Effects of Wheel Rotation on Long-Period Wake Dynamics of the DrivAer Fastback Model
Abstract
:1. Introduction
2. Methodology
2.1. DrivAer Model
2.2. Domain and Flow Conditions
2.3. Mesh
2.4. Lattice Boltzmann Method (LBM)
3. Results and Discussion
3.1. Time-Averaged Flow
3.2. Long-Period Dynamics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ahmed, S.R.; Ramm, G.; Faltin, G. Some salient features of the time-averaged ground vehicle wake. SAE Trans. 1984, 93, 473–503. [Google Scholar]
- Pavia, G.; Passmore, M. Characterisation of wake bi-stability for a square-back geometry with rotating wheels. In Proceedings of the FKFS Conference, Stuttgart, Germany, 26–27 September 2017; Springer: Cham, Switzerland, 2017; pp. 93–109. [Google Scholar]
- Grandemange, M.; Gohlke, M.; Cadot, O. Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 2013, 722, 51–84. [Google Scholar] [CrossRef] [Green Version]
- Pavia, G.; Passmore, M.; Varney, M.; Hodgson, G. Salient three-dimensional features of the turbulent wake of a simplified square-back vehicle. J. Fluid Mech. 2020, 888, A33. [Google Scholar] [CrossRef]
- Pavia, G.; Passmore, M.; Gaylard, A. Influence of Short Rear End Tapers on the Unsteady Base Pressure of a Simplified Ground Vehicle; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Pavia, G.; Passmore, M.; Sardu, C. Evolution of the bi-stable wake of a square-back automotive shape. Exp. Fluids 2018, 59, 20. [Google Scholar] [CrossRef] [Green Version]
- Pavia, G.; Passmore, M.; Varney, M. Low-frequency wake dynamics for a square-back vehicle with side trailing edge tapers. J. Wind Eng. Ind. Aerodyn. 2019, 184, 417–435. [Google Scholar] [CrossRef] [Green Version]
- Perry, A.K.; Pavia, G.; Passmore, M. Influence of short rear end tapers on the wake of a simplified square-back vehicle: Wake topology and rear drag. Exp. Fluids 2016, 57, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Perry, A.K.; Almond, M.; Passmore, M.; Littlewood, R. The study of a bi-stable wake region of a generic squareback vehicle using tomographic PIV. SAE Int. J. Passeng. Cars-Mech. Syst. 2016, 9, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Grandemange, M.; Cadot, O.; Gohlke, M. Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. Phys. Rev. E 2012, 86, 035302. [Google Scholar] [CrossRef] [Green Version]
- Grandemange, M.; Gohlke, M.; Cadot, O. Turbulent wake past a three-dimensional blunt body. Part 2. Experimental sensitivity analysis. J. Fluid Mech. 2014, 752, 439–461. [Google Scholar] [CrossRef] [Green Version]
- Brackston, R.D.; De La Cruz, J.G.; Wynn, A.; Rigas, G.; Morrison, J. Stochastic modelling and feedback control of bistability in a turbulent bluff body wake. J. Fluid Mech. 2016, 802, 726–749. [Google Scholar] [CrossRef] [Green Version]
- Evrard, A.; Cadot, O.; Herbert, V.; Ricot, D.; Vigneron, R.; Délery, J. Fluid force and symmetry breaking modes of a 3D bluff body with a base cavity. J. Fluids Struct. 2016, 61, 99–114. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Minelli, G.; Wang, J.; Dong, T.; Gao, G.; Krajnović, S. Numerical investigation of the wake bi-stability behind a notchback Ahmed body. J. Fluid Mech. 2021, 926, A36. [Google Scholar] [CrossRef]
- He, K.; Minelli, G.; Wang, J.; Gao, G.; Krajnović, S. Assessment of LES, IDDES and RANS approaches for prediction of wakes behind notchback road vehicles. J. Wind Eng. Ind. Aerodyn. 2021, 217, 104737. [Google Scholar] [CrossRef]
- Lucas, J.M.; Cadot, O.; Herbert, V.; Parpais, S.; Délery, J. A numerical investigation of the asymmetric wake mode of a squareback Ahmed body–Effect of a base cavity. J. Fluid Mech. 2017, 831, 675–697. [Google Scholar] [CrossRef] [Green Version]
- Varney, M.; Passmore, M.; Gaylard, A. The effect of passive base ventilation on the aerodynamic drag of a generic SUV vehicle. SAE Int. J. Passeng. Cars-Mech. Syst. 2017, 10, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Haffner, Y.; Borée, J.; Spohn, A.; Castelain, T. Mechanics of bluff body drag reduction during transient near-wake reversals. J. Fluid Mech. 2020, 894. [Google Scholar] [CrossRef]
- Golding, J.F.; Mueller, A.; Gresty, M.A. A motion sickness maximum around the 0.2 Hz frequency range of horizontal translational oscillation. Aviat. Space Environ. Med. 2001, 72, 188–192. [Google Scholar] [PubMed]
- Golding, J.F.; Gresty, M.A. Motion sickness. Curr. Opin. Neurol. 2005, 18, 29–34. [Google Scholar] [CrossRef]
- Donohew, B.E.; Griffin, M.J. Motion sickness: Effect of the frequency of lateral oscillation. Aviat. Space Environ. Med. 2004, 75, 649–656. [Google Scholar] [PubMed]
- Young, S. Vehicle NVH development process and technologies. In Proceedings of the 21st International Congress, Beijing, China, 13–17 July 2014. [Google Scholar]
- Bertolini, G.; Straumann, D. Moving in a moving world: A review on vestibular motion sickness. Front. Neurol. 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, B.; Nakashima, A. A Review on the Effects of Frequency of Oscillation on Motion Sickness; Defence R&D: Toronto, ON, Canada, 2006. [Google Scholar]
- Grandemange, M.; Cadot, O.; Courbois, A.; Herbert, V.; Ricot, D.; Ruiz, T.; Vigneron, R. A study of wake effects on the drag of Ahmed’s squareback model at the industrial scale. J. Wind Eng. Ind. Aerodyn. 2015, 145, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Sims-Williams, D.; Marwood, D.; Sprot, A. Links between notchback geometry, aerodynamic drag, flow asymmetry and unsteady wake structure. SAE Int. J. Passeng. Cars-Mech. Systems. 2011, 4, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Bonnavion, G.; Cadot, O.; Évrard, A.; Herbert, V.; Parpais, S.; Vigneron, R.; Délery, J. On multistabilities of real car’s wake. J. Wind Eng. Ind. Aerodyn. 2017, 164, 22–33. [Google Scholar] [CrossRef]
- Bonnavion, G.; Cadot, O.; Herbert, V.; Parpais, S.; Vigneron, R.; Délery, J. Asymmetry and global instability of real minivans’ wake. J. Wind Eng. Ind. Aerodyn. 2019, 184, 77–89. [Google Scholar] [CrossRef]
- Heft, A.I.; Indinger, T.; Adams, N.A. Experimental and numerical investigation of the DrivAer model. In Fluids Engineering Division Summer Meeting; American Society of Mechanical Engineers: New York, NY, USA, 2012; Volume 44755, pp. 41–51. [Google Scholar]
- Forbes, D.; Page, G.; Passmore, M.; Gaylard, A. A study of computational methods for wake structure and base pressure prediction of a generic SUV model with fixed and rotating wheels. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1222–1238. [Google Scholar] [CrossRef] [Green Version]
- Heft, A.I.; Indinger, T.; Adams, N.A. Introduction of a New Realistic Generic Car Model for Aerodynamic Investigations; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2012. [Google Scholar]
- Collin, C.; Mack, S.; Indinger, T.; Mueller, J. A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model. SAE Int. J. Passeng. Cars-Mech. Syst. 2016, 9, 657–679. [Google Scholar] [CrossRef]
- 1st Automotive CFD Prediction Workshop. 2019. Available online: https://autocfd.eng.ox.ac.uk/ (accessed on 13 December 2019).
- Ljungskog, E.; Sebben, S.; Broniewicz, A. Inclusion of the physical wind tunnel in vehicle CFD simulations for improved prediction quality. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104055. [Google Scholar] [CrossRef]
- Diasinos, S.; Barber, T.J.; Doig, G. The effects of simplifications on isolated wheel aerodynamics. J. Wind Eng. Ind. Aerodyn. 2015, 146, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Fares, E. Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach. Comput. Fluids 2006, 35, 940–950. [Google Scholar] [CrossRef]
- Islam, A.; Gaylard, A.; Thornber, B. A detailed statistical study of unsteady wake dynamics from automotive bluff bodies. J. Wind Eng. Ind. Aerodyn. 2017, 171, 161–177. [Google Scholar] [CrossRef]
- Aultman, M.T.; Auza-Gutierrez, R.; Wang, Z.; Duan, L. Characterization of the Flow past the Fastback DrivAer Automotive Model Using Unsteady Simulations. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021; p. 1329. [Google Scholar]
- Kotapati, R.; Keating, A.; Kandasamy, S.; Duncan, B.; Shock, R.; Chen, H. The Lattice-Boltzmann-VLES Method for Automotive Fluid Dynamics Simulation, a Review; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2009. [Google Scholar]
- Guilmineau, E. Numerical simulations of ground simulation for a realistic generic car model. In Fluids Engineering Division Summer Meeting; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 46230, p. V01CT17A001. [Google Scholar]
- Peters, B.C.; Uddin, M.; Bain, J.; Curley, A.; Henry, M. Simulating DrivAer with Structured Finite Difference Overset Grids; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
- Schewe, G. Experimental observation of the “golden section” in flow round a circular cylinder. Phys. Lett. A 1985, 109, 47–50. [Google Scholar] [CrossRef]
- Strangfeld, C.; Wieser, D.; Schmidt, H.J.; Woszidlo, R.; Nayeri, C.; Paschereit, C. Experimental Study of Baseline Flow Characteristics for the Realistic Car Model Drivaer; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 2013. [Google Scholar]
Parameter | Coarse | Medium | Fine |
---|---|---|---|
Largest Voxel (mm) | 2048 | 1536 | 1280 |
Smallest Voxel (mm) | 2 | 1.5 | 1.25 |
Minimum Wake Refinement Voxel (mm) | 4 | 3 | 2.5 |
Total Voxels () | 89 | 174 | 272 |
Wall | 0.84–215 | 0.71–111 | 0.54–107 |
Turbulence Model | RNG | ||
Time-Step Size (s) |
Method | Wheel Condition | ||||
---|---|---|---|---|---|
Experiments [31] | Stationary | 0.254 | – | – | – |
Experiments [40] | Stationary | 0.254 | – | 0.010 | – |
DES [40] | Stationary | 0.257 | – | 0.114 | – |
LBM (Coarse) | Stationary | 0.250 | 0.054 | −0.004 | 0.016 |
LBM (Medium) | Stationary | 0.254 | 0.059 | 0.011 | 0.011 |
LBM (Fine) | Stationary | 0.254 | 0.060 | 0.008 | 0.010 |
Experiments [32] | Rotating | 0.252 | 0.063 | −0.008 | – |
Experiments [40] | Rotating | 0.243 | – | −0.060 | – |
DES [40] | Rotating | 0.225 | – | −0.060 | – |
LBM (Coarse) | Rotating | 0.233 | 0.053 | −0.030 | 0.003 |
LBM (Medium) | Rotating | 0.234 | 0.051 | −0.012 | −0.001 |
LBM (Fine) | Rotating | 0.233 | 0.052 | −0.018 | −0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aultman, M.; Auza-Gutierrez, R.; Disotell, K.; Duan, L. Effects of Wheel Rotation on Long-Period Wake Dynamics of the DrivAer Fastback Model. Fluids 2022, 7, 19. https://doi.org/10.3390/fluids7010019
Aultman M, Auza-Gutierrez R, Disotell K, Duan L. Effects of Wheel Rotation on Long-Period Wake Dynamics of the DrivAer Fastback Model. Fluids. 2022; 7(1):19. https://doi.org/10.3390/fluids7010019
Chicago/Turabian StyleAultman, Matthew, Rodrigo Auza-Gutierrez, Kevin Disotell, and Lian Duan. 2022. "Effects of Wheel Rotation on Long-Period Wake Dynamics of the DrivAer Fastback Model" Fluids 7, no. 1: 19. https://doi.org/10.3390/fluids7010019
APA StyleAultman, M., Auza-Gutierrez, R., Disotell, K., & Duan, L. (2022). Effects of Wheel Rotation on Long-Period Wake Dynamics of the DrivAer Fastback Model. Fluids, 7(1), 19. https://doi.org/10.3390/fluids7010019