Review of Suspended Sediment Transport Mathematical Modelling Studies
Abstract
:1. Introduction
2. Literature Review
2.1. Reynolds Number Approach
2.2. Velocity Lag Approach
2.3. Lift Force
2.4. Turbulent Bursting
2.5. Continuity Equations and Modelling Studies
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundu, S.; Ghoshal, K. Effects of Secondary Current and Stratification on Suspension Concentration in an Open Channel Flow. Environ. Fluid Mech. 2014, 14, 1357–1380. [Google Scholar] [CrossRef]
- Pu, J.H. Turbulent rectangular compound open channel flow study using multi-zonal approach. Environ. Fluid Mech. 2018, 19, 785–800. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.H.; Pandey, M.; Hanmaiahgari, P.R. Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: A comparison of rectangular and trapezoidal open channel flows. J. Hydro-Environ. Res. 2020, 32, 17–25. [Google Scholar] [CrossRef]
- Pu, J.H. Velocity profile and turbulence structure measurement corrections for sediment transport-induced water-worked bed. Fluids 2021, 6, 86. [Google Scholar] [CrossRef]
- Pu, J.H.; Wei, J.; Huang, Y. Velocity distribution and 3D turbulence characteristic analysis for flow over water-worked rough bed. Water 2017, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Hanmaiahgari, P.R.; Gompa, N.R.; Pal, D.; Pu, J.H. Numerical modeling of the sakuma dam reservoir sedimentation. Nat. Hazards 2018, 91, 1075–1096. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.H.; Huang, Y.; Shao, S.; Hussain, K. Three-gorges dam fine sediment pollutant transport: Turbulence SPH model simulation of multi-fluid flows. J. Appl. Fluid Mech. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, G.; Sun, Q. Transport Equation for Suspended Sediment Based on Two Fluid Model of Solid/Liquid Two-Phase Flows. J. Hydraul. Eng. 2011, 137, 530–542. [Google Scholar] [CrossRef]
- Huang, S.H.; Sun, Z.L.; Xu, D.; Xia, S.S. Vertical Distribution of Sediment Concentration. J. Zhejiang Univ. Sci. 2003, 9, 1560–1566. [Google Scholar] [CrossRef]
- Hsu, T.J.; Jenkins, J.T.; Liu, P.L.F. On Two-Phase Sediment Transport: Dilute Flow. J. Geophys. Res. 2003, 108, 2–14. [Google Scholar] [CrossRef]
- Rouse, H. Modern Conceptions of the Mechanics of Fluid Turbulence; American Society of Civil Engineers: Reston, VI, USA, 1936; Volume 62, pp. 21–64. [Google Scholar]
- Fick, A. On Liquid Diffusion. J. Membr. Sci. 1995, 100, 33–38. [Google Scholar] [CrossRef]
- Kundu, S.; Ghoshal, K. A mathematical model for type II profile of concentration distribution in turbulent flows. Environ. Fluid Mech. 2017, 17, 449–472. [Google Scholar] [CrossRef]
- Greimann, B.P.; Holly, F.M., Jr. Two-phase flow analysis of concentration profiles. Hydraul. Eng. 2001, 127, 753–762. [Google Scholar] [CrossRef]
- Jha, S.K.; Bombardelli, F.A. Two-Phase Modelling of Turbulence in Dilute Sediment Laden Open-Channel Flow. Environ. Fluid Mech. 2009, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Ghoshal, K. Explicit formulation for suspended concentration distribution with near-bed particle deficiency. Powder Technol. 2013, 253, 429–437. [Google Scholar] [CrossRef]
- Jha, S.K.; Bombardelli, F.A. Toward two-phase flow modelling of nondilute sediment transport in open channels. J. Geophys. Res. 2010, 115, F3. [Google Scholar]
- Pu, J.H.; Wallwork, J.T.; Khan, M.A.; Pandey, M.; Pourhahbaz, H.; Satyanaga, A.; Hanmaiahgari, P.R.; Gough, T. Flood suspended sediment transport: Combined modelling from dilute to hyper-concentrated flow. Water 2021, 13, 379. [Google Scholar]
- Goree, J.C.; Keetels, G.H.; Munts, E.A.; Bugdayci, H.H.; Rhee, C.V. Concentration and velocit profiles of sediment-water mixtures using the drift flux model. Can. J. Chem. Eng. 2016, 94, 1048–1058. [Google Scholar]
- Toorman, E.A. Vertical Mixing in the Fully Developed Layer of Sediment-Laden Open-Channel Flow. J. Hydraul. Eng. 2008, 134, 1225–1235. [Google Scholar] [CrossRef]
- Moodie, A.J.; Nittrouer, J.A.; Ma, H.; Carlson, B.N.; Wang, Y.; Lamb, M.P.; Parker, G. Suspended-sediment induced stratification inferred from concentration and velocity profile measurements in the Yellow River, China. Water Resour. Res. 2019, e2020WR027192. [Google Scholar] [CrossRef]
- Salim, S.; Pattiaratchi, C.; Tinoco, R.O.; Jayaratne, R. Sediment resuspension due to near-bed turbulent effects: A deep sea case study on the northwest continental slope of Western Australia. J. Geophys. Res. Ocean. 2018, 123, 7102–7119. [Google Scholar] [CrossRef]
- Einstein, H.A. The Bed-Load Function for Sediment Transport in Open Channel Flows; Departmetn of Agriculture: Washington, DC, USA, 1950. [Google Scholar]
- Drew, D.A. Mathematical modelling of two-phase flow. Fluid Mech. 1983, 15, 261–291. [Google Scholar] [CrossRef]
- Ni, J.R.; Wang, G.Q.; Borthwick, A.G.L. Kinetic Theory for Particles in Dilute and Dense Solid-Liquid Flows. J. Hydraul. Eng. 2000, 126, 893–903. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, H.; Xu, D.; Hu, C.; Zhang, C. Verticle Concentration Profile of Nonuniform Sediment. Int. J. Sediment Res. 2021, 36, 120–126. [Google Scholar] [CrossRef]
- Soo, S.L. Fluid Dynamics of Multiphase Systems; Blaisdell Publishing Company: Waltham, MA, USA, 1967. [Google Scholar]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles Drops and Particles; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Van Nierop, E.A.; Luther, S.; Bluemink, J.J.; Magnaudet, J.; Prosperetti, A.; Lohse, D. Drag and Lift Force on Bubbles in a Rotating Flow. J. Fluid Mech. 2007, 571, 439–454. [Google Scholar] [CrossRef]
- Cheng, N.S. Comparison of formulas for drag coefficient and settling velocity of spherical particles. Powder Technol. 2009, 189, 395–398. [Google Scholar] [CrossRef]
- Pal, D.; Ghoshal, K. Hydrodynamic Interaction in Suspended Sediment Distribution of Open Chanel Turbulent Flow. Appl. Math. Model. 2017, 49, 630–646. [Google Scholar] [CrossRef]
- Liu, D.Y. Fluid Dynamics of Two-Phase Systems; Chinese Higher Education Press: Beijing, China, 1993. [Google Scholar]
- Hamil, L. Understanding Hydraulics; Palgrave MacMillan: London, UK, 2001. [Google Scholar]
- Jain, R.K.; Kothyari, U.C. Cohesion influences on erosion and bed load transport. Water Resour. Res. 2009, 45, 6. [Google Scholar] [CrossRef]
- Chanson, H. The Hydraulics of Open Channel Flow; Hodder Headline Group: London, UK, 1999. [Google Scholar]
- Kurose, R.; Komori, S. Drag and Lift Force on a Rotating Sphere in Linear Shear Flow. J. Fluid Mech. 1999, 384, 183–206. [Google Scholar] [CrossRef]
- Zhong, D.; Zhang, L.; Wu, B.; Wang, Y. Velocity Profile of Turbulent Sediment-Laden Flows in Open-Channels. Int. J. Sediment Res. 2015, 30, 285–296. [Google Scholar] [CrossRef]
- Wright, S.; Parker, G. Density Stratification Effects in Sand-Bed Rivers. J. Hydraul. Eng. 2004, 130, 783–795. [Google Scholar] [CrossRef]
- Liu, X.; Nayamatullah, M. Semianalytical solutions for one-dimensional unsteady nonequilibrium suspended transport in channels with arbitrary eddy viscosity distribution and realistic boundary conditions. J. Hydraul. Enigneering 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Cheng, N.S. Analysis of velocity lag in sediment-laden open channel flows. J. Hydraul. Eng. 2004, 130, 657–666. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Niu, X.; Li, M.; Chen, D.; Yu, X. A general two-phase turbulent flow model applied to the study of sediment transport in open channels. Int. J. Multiph. Flow 2011, 37, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, P.; Huang, G.P. The law of the wall in turbulent flow. Math. Phys. Sci. 1995, 451, 165–188. [Google Scholar]
- Tsai, C.W.; Huang, S.H. Modeling suspended sediment transport under influence of turbulence ejection and sweep events. Water Resour. Res. 2019, 55, 5379–5393. [Google Scholar] [CrossRef]
- Leckie, S.H.F.; Mohr, H.; Draper, S.; McLean, D.L.; White, D.J.; Cheng, L. Sedimentation-induced Burial os Subsea Pipelines: Observation from Field Data and Laboratory Experiments. Coast. Eng. 2016, 114, 137–158. [Google Scholar] [CrossRef]
- Isadinia, E.; Heidarpour, M.; Schleiss, A.J. Investigation of turbulence flow and sediment entrainment around bridge peir. Stoch. Environ. Res. Risk Assess. 2013, 27, 1303–1314. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N. Towards RANS Parameterized of Vertical Mixing by Langmuir Turbulence in Shallow Coastal Shelves; University of South Florida Scholar Commons: Sarasota, FL, USA, 2013. [Google Scholar]
- Kolmogorov, A.N. The Local Structure of Turbulence in Incomressible Viscious Fluids at Very Large Reynolds Numbers. Math. Phys. Sci. 1991, 434, 9–13. [Google Scholar]
- Baumert, H.Z.; Simpson, J.; Sundermann, J. Marine Turbulence: Theories, Observations and Models; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wang, Y.Y.; He, Q.; Liu, H. Variations of Near-Bed Suspended Sediment Concentration in South Passage of the Changjiang Estuary. J. Sediment Res. 2009, 6, 6–13. [Google Scholar]
- Stachurska, B.; Staroszczyk, R. Loboratory study of suspended sediment dynamics Over a mildly sloping sandy bed. Oceanologia 2019, 61, 350–367. [Google Scholar] [CrossRef]
- Li, G.; Gao, Z.; Li, Z.; Wang, J.; Derksen, J.J. Particle-Resolved PIV Experiments of Solid-Liquid Mixing in a Turbulent Stirred Tank. Am. Inst. Chem. Eng. J. 2017, 64, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, G. An Introduction to Fluid Mechanics; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Gavrilov, A.A.; Finnikov, K.A.; Ignatenko, Y.S.; Bocharov, O.B.; May, R. Drag and lift forces acting on a sphere in shear flow of power-law fluid. J. Eng. Thermophys. 2018, 27, 474–488. [Google Scholar] [CrossRef]
- Ali, S.Z.; Dey, S. Mechanics of Advection of Suspended Particles in Turbulent Flow; The Royal Society Publishing: Kharagpur, India, 2016. [Google Scholar]
- Cui, H.; Singh, V.P. Suspended sediment concentration in open channel using tsallis entropy. J. Hydraul. Eng. 2014, 19, 966–977. [Google Scholar] [CrossRef]
- Bose, S.K.; Dey, S. Curvilinear Flow Profiles Based on Reynolds Averaging. J. Hydraul. Eng. 2007, 133, 1074–1079. [Google Scholar] [CrossRef]
- Kundu, S. Suspension concentration distribution in turbulent flows: An analytical study using fractional advection-diffusion equation. Phys. A Stat. Mech. Its Appl. 2017, 506, 135–155. [Google Scholar] [CrossRef]
- Marcou, O.; Chopard, B.; Yacoubi, S.E.; Hamroun, B.; Lefevre, L.; Mendes, E. A Lattice Boltzmann Model to Study Sedimentation Phenomena in Irrigation Chanals. Commun. Comput. Phys. 2013, 13, 880–899. [Google Scholar] [CrossRef]
- Dolanský, J.; Chára, Z.; Vlasák, P.; Kysela, B. Lattice Boltzmann Method used to Simulate Particle Motion in a Conduit. J. Hydrol. Hydromech. 2017, 65, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Si, P.; Dong, P.; Yu, X. A Two-Phase SPH Model for Massive Sediment Motion in Free Surface Flows. Adv. Water Resour. 2019, 129, 80–98. [Google Scholar] [CrossRef]
- Fourtakas, G.; Rogers, B.D. Modelling Multi-Phase Liquid-Sediment Scour and Resuspension Induced by Rapid Flows Using Smoothed Particle Hydrodynamics (SPH). Accel. Graph. Process. Unit (GPU) Adv. Water Resour. 2016, 92, 186–199. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallwork, J.T.; Pu, J.H.; Kundu, S.; Hanmaiahgari, P.R.; Pandey, M.; Satyanaga, A.; Khan, M.A.; Wood, A. Review of Suspended Sediment Transport Mathematical Modelling Studies. Fluids 2022, 7, 23. https://doi.org/10.3390/fluids7010023
Wallwork JT, Pu JH, Kundu S, Hanmaiahgari PR, Pandey M, Satyanaga A, Khan MA, Wood A. Review of Suspended Sediment Transport Mathematical Modelling Studies. Fluids. 2022; 7(1):23. https://doi.org/10.3390/fluids7010023
Chicago/Turabian StyleWallwork, Joseph T., Jaan H. Pu, Snehasis Kundu, Prashanth R. Hanmaiahgari, Manish Pandey, Alfrendo Satyanaga, Md. Amir Khan, and Alastair Wood. 2022. "Review of Suspended Sediment Transport Mathematical Modelling Studies" Fluids 7, no. 1: 23. https://doi.org/10.3390/fluids7010023
APA StyleWallwork, J. T., Pu, J. H., Kundu, S., Hanmaiahgari, P. R., Pandey, M., Satyanaga, A., Khan, M. A., & Wood, A. (2022). Review of Suspended Sediment Transport Mathematical Modelling Studies. Fluids, 7(1), 23. https://doi.org/10.3390/fluids7010023