Pipes. Ph.D. Thesis, The University of Tulsa, Tulsa, OK, USA, 1999. [Google Scholar]
- Langsholt, M.; Holm, H. Liquid Accumulation in Gas-Condensate Pipelines—An Experimental Study. In Proceedings of the 13th International Conference on Multiphase Production Technology, Edinburgh, UK, 13–15 June 2007. [Google Scholar]
- Exploratory Data Analysis. The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 192–194. [Google Scholar]
- Seo, S. A Review and Comparison of Methods for Detecting Outliers in Univariate Datasets. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2006. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; Volume 10, pp. 785–794. [Google Scholar]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Newton, MA, USA, 2019. [Google Scholar]
- Pandey, Y.N.; Rastogi, A.; Kainkaryam, S.; Bhattacharya, S.; Saputelli, L. Machine Learning in the Oil and Gas Industry: Including Geosciences, Reservoir Engineering, and Production Engineering with Python; Apress: New York, NY, USA, 2020. [Google Scholar]
- Cohen, L.S.; Hanratty, T.J. Effect of Waves at a Gas—Liquid Interface on a Turbulent Air Flow. J. Fluid Mech. 1968, 31, 467–479. [Google Scholar] [CrossRef]
- Vlachos, N.; Paras, S.; Karabelas, A. Liquid-to-wall Shear Stress Distribution in Stratified/atomization Flow. Int. J. Multiph. Flow 1997, 23, 845–863. [Google Scholar] [CrossRef]
- Wallis, G.B. One-Dimensional Two-Phase Flow; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Whalley, P.B.; Hewitt, G.F. The Correlation of Liquid Entrainment Fraction and Entrainment Rate in Annular Two-Phase Flow; UKAEA Atomic Energy Research Establishment: Harwell, UK, 1978. [Google Scholar]
- Fore, L.; Beus, S.; Bauer, R. Interfacial Friction in Gas–liquid Annular Flow: Analogies to Full and Transition Roughness. Int. J. Multiph. Flow 2000, 26, 1755–1769. [Google Scholar] [CrossRef] [Green Version]
- Dallman, J.C.; Jones, B.G.; Hanratty, T.J. Interpretation of Entrainment Measurements in Annular Gas-Liquid Flows. In Two-phase Momentum, Heat and Mass Transfer in Chemical, Process, and Energy Engineering Systems; Hemisphere Publishing Corporation: London, UK, 1979; Volume 2, pp. 681–693. [Google Scholar]
- Ambrosini, W.; Andreussi, P.; Azzopardi, B. A Physically Based Correlation for Drop Size in Annular Flow. Int. J. Multiph. Flow 1991, 17, 497–507. [Google Scholar] [CrossRef]
- Andritsos, N.; Tzotzi, C.; Hanratty, T.J. Interfacial Shear Stress in Wavy Stratified Gas-liquid Two-phase Flow. In Proceedings of the 5th European Thermal-Sciences Conference, Eindhoven, The Netherlands, 18–22 May 2008. [Google Scholar]
- Zhang, H.-Q.; Wang, Q.; Sarica, C.; Brill, J.P. Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics—Part 1: Model Development. J. Energy Resour. Technol. 2003, 125, 266–273. [Google Scholar] [CrossRef]
- Brito, R.M. Effect of Horizontal Well Trajectory on Two-Phase Gas-Liquid Flow Behavior. Ph.D. Theis, The University of Tulsa, Tulsa, OK, USA, 2015. [Google Scholar]
- Rastogi, A.; Fan, Y. Experimental and Modeling Study of Onset of Liquid Accumulation. J. Nat. Gas Sci. Eng. 2020, 73, 103064. [Google Scholar] [CrossRef]
- Turner, R.G.; Hubbard, M.G.; Dukler, A.E. Analysis and Prediction of Minimum Flow Rate for the Continuous Removal of Liquids from Gas Wells. J. Pet. Technol. 1969, 21, 1475–1482. [Google Scholar] [CrossRef]
- Coleman, S.B.; Clay, H.B.; McCurdy, D.G.; Norris, L.H.I. A New Look at Predicting Gas-Well Load-Up. J. Pet. Technol. 1991, 43, 329–333. [Google Scholar] [CrossRef]
- Li, M.; Lei, S.; Li, S. New View on Continuous-Removal Liquids from Gas Wells. In Proceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA, 15–17 May 2001. [Google Scholar]
- Wang, Y.Z.; Liu, Q.W. A New Method to Calculate the Minimum Critical Liquid Carrying Flow Rate for Gas Wells. Pet. Geol. Oilfield Dev. Daqing 2007, 6, 82–85. [Google Scholar]
- Belfroid, S.; Schiferli, W.; Alberts, G.; Veeken, C.A.M.; Biezen, E. Predicting Onset and Dynamic Behavior of Liquid Loading Gas Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2018. [Google Scholar] [CrossRef]
- Zhou, D.; Yuan, H. A New Model for Predicting Gas-Well Liquid Loading. SPE Prod. Oper. 2010, 25, 172–181. [Google Scholar] [CrossRef]
- Luo, S.; Kelkar, M.; Pereyra, E.; Sarica, C. A New Comprehensive Model for Predicting Liquid Loading in Gas Wells. SPE Prod. Oper. 2014, 29, 337–349. [Google Scholar] [CrossRef]
- Shekhar, S.; Kelkar, M.; Hearn, W.J.; Hain, L.L. Improved Prediction of Liquid Loading in Gas Wells. SPE Prod. Oper. 2017, 32, 539–550. [Google Scholar] [CrossRef]
- Fan, Y.; Pereyra, E.; Sarica, C. Onset of Liquid-Film Reversal in Upward-Inclined Pipes. SPE J. 2018, 23, 1630–1647. [Google Scholar] [CrossRef]
- Nair, J.V. Gas Lift Application and Severe Slugging in Toe-Down Horizontal Wells. Ph.D. Thesis, The University of Tulsa, Tulsa, OK, USA, 2017. [Google Scholar]
- Espedal, M. An Experimental Investigation of Stratified Two-Phase Pipe Flow at Small Inclinations. Ph.D. Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 1998. [Google Scholar]
- Baker, R.E.; Peña, J.-M.; Jayamohan, J.; Jérusalem, A. Mechanistic Models versus Machine Learning, a Fight worth Fighting for the Biological Community? Biol. Lett. 2018, 14, 20170660. [Google Scholar] [CrossRef] [PubMed]
Model and Response Variables | Data | MAE | R2 | RMSE | Data | R2 | RMSE | |
---|---|---|---|---|---|---|---|---|
RF (ϕ) | Base Model | Train | 0.076 | 0.949 | 0.129 | Entire Data | 0.868 | 0.207 |
Test | 0.215 | 0.620 | 0.348 | |||||
Random Search CV | Train | 0.052 | 0.972 | 0.094 | Entire Data | 0.898 | 0.182 | |
Test | 0.192 | 0.669 | 0.325 | |||||
RF (fI) | Base Model | Train | 0.0015 | 0.949 | 0.0028 | Entire Data | 0.885 | 0.0043 |
Test | 0.0037 | 0.704 | 0.0069 | |||||
Random Search CV | Train | 0.0010 | 0.972 | 0.0020 | Entire Data | 0.901 | 0.0039 | |
Test | 0.0037 | 0.703 | 0.0070 | |||||
XGB (ϕ) | Base Model | Train | 0.207 | 0.773 | 0.304 | Entire Data | 0.741 | 0.3270 |
Test | 0.258 | 0.651 | 0.386 | |||||
Random Search CV | Train | 0.072 | 0.974 | 0.101 | Entire Data | 0.910 | 0.1920 | |
Test | 0.201 | 0.729 | 0.340 | |||||
XGB (fI) | Base Model | Train | 0.0039 | 0.800 | 0.0057 | Entire Data | 0.767 | 0.0063 |
Test | 0.0050 | 0.686 | 0.0079 | |||||
Random Search CV | Train | 0.0013 | 0.979 | 0.0018 | Entire Data | 0.919 | 0.0037 | |
Test | 0.0038 | 0.776 | 0.0067 | |||||
ANN (ϕ) | Base Model | Train | 0.302 | 0.425 | 0.436 | Entire Data | 0.416 | 0.436 |
Test | 0.295 | 0.380 | 0.439 | |||||
Grid Search CV | Train | 0.280 | 0.448 | 0.427 | Entire Data | 0.439 | 0.428 | |
Test | 0.284 | 0.400 | 0.432 | |||||
ANN (fI) | Base Model | Train | 0.0048 | 0.665 | 0.0073 | Entire Data | 0.648 | 0.0074 |
Test | 0.0052 | 0.593 | 0.0076 | |||||
Grid Search CV | Train | 0.0044 | 0.698 | 0.0069 | Entire Data | 0.683 | 0.007 | |
Test | 0.0047 | 0.631 | 0.0073 |
No. | Models Based on Liquid Droplet Removal | No. | Models Based on Liquid Film Dynamics/Reversal |
---|---|---|---|
1 | Turner et al. (1969) | 7 | Barnea (1986) |
2 | Coleman et al. (1991) | 8 | Luo et al. (2014) |
3 | Li et al. (2002) | 9 | Shekhar et al. (2017) |
4 | Wang and Liu (2007) | 10 | Fan et al. (2018) |
5 | Belfroid et al. (2008) | 11 | New Model (Rastogi and Fan (2019) with new ML algorithm from this study) |
6 | Zhou and Yuan (2010) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastogi, A.; Fan, Y. Machine Learning Augmented Two-Fluid Model for Segregated Flow. Fluids 2022, 7, 12. https://doi.org/10.3390/fluids7010012
Rastogi A, Fan Y. Machine Learning Augmented Two-Fluid Model for Segregated Flow. Fluids. 2022; 7(1):12. https://doi.org/10.3390/fluids7010012
Chicago/Turabian StyleRastogi, Ayush, and Yilin Fan. 2022. "Machine Learning Augmented Two-Fluid Model for Segregated Flow" Fluids 7, no. 1: 12. https://doi.org/10.3390/fluids7010012
APA StyleRastogi, A., & Fan, Y. (2022). Machine Learning Augmented Two-Fluid Model for Segregated Flow. Fluids, 7(1), 12. https://doi.org/10.3390/fluids7010012