Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory
Abstract
:1. Introduction
2. Applications of the Dynamic Contact Line
2.1. Coating and Printing
2.2. Healthcare
3. Molecular Kinetic Theory
4. Hydrodynamics Theory
5. Molecular Kinetic Theory: Advantages and Limitations
6. Hydrodynamics Theory: Advantages and Limitations
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, W.; Weinan, E. Contact Line Dynamics on Heterogeneous Surfaces. Phys. Fluids 2011, 23, 072103. [Google Scholar] [CrossRef]
- Eggers, J.; Stone, H.A. Characteristic Lengths at Moving Contact Lines for a Perfectly Wetting Fluid: The Influence of Speed on The Dynamic Contact Angle. J. Fluid Mech. 2004, 505, 309–321. [Google Scholar] [CrossRef]
- Diaz, M.E.; Cerro, R.L. A General Solution of Dewetting Flow with a Moving Contact Line. Phys. Fluids 2021, 33, 103601. [Google Scholar] [CrossRef]
- Dodds, S.; Carvalho, M.D.S.; Kumar, S. Stretching and Slipping of Liquid Bridges Near Plates and Cavities. Phys. Fluids 2009, 21, 092103. [Google Scholar] [CrossRef]
- Dodds, S.; Carvalho, M.; Kumar, S. Stretching Liquid Bridges with Moving Contact Lines: The Role of Inertia. Phys. Fluids 2011, 23, 092101. [Google Scholar] [CrossRef]
- Dodds, S.; Carvalho, M.S.; Kumar, S. The Dynamics of Three-Dimensional Liquid Bridges with Pinned and Moving Contact Lines. J. Fluid Mech. 2012, 707, 521–540. [Google Scholar] [CrossRef]
- Ghosh, A.; Bandyopadhyay, D.; Sharma, A. Micro-Patterning of Coatings on A Fiber Surface Exploiting the Contact Instabilities of Thin Viscoelastic Films. Phys. Fluids 2018, 30, 114101. [Google Scholar] [CrossRef]
- Harikrishnan, A.R.; Dhar, P.; Agnihotri, P.K.; Gedupudi, S.; Das, S.K. Correlating Contact Line Capillarity and Dynamic Contact Angle Hysteresis in Surfactant-Nanoparticle Based Complex Fluids. Phys. Fluids 2018, 30, 042006. [Google Scholar] [CrossRef]
- Kumar, S. Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines. Annu. Rev. Fluid Mech. 2015, 47, 67–94. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Vandre, E.; Carvalho, M.S.; Kumar, S. Dynamic Wetting Failure and Hydrodynamic Assist in Curtain Coating. J. Fluid Mech. 2016, 808, 290–315. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Vandre, E.; Carvalho, M.S.; Kumar, S. Dynamic wetting failure in surfactant solutions. J. Fluid Mech. 2016, 789, 285–309. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Carvalho, M.S.; Kumar, S. Mechanisms of Dynamic Wetting Failure in the Presence of Soluble Surfactants. J. Fluid Mech. 2017, 825, 677–703. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Carvalho, M.S.; Kumar, S. Dynamic Wetting Failure in Curtain Coating: Comparison of Model Predictions and Experimental Observations. Chem. Eng. Sci. 2018, 195, 74–82. [Google Scholar] [CrossRef]
- Liu, M.; Chen, X.-P. Numerical Study on the Stick-Slip Motion of Contact Line Moving on Heterogeneous Surfaces. Phys. Fluids 2017, 29, 082102. [Google Scholar] [CrossRef]
- Ding, H.; Spelt, P.D.M. Inertial Effects in Droplet Spreading: A Comparison Between Diffuse-Interface and Level-Set Simulations. J. Fluid Mech. 2007, 576, 287–296. [Google Scholar] [CrossRef]
- Biance, A.-L.; Clanet, C.; Quéré, D. First Steps in the Spreading of a Liquid Droplet. Phys. Rev. E 2004, 69, 016301. [Google Scholar] [CrossRef]
- Foister, R.T. The Kinetics of Displacement Wetting in Liquid/Liquid/Solid Systems. J. Colloid Interface Sci. 1990, 136, 266–282. [Google Scholar] [CrossRef]
- Spelt, P.D. A level-Set Approach for Simulations of Flows with Multiple Moving Contact Lines with Hysteresis. J. Comput. Phys. 2005, 207, 389–404. [Google Scholar] [CrossRef]
- Wang, H. From Contact Line Structures to Wetting Dynamics. Langmuir 2019, 35, 10233–10245. [Google Scholar] [CrossRef]
- Popescu, M.N.; Oshanin, G.; Dietrich, S.; Cazabat, A.-M. Precursor Films in Wetting Phenomena. J. Phys. Condens. Matter 2012, 24, 243102. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.; Kumar, S. Imbibition and Evaporation of Droplets of Colloidal Suspensions on Permeable Substrates. Phys. Rev. Fluids 2019, 4, 034004. [Google Scholar] [CrossRef]
- Charitatos, V.; Kumar, S. A Thin-Film Model for Droplet Spreading on Soft Solid Substrates. Soft Matter 2020, 16, 8284–8298. [Google Scholar] [CrossRef]
- Raske, N.; Hewson, R.W.; Kapur, N.; De Boer, G. A Predictive Model for Discrete Cell Gravure Roll Coating. Phys. Fluids 2017, 29, 062101. [Google Scholar] [CrossRef]
- Karim, A.M.; Suszynski, W.J.; Griffith, W.B.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Effect of Viscoelasticity on Stability of Liquid Curtain. J. Non-Newton. Fluid Mech. 2018, 257, 83–94. [Google Scholar] [CrossRef]
- Karim, A.M.; Suszynski, W.J.; Griffith, W.B.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Effect of Rheological Properties of Shear Thinning Liquids on Curtain Stability. J. Non-Newton. Fluid Mech. 2018, 263, 69–76. [Google Scholar] [CrossRef]
- Karim, A.M.; Suszynski, W.J.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Delaying Breakup and Avoiding Air Entrainment in Curtain Coating Using a Two-Layer Liquid Structure. Chem. Eng. Sci. 2019, 213, 115376. [Google Scholar] [CrossRef]
- Karim, A.M. Experimental Dynamics of Newtonian and Non-Newtonian Droplets Impacting Liquid Surface with Different Rheology. Phys. Fluids 2020, 32, 043102. [Google Scholar] [CrossRef]
- Karim, A.M.; Suszynski, W.J.; Pujari, S.; Francis, L.F.; Carvalho, M.S. Contact Line Dynamics in Curtain Coating of Non-Newtonian Liquids. Phys. Fluids 2021, 33, 103103. [Google Scholar] [CrossRef]
- Karim, A.M.; Suszynski, W.J.; Pujari, S. Liquid Film Stability and Contact Line Dynamics of Emulsion Liquid Films in Curtain Coating Process. J. Coat. Technol. Res. 2021, 18, 1531–1541. [Google Scholar] [CrossRef]
- Mohammad Karim, A.; Pujari, S.; Suszynski, W.J.; Francis, L.F.; Carvalho, M.S.; Yadav, V. Methods for Curtain Coating Substrates. U.S. Patent No: 11,369,988 B2, 28 June 2022. [Google Scholar]
- Mohammad Karim, A.; Pujari, S.; Suszynski, W.J.; Francis, L.F.; Carvalho, M.S.; Yadav, V. Methods for Curtain Coating Substrates. Application Publication No: WO 2019/190623 A1, 3 October 2019. [Google Scholar]
- Omori, T.; Kajishima, T. Apparent and Microscopic Dynamic Contact Angles in Confined Flows. Phys. Fluids 2017, 29, 112107. [Google Scholar] [CrossRef] [Green Version]
- Patil, N.D.; Shaikh, J.; Sharma, A.; Bhardwaj, R. Droplet Impact Dynamics Over a Range of Capillary Numbers and Surface Wettability: Assessment of Moving Contact Line Models and Energy Budget Analysis. Phys. Fluids 2022, 34, 052119. [Google Scholar] [CrossRef]
- Peschka, D. Variational Approach to Dynamic Contact Angles for Thin Films. Phys. Fluids 2018, 30, 082115. [Google Scholar] [CrossRef]
- Park, J.; Kumar, S. Droplet Sliding on an Inclined Substrate with a Topographical Defect. Langmuir 2017, 33, 7352–7363. [Google Scholar] [CrossRef]
- Vandre, E.; Carvalho, M.S.; Kumar, S. Delaying the Onset of Dynamic Wetting Failure through Meniscus Confinement. J. Fluid Mech. 2012, 707, 496–520. [Google Scholar] [CrossRef]
- Vandre, E.; Carvalho, M.S.; Kumar, S. On the Mechanism of Wetting Failure during Fluid Displacement along a Moving Substrate. Phys. Fluids 2013, 25, 102103. [Google Scholar] [CrossRef]
- Vandre, E.; Carvalho, M.S.; Kumar, S. Characteristics of Air Entrainment during Dynamic Wetting Failure along a Planar Substrate. J. Fluid Mech. 2014, 747, 119–140. [Google Scholar] [CrossRef]
- Xia, Y.; Qin, J. Dynamics of Moving Contact Line on a Transversely Patterned Inclined Surface. Phys. Fluids 2020, 32, 042101. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X. Theoretical Analysis for Dynamic Contact Angle Hysteresis on Chemically Patterned Surfaces. Phys. Fluids 2020, 32, 112102. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Borg, M.K.; Reese, J.; Wen, D. A Critical Assessment of the Line Tension Determined by the Modified Young’s Equation. Phys. Fluids 2018, 30, 082003. [Google Scholar] [CrossRef]
- Zheng, W.; Wen, B.; Sun, C.; Bai, B. Effects of Surface Wettability on Contact Line Motion in Liquid–Liquid Displacement. Phys. Fluids 2021, 33, 082101. [Google Scholar] [CrossRef]
- Bergeron, V.; Bonn, D.; Martin, J.Y.; Vovelle, L. Controlling Droplet Deposition with Polymer Additives. Nature 2000, 405, 772–775. [Google Scholar] [CrossRef]
- Sansom, M.S.; Biggin, P.C. Water at the Nanoscale. Nature 2001, 414, 157–159. [Google Scholar] [CrossRef]
- Xu, J.; Yan, X.; Liu, G.; Xie, J. The Critical Nanofluid Concentration as the Crossover between Changed and Unchanged Solar-Driven Droplet Evaporation Rates. Nano Energy 2019, 57, 791–803. [Google Scholar] [CrossRef]
- Wang, H.; Garimella, S.V.; Murthy, J.Y. Characteristics of an Evaporating Thin Film in a Microchannel. Int. J. Heat Mass Transf. 2007, 50, 3933–3942. [Google Scholar] [CrossRef]
- Wang, X.D.; Lee, D.J.; Peng, A.X.F.; Lai, J.Y. Spreading Dynamics and Dynamic Contact Angle of Non-Newtonian Fluids. Langmuir 2007, 23, 8042–8047. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhang, Y.; Lee, D.J.; Peng, X.F. Spreading of Completely Wetting or Partially Wetting Power-Law Fluid on Solid Surface. Langmuir 2007, 23, 9258–9262. [Google Scholar] [CrossRef]
- Raghupathi, P.A.; Kandlikar, S.G. Contact Line Region Heat Transfer Mechanisms for an Evaporating Interface. Int. J. Heat Mass Transf. 2016, 95, 296–306. [Google Scholar] [CrossRef]
- Lu, G.; Wang, X.D.; Duan, Y.Y. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids. Adv. Colloid Interface Sci. 2016, 236, 43–62. [Google Scholar] [CrossRef]
- Sui, Y.; Ding, H.; Spelt, P.D. Numerical Simulations of Flows with Moving Contact Lines. Annu. Rev. Fluid Mech. 2014, 46, 97–119. [Google Scholar] [CrossRef]
- Abe, Y.; Zhang, B.; Gordillo, L.; Mohammad Karim, A.; Francis, L.F.; Cheng, X. Dynamic Self-Assembly of Charged Colloidal Strings and Walls in Simple Fluid Flows. Soft Matter 2017, 13, 1681–1692. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.M.; Suszynski, W.J.; Francis, L.F.; Carvalho, M.S. Effect of Viscosity on Liquid Curtain Stability. AIChE J. 2017, 64, 1448–1457. [Google Scholar] [CrossRef]
- Dwivedi, R.K.; Jain, V.; Muralidhar, K. Dynamic Contact Angle Model for Resolving Low-Viscosity Droplet Oscillations During Spreading Over a Surface with Varying Wettability. Phys. Rev. Fluids 2022, 7, 034002. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kavehpour, H.P.; Rothstein, J.P. Dynamic Contact Angle Measurements on Superhydrophobic Surfaces. Phys. Fluids 2015, 27, 032107. [Google Scholar] [CrossRef]
- Fernández-Toledano, J.C.; Blake, T.D.; De Coninck, J. Taking a Closer Look: A Molecular-Dynamics Investigation of Microscopic and Apparent Dynamic Contact Angles. J. Colloid Interface Sci. 2021, 587, 311–323. [Google Scholar] [CrossRef]
- Qian, T.; Wang, X.-P.; Sheng, P. Molecular Scale Contact Line Hydrodynamics of Immiscible Flows. Phys. Rev. E 2003, 68, 016306. [Google Scholar] [CrossRef]
- Wang, X.-P.; Qian, T.; Sheng, P. Moving Contact Line on Chemically Patterned Surfaces. J. Fluid Mech. 2008, 605, 59–78. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Xu, X. Analysis of the Cahn–Hilliard Equation with a Relaxation Boundary Condition Modeling the Contact Angle Dynamics. Arch. Ration. Mech. Anal. 2014, 213, 1–24. [Google Scholar] [CrossRef]
- Savva, N.; Kalliadasis, S. Dynamics of Moving Contact Lines: A Comparison between Slip and Precursor Film Models. Eur. Lett. 2011, 94, 64004. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Ramachandran, R. Geometric Interpretation of Surface Tension Equilibrium in Superhydrophobic Systems. Entropy 2015, 17, 4684–4700. [Google Scholar] [CrossRef]
- Nikolayev, V.S. Evaporation Effect on the Contact Angle and Contact Line Dynamics. In The Surface Wettability Effect on Phase Change; Marengo, M., De Coninck, J., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Young, T. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Shikhmurzaev, Y. The Moving Contact Line on a Smooth Solid Surface. Int. J. Multiph. Flow 1993, 19, 589–610. [Google Scholar] [CrossRef]
- Shikhmurzaev, Y.D. Mathematical Modeling of Wetting Hydrodynamics. Fluid Dyn. Res. 1994, 13, 45–64. [Google Scholar] [CrossRef]
- Shikhmurzaev, Y.D. Moving Contact Lines in Liquid/Liquid/Solid Systems. J. Fluid Mech. 1997, 334, 211–249. [Google Scholar] [CrossRef]
- De Ruijter, M.J.; De Coninck, J.; Blake, T.D.; Clarke, A.A.; Rankin, A. Contact Angle Relaxation during the Spreading of Partially Wetting Drops. Langmuir 1997, 13, 7293–7298. [Google Scholar] [CrossRef]
- Blake, T.D. The Physics of Moving Wetting Lines. J. Colloid Interface Sci. 2006, 299, 1–13. [Google Scholar] [CrossRef]
- Cox, R.G. The Dynamics of the Spreading of Liquids on a Solid Surface. Part 1. Viscous Flow. J. Fluid Mech. 1986, 168, 169–194. [Google Scholar] [CrossRef]
- Huh, C.; Scriven, J.L.E. Hydrodynamic Model of Steady Movement of a Solid/Liquid/Fluid Contact Line. J. Colloid Interface Sci. 1971, 35, 85–101. [Google Scholar] [CrossRef]
- Voinov, O.V. Hydrodynamics of Wetting. Izv. Akad. Nauk. SSSR Mekhanika Zhidkosti I Gaza 1976, 5, 714–721. [Google Scholar] [CrossRef]
- De Gennes, P.G. Deposition of Langmuir-Blodgett Layers. Colloid Polym. Sci. 1986, 264, 463–465. [Google Scholar] [CrossRef]
- Butt, H.; Liu, J.; Koynov, K.; Straub, B.; Hinduja, C.; Roismann, I.; Berger, R.; Li, X.; Vollmer, D.; Steffen, W.; et al. Contact Angle Hysteresis. Curr. Opin. Colloid Interface Sci. 2022, 59, 101574. [Google Scholar] [CrossRef]
- Bartell, F.E.; Wooley, A.D. Solid-Liquid-Air Contact Angles and Their Dependence upon the Surface Condition of the Solid. J. Am. Chem. Soc. 1933, 55, 3518–3527. [Google Scholar] [CrossRef]
- Schäffer, E.; Wong, P.-Z. Contact Line Dynamics Near the Pinning Threshold: A Capillary Rise and Fall Experiment. Phys. Rev. E 2000, 61, 5257–5277. [Google Scholar] [CrossRef]
- Johnson, R.E.; Dettre, R.H. Wettability and Contact Angles. In Surface and Colloid Science; Matijevic, E., Ed.; Wiley-Interscience: New York, NY, USA, 1969; pp. 85–153. [Google Scholar]
- Wang, J.-H.; Claesson, P.M.; Parker, J.L.; Yasuda, H. Dynamic Contact Angles and Contact Angle Hysteresis of Plasma Polymers. Langmuir 1994, 10, 3887–3897. [Google Scholar] [CrossRef]
- Vega, M.J.; Gouttiere, C.; Seveno, D.; Blake, T.D.; Voue, M.; de Coninck, J. Experimental Investigation of the Link Be-Tween Static and Dynamic Wetting by Forced Wetting of Nylon Filament. Langmuir 2007, 23, 10628–10634. [Google Scholar] [CrossRef]
- Karim, A.M.; Kavehpour, H.P. Effect of Viscous Force on Dynamic Contact Angle Measurement Using Wilhelmy Plate Method. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 548, 54–60. [Google Scholar] [CrossRef]
- Bartell, F.E.; Shepard, J.W. The Effect of Surface Roughness on Apparent Contact Angles and on Contact Angle Hysteresis. I. The System Paraffin−Water−Air. J. Phys. Chem. 1953, 57, 211–215. [Google Scholar] [CrossRef]
- Eick, J.; Good, R.; Neumann, A. Thermodynamics of Contact Angles. II. Rough Solid Surfaces. J. Colloid Interface Sci. 1975, 53, 235–248. [Google Scholar] [CrossRef]
- Oliver, J.F.; Mason, S.G. Liquid Spreading on Rough Metal Surfaces. J. Mater. Sci. 1980, 15, 431–437. [Google Scholar] [CrossRef]
- Good, R.J.A. Thermodynamic Derivation of Wenzel’s Modification of Young’s Equation for Contact Angles, Together with a Theory of Hysteresis. J. Am. Chem. Soc. 1952, 74, 5041–5042. [Google Scholar] [CrossRef]
- Neumann, A.; Good, R. Thermodynamics of Contact Angles. I. Heterogeneous Solid Surfaces. J. Colloid Interface Sci. 1972, 38, 341–358. [Google Scholar] [CrossRef]
- Schwartz, L.W.; Garoff, S. Contact Angle Hysteresis on Heterogeneous surfaces. Langmuir 1985, 1, 219–230. [Google Scholar] [CrossRef]
- Marmur, A. Contact Angle Hysteresis on Heterogeneous Smooth Surfaces. J. Colloid Interface Sci. 1994, 168, 40–46. [Google Scholar] [CrossRef]
- Decker, E.L.; Garoff, S. Contact Line Structure and Dynamics on Surfaces with Contact Angle Hysteresis. Langmuir 1997, 13, 6321–6332. [Google Scholar] [CrossRef]
- Brandon, S.; Marmur, A. Simulation of Contact Angle Hysteresis on Chemically Heterogeneous Surfaces. J. Colloid Interface Sci. 1996, 183, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.; Zhou, C.; Feng, J.J. Sharp-Interface Limit of the Cahn–Hilliard Model for Moving Contact Lines. J. Fluid Mech. 2010, 645, 279–294. [Google Scholar] [CrossRef]
- Yue, P.; Zhou, C.; Feng, J.J.; Ollivier-Gooch, C.F.; Hu, H.H. Phase-Field Simulations of Interfacial Dynamics in Viscoelastic Fluids Using Finite Elements with Adaptive Meshing. J. Comput. Phys. 2006, 219, 47–67. [Google Scholar] [CrossRef]
- Shanahan, M.E.R. Simple Theory of “Stick-Slip” Wetting Hysteresis. Langmuir 1995, 11, 1041–1043. [Google Scholar] [CrossRef]
- Kalinin, Y.V.; Berejnov, V.; Thorne, R.E. Contact Line Pinning by Microfabricated Patterns: Effects of Microscale topography. Langmuir 2009, 25, 5391–5397. [Google Scholar] [CrossRef]
- Dussan, V.E.B. On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines. Annu. Rev. Fluid Mech. 1979, 11, 371–400. [Google Scholar] [CrossRef]
- Van Der Waals, J.D. The Thermodynamic Theory of Capillarity under the Hypothesis of a Continuous Variation of Density. J. Stat. Phys. 1979, 20, 200–244. [Google Scholar] [CrossRef]
- Blake, T.D.; Berg, J.C. Wettability: Dynamic Contact Angles and Wetting Kinetics; Marcel Dekker: New York, NY, USA, 1993; Volume 49, pp. 251–309. [Google Scholar]
- Blake, T.; Shikhmurzaev, Y. Dynamic Wetting by Liquids of Different Viscosity. J. Colloid Interface Sci. 2002, 253, 196–202. [Google Scholar] [CrossRef]
- Blake, T.D.; Bracke, M.; Shikhmurzaev, Y.D. Experimental Evidence of Non-Local Hydrodynamic Influence on the Dynamic Contact Angle. Phys. Fluids 1999, 11, 1995. [Google Scholar] [CrossRef]
- Cahn, J.W. Critical Point Wetting. J. Chem. Phys. 1977, 66, 3667–3672. [Google Scholar] [CrossRef]
- Jacqmin, D. Contact-Line Dynamics of a Diffuse Fluid Interface. J. Fluid Mech. 2000, 402, 57–88. [Google Scholar] [CrossRef]
- Cahn, J.W.; Hilliard, J.E. Free Energy of a Non-Uniform System. Part I. Interfacial Free Energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- Blake, T.D.; Haynes, J.M. Kinetics of Liquid/Liquid Displacement. J. Colloid Interf. Sci. 1969, 30, 421–423. [Google Scholar] [CrossRef]
- Prevost, A.; Rolley, E.; Guthmann, C. Thermally Activated Motion of the Contact Line of a Liquid 4 He Meniscus on a Cesium Substrate. Phys. Rev. Lett. 1999, 83, 348–351. [Google Scholar] [CrossRef]
- Huh, C.; Mason, S.G. The Steady Movement of a Liquid Meniscus in a Capillary Tube. J. Fluid Mech. 1977, 81, 401–419. [Google Scholar] [CrossRef]
- Dussan, V.E.B. The Moving Contact Line: The Slip Boundary Condition. J. Fluid Mech. 1976, 77, 665–684. [Google Scholar] [CrossRef]
- Ngan, C.G.; Dussan, V.E.B. On the Dynamics of Liquid Spreading on Solid Surfaces. J. Fluid Mech. 1989, 209, 191–226. [Google Scholar] [CrossRef]
- Hoffman, R.L. A Study of the Advancing Interface. I. Interface Shape in Liquid—Gas Systems. J. Colloid Interface Sci. 1975, 50, 228–241. [Google Scholar] [CrossRef]
- Tanner, L.H. The Spreading of Silicone Oil Drops on Horizontal Surfaces. J. Phys. D Appl. Phys. 1979, 12, 1473–1484. [Google Scholar] [CrossRef]
- Hocking, L.M. A Moving Fluid Interface. Part 2. The Removal of the Force Singularity by A Slip Flow. J. Fluid Mech. 1977, 79, 209–229. [Google Scholar] [CrossRef]
- Petrov, P.G.; Petrov, J.G. A Combined Molecular-Hydrodynamic Approach to Wetting Kinetics. Langmuir 1992, 8, 1762–1767. [Google Scholar] [CrossRef]
- Brochard-Wyart, F.; de Gennes, P. Dynamics of Partial Wetting. Adv. Colloid Interface Sci. 1992, 39, 1–11. [Google Scholar] [CrossRef]
- De Ruijter, M.J.; De Coninck, J.; Oshanin, G. Droplet Spreading: Partial Wetting Regime Revisited. Langmuir 1999, 15, 2209–2216. [Google Scholar] [CrossRef]
- Blake, T.D.; Ruschak, K.J. Liquid Film Coating; Schweizer, P.M., Kistler, S.F., Eds.; Chapman & Hall: London, UK, 1997; Volume 63. [Google Scholar]
- Petrov, J.G.; Ralston, J.; Schneemilch, A.M.; Hayes, R.A. Dynamics of Partial Wetting and Dewetting in Well-Defined Systems. J. Phys. Chem. B 2003, 107, 1634–1645. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, Y.-P. Precursor Film in Dynamic Wetting, Electrowetting, and Electro-Elasto-Capillarity. Phys. Rev. Lett. 2010, 104, 246101. [Google Scholar] [CrossRef]
- Hardy, W.B., III. The Spreading of Fluids on Glass. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1919, 38, 49–55. [Google Scholar] [CrossRef]
- Espín, L.; Kumar, S. Sagging of Evaporating Droplets of Colloidal Suspensions on Inclined Substrates. Langmuir 2014, 30, 11966–11974. [Google Scholar] [CrossRef]
- Karapetsas, G.; Sahu, K.C.; Matar, O.K. Evaporation of Sessile Droplets Laden with Particles and Insoluble Surfactants. Langmuir 2016, 32, 6871–6881. [Google Scholar] [CrossRef]
- Maki, K.L.; Kumar, S. Fast Evaporation of Spreading Droplets of Colloidal Suspensions. Langmuir 2011, 27, 11347–11363. [Google Scholar] [CrossRef]
- Wray, A.W.; Papageorgiou, D.T.; Craster, R.V.; Sefiane, K.; Matar, O.K. Electrostatic Suppression of the Coffee Stain Effect. Langmuir 2014, 30, 5849–5858. [Google Scholar] [CrossRef]
- Charitatos, V.; Kumar, S. Droplet Evaporation on Soft Solid Substrates. Soft Matter 2021, 17, 9339–9352. [Google Scholar] [CrossRef]
- Derjaguin, B.; Churaev, N. Structural Component of Disjoining Pressure. J. Colloid Interface Sci. 1974, 49, 249–255. [Google Scholar] [CrossRef]
- Karim, A.M. A Review of Physics of Moving Contact Line Dynamics Models and Its Applications in Interfacial Science. J. Appl. Phys. 2022, 132, 080701. [Google Scholar] [CrossRef]
- Afkhami, S. Challenges of Numerical Simulation of Dynamic Wetting Phenomena: A Review. Curr. Opin. Colloid Interface Sci. 2022, 57, 101523. [Google Scholar] [CrossRef]
- Zhao, Y. Moving Contact Line Problem: Advances and Perspectives. Theor. Appl. Mech. Lett. 2014, 4, 034002. [Google Scholar] [CrossRef]
- Soltman, D.; Smith, B.; Kang, H.; Morris, S.J.S.; Subramanian, V. Methodology for Inkjet Printing of Partially Wetting Films. Langmuir 2010, 26, 15686–15693. [Google Scholar] [CrossRef]
- Tarasevich, Y.Y.; Pravoslavnova, D.M. Segregation in Desiccated Sessile Drops of Biological Fluids. Eur. Phys. J. E 2007, 22, 311–314. [Google Scholar] [CrossRef]
- Karim, A.M. Experimental Dynamics of Newtonian Non-Elastic and Viscoelastic Droplets Impacting Immiscible Liquid Surface. AIP Adv. 2019, 9, 125141. [Google Scholar] [CrossRef]
- Backholm, M.; Molpeceres, D.; Vuckovac, M.; Nurmi, H.; Hokkanen, M.J.; Jokinen, V.; Timonen, J.V.I.; Ras, R.H.A. Water droplet friction and rolling dynamics on superhydrophobic surfaces. Commun. Mater. 2020, 1, 64. [Google Scholar] [CrossRef]
- De Coninck, J. An Introduction to Wettability and Wetting Phenomena. In The Surface Wettability Effect on Phase Change; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Mugele, F.; Baret, J.-C. Electrowetting: From Basics to Applications. J. Phys. Condens. Matter 2005, 17, R705–R774. [Google Scholar] [CrossRef]
- Jarosz, J.; Molliex, N.; Chenon, G.; Berge, B. Adaptive Eyeglasses for Presbyopia Correction: An Original Variable-Focus Technology. Opt. Express 2019, 27, 10533–10552. [Google Scholar] [CrossRef] [PubMed]
- Modak, C.D.; Kumar, A.; Tripathy, A.; Sen, P. Drop Impact Printing. Nat. Commun. 2020, 11, 4327. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Gawande, S.; Bromberg, V.; Sun, Y. Effects of Particle Size and Substrate Surface Properties on Deposition Dynamics of Inkjet-Printed Colloidal Drops for Printable Photovoltaics Fabrication. J. Sol. Energy Eng. 2010, 132, 021010. [Google Scholar] [CrossRef]
- Joshi, A.S.; Sun, Y. Numerical Simulation of Colloidal Drop Deposition Dynamics on Patterned Substrates for Printable Electronics Fabrication. J. Disp. Technol. 2010, 6, 579–585. [Google Scholar] [CrossRef]
- Chhasatia, V.H.; Joshi, A.S.; Sun, Y. Effect of Relative Humidity on Contact Angle and Particle Deposition Morphology of An Evaporating Colloidal Drop. Appl. Phys. Lett. 2010, 97, 231909. [Google Scholar] [CrossRef]
- Bigioni, T.P.; Lin, X.-M.; Nguyen, T.; Corwin, E.I.; Witten, T.A.; Jaeger, H.M. Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers. Nat. Mater. 2006, 5, 265–270. [Google Scholar] [CrossRef]
- Sobac, B.; Brutin, D. Structural and Evaporative Evolutions in Desiccating Sessile Drops of Blood. Phys. Rev. E 2011, 84, 011603. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, E.; Eynde, J.J.V.; Petit, A.; Conti, J.; De Coninck, J. Designing a High Performance, Stable Spectroscopic Biosensor for the Binding of Large and Small Molecules. J. Colloid Interface Sci. 2017, 508, 443–454. [Google Scholar] [CrossRef]
- Yao, M.; Tijing, L.D.; Naidu, G.; Kim, S.-H.; Matsuyama, H.; Fane, A.G.; Shon, H.K. A Review of Membrane Wettability for the Treatment of Saline Water Deploying Membrane Distillation. Desalination 2020, 479, 114312. [Google Scholar] [CrossRef]
- Melayil, K.R.; Mitra, S.K. Wetting, Adhesion, and Droplet Impact on Face Masks. Langmuir 2021, 37, 2810–2815. [Google Scholar] [CrossRef]
- Sharma, S.; Pinto, R.; Saha, A.; Chaudhuri, S.; Basu, S. Video: On Secondary Atomization and Blockage of Surrogate Cough Droplets in Single and Multi-Layer Face Masks. Sci. Adv. 2020, 7, eabf0452. [Google Scholar] [CrossRef]
- Liao, M.; Liu, H.; Wang, X.; Hu, X.; Huang, Y.; Liu, X.; Brenan, K.; Mecha, J.; Nirmalan, M.; Lu, J.R. A Technical Review of Face Mask Wearing in Preventing Respiratory COVID-19 Transmission. Curr. Opin. Colloid Interface Sci. 2021, 52, 101417. [Google Scholar] [CrossRef]
- Montessori, A.; Lauricella, M.; Tiribocchi, A. Computational Droplets: Where We Stand and How Far We Can Go. Eur. Lett. 2022, 138, 67001. [Google Scholar] [CrossRef]
- Powell, R.E.; Roseveare, W.E.; Eyring, H. The Theory of Rate Processes. Ind. Eng. Chem. 1941, 33, 430. [Google Scholar] [CrossRef]
- Niavarani, A.; Priezjev, N. The Effective Slip Length and Vortex Formation in Laminar Flow over a Rough Surface. Phys. Fluids 2009, 21, 052105. [Google Scholar] [CrossRef]
- Niavarani, A.; Priezjev, N. Modeling the Combined Effect of Surface Roughness and Shear Rate on Slip Flow of Simple Fluids. Phys. Rev. E 2010, 81, 011606. [Google Scholar] [CrossRef]
- Xiaodong, W.; Xiaofeng, P.; Yuanyuan, D.; Buxuan, W. Dynamics of Spreading of Liquid on Solid Surface. Chin. J. Chem. Eng. 2007, 15, 730–737. [Google Scholar] [CrossRef]
- Cazabat, A.-M. How Does a Droplet Spread? Contemp. Phys. 1987, 28, 347–364. [Google Scholar] [CrossRef]
- Roques-Carmes, T.; Mathieu, V.; Gigante, A. Experimental Contribution to the Understanding of the Dynamics of Spreading of Newtonian Fluids: Effect of Volume, Viscosity and Surfactant. J. Colloid Interface Sci. 2010, 344, 180–197. [Google Scholar] [CrossRef]
- Eddi, A.; Winkels, K.G.; Snoeijer, J.H. Short time dynamics of viscous drop spreading. Phys. Fluids 2013, 25, 013102. [Google Scholar] [CrossRef]
- Legendre, D.; Maglio, M. Numerical Simulation of Spreading Drops. Colloids Surf. A Physicochem. Eng. Asp. 2013, 432, 29–37. [Google Scholar] [CrossRef]
- Zeid, W.B.; Brutin, D. Beyond Tanner’s Law: Role of Contact Line Evaporation on the Spreading of Viscous Droplet. Interfacial Phenom. Heat Transf. 2015, 3, 221–229. [Google Scholar] [CrossRef]
- Blake, T.D.; Dobson, R.A.; Ruschak, K.J. Wetting at High Capillary Numbers. J. Colloid Interface Sci. 2004, 279, 198–205. [Google Scholar] [CrossRef]
- Sedev, R. The Molecular-Kinetic Approach to Wetting Dynamics: Achievements and Limitations. Adv. Colloid Interface Sci. 2015, 222, 661–669. [Google Scholar] [CrossRef]
- Mohammad Karim, A. Parametric Study of Liquid Contact Line Dynamics: Adhesion vs. Hydrodynamics. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2015. [Google Scholar]
- Karim, A.M.; Kavehpour, H.P. Dynamics of Spreading on Ultra-Hydrophobic Surfaces. J. Coat. Technol. Res. 2015, 12, 959–964. [Google Scholar] [CrossRef]
- Karim, A.M.; Rothstein, J.P.; Kavehpour, H.P. Experimental Study of Dynamic Contact Angles on Rough Hydrophobic Surfaces. J. Colloid Interface Sci. 2018, 513, 658–665. [Google Scholar] [CrossRef]
- Karim, A.M.; Fujii, K.; Kavehpour, H.P. Contact Line Dynamics of Gravity Driven Spreading of Liquids. Fluid Dyn. Res. 2021, 53, 035503. [Google Scholar] [CrossRef]
- Seppecher, P. Moving Contact Lines in the Cahn-Hilliard Theory. Int. J. Eng. Sci. 1996, 34, 977–992. [Google Scholar] [CrossRef]
- Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E. Wetting and Spreading. Rev. Mod. Phys. 2009, 81, 739–805. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.-X.; Plawsky, J.L.; Wayner, P.C. Accuracy of Measurements of Curvature and Apparent Contact Angle in a Constrained Vapor Bubble Heat Exchanger. Int. J. Heat Mass Transf. 2002, 45, 2021–2030. [Google Scholar] [CrossRef]
- Karim, A.M.; Davis, S.H.; Kavehpour, H.P. Forced versus Spontaneous Spreading of Liquids. Langmuir 2016, 32, 10153–10158. [Google Scholar] [CrossRef]
- Karim, A.M.; Kavehpour, H.P. Spreading of Emulsions on a Solid Substrate. J. Coat. Technol. Res. 2013, 11, 103–108. [Google Scholar] [CrossRef]
- Carré, A.; Eustache, F. Spreading Kinetics of Shear-Thinning Fluids in Wetting and Dewetting Modes. Langmuir 2000, 16, 2936–2941. [Google Scholar] [CrossRef]
- Betelu, S.; Fontelos, M. Capillarity Driven Spreading of Power-Law Fluids. Appl. Math. Lett. 2003, 16, 1315–1320. [Google Scholar] [CrossRef]
- Betelú, S.; Fontelos, M. Capillarity Driven Spreading of Circular Drops of Shear-Thinning Fluid. Math. Comput. Model. 2004, 40, 729–734. [Google Scholar] [CrossRef]
- Starov, V.M.; Tyatyushkin, A.N.; Velarde, M.G.; Zhdanov, S.A. Spreading of Non-Newtonian Liquids over Solid Substrates. J. Colloid Interface Sci. 2003, 257, 284–290. [Google Scholar] [CrossRef]
- Liang, Z.-P.; Wang, X.-D.; Duan, Y.-Y.; Min, Q. Energy-Based Model for Capillary Spreading of Power-Law Liquids on a Horizontal Plane. Colloids Surf. A Physicochem. Eng. Asp. 2012, 403, 155–163. [Google Scholar] [CrossRef]
- Liang, Z.-P.; Wang, X.-D.; Lee, D.-J.; Peng, X.-F.; Su, A. Spreading Dynamics of Power-Law Fluid Droplets. J. Phys. Condens. Matter 2009, 21, 464117. [Google Scholar] [CrossRef]
- Liu, K.; Tian, Y.; Jiang, L. Bio-Inspired Superoleophobic and Smart Materials: Design, Fabrication, and Application. Prog. Mater. Sci. 2013, 58, 503–564. [Google Scholar] [CrossRef]
- Blake, T.; De Coninck, J. The Influence of Solid–Liquid Interactions on Dynamic Wetting. Adv. Colloid Interface Sci. 2002, 96, 21–36. [Google Scholar] [CrossRef]
- Ferrari, M.; Ravera, F. Surfactants and Wetting at Superhydrophobic Surfaces: Water Solutions and Non Aqueous Liquids. Adv. Colloid Interface Sci. 2010, 161, 22–28. [Google Scholar] [CrossRef]
- Yan, Y.; Gao, N.; Barthlott, W. Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Oberli, L.; Caruso, D.; Hall, C.; Fabretto, M.; Murphy, P.J.; Evans, D. Condensation and Freezing of Droplets on Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2014, 210, 47–57. [Google Scholar] [CrossRef]
- Webb, H.K.; Crawford, R.J.; Ivanova, E.P. Wettability of Natural Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2014, 210, 58–64. [Google Scholar] [CrossRef]
- Ma, M.; Hill, R.M. Superhydrophobic Surfaces. Curr. Opin. Colloid Interface Sci. 2006, 11, 193–202. [Google Scholar] [CrossRef]
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Savva, N.; Kalliadasis, S. Two-Dimensional Droplet Spreading Over Topographical Substrates. Phys. Fluids 2009, 21, 092102. [Google Scholar] [CrossRef]
- Savva, N.; Pavliotis, G.A.; Kalliadasis, S. Contact Lines Over Random Topographical Substrates. Part 2. Dynamics. J. Fluid Mech. 2011, 672, 384–410. [Google Scholar] [CrossRef]
- Pham, T.; Kumar, S. Drying of Droplets of Colloidal Suspensions on Rough Substrates. Langmuir 2017, 33, 10061–10076. [Google Scholar] [CrossRef]
- Charitatos, V.; Pham, T.; Kumar, S. Droplet Evaporation on Inclined Substrates. Phys. Rev. Fluids 2021, 6, 084001. [Google Scholar] [CrossRef]
- Espín, L.; Kumar, S. Droplet Spreading and Absorption on Rough, Permeable Substrates. J. Fluid Mech. 2015, 784, 465–486. [Google Scholar] [CrossRef]
- Ren, W.; Hu, D.; Weinan, E. Continuum Models for the Contact Line Problem. Phys. Fluids 2010, 22, 102103. [Google Scholar] [CrossRef]
- Lukyanov, A.V. Non-Locality of the Contact Line in Dynamic Wetting Phenomena. J. Colloid Interface Sci. 2021, 608, 2131–2141. [Google Scholar] [CrossRef]
- Li, X.; Pozrikidis, C. Shear Flow Over a Liquid Drop Adhering to a Solid Surface. J. Fluid Mech. 1996, 307, 167–190. [Google Scholar] [CrossRef]
- Moriarty, J.A.; Schwartz., L.W. Unsteady Spreading of Thin Liquid Films with Small Surface Tension. Phys. Fluids A Fluid Dyn. 1991, 3, 733–742. [Google Scholar] [CrossRef]
- Myers, T. Thin Films with High Surface Tension. SIAM Rev. 1998, 40, 441–462. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Min, Q.; Zhang, Z.; Duan, Y. Effect of Moving Contact Line’s Curvature on Dynamic Wetting of non-Newtonian Fluids. Langmuir 2018, 34, 15612–15620. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.A.; Robbins, M.O. Simulations of Contact-Line Motion: Slip and the Dynamic Contact Angle. Phys. Rev. Lett. 1989, 63, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.A.; Brinckerhoff, W.; Robbins, M.O. Microscopic Studies of Static and Dynamic Contact Angles. J. Adhes. Sci. Technol. 1993, 7, 535–554. [Google Scholar] [CrossRef]
- Romero, O.J.; Suszynski, W.J.; Scriven, L.E.; Carvalho, M.S. Low-Flow Limit in Slot Coating of Dilute Solutions of High Molecular Weight Polymer. J. Non-Newton. Fluid Mech. 2004, 118, 137–156. [Google Scholar] [CrossRef]
- Wei, Y.; Ramé, E.; Walker, L.; Garoff, S. Dynamic wetting with viscous Newtonian and non-Newtonian Fluids. J. Phys. Condens. Matter 2009, 21, 464126. [Google Scholar] [CrossRef] [PubMed]
- Cohu, O.; Benkreira, H. Entrainment of Air by a Solid Surface Plunging into a Non-Newtonian Liquid. AIChE J. 1998, 44, 2360–2368. [Google Scholar] [CrossRef]
- Charitatos, V.; Suszynski, W.J.; Carvalho, M.S.; Kumar, S. Dynamic Wetting Failure in Shear-Thinning and Shear-Thickening Liquids. J. Fluid Mech. 2020, 892, A1. [Google Scholar] [CrossRef]
- Liang, Z.-P.; Wang, X.-D.; Duan, Y.; Min, Q.; Wang, C.; Lee, D.-J. Dynamic Wetting of Non-Newtonian Fluids: Multicomponent Molecular-Kinetic Approach. Langmuir 2010, 26, 14594–14599. [Google Scholar] [CrossRef]
- Carré, A.; Woehl, P. Hydrodynamic Behavior at the Triple Line of Spreading Liquids and the Divergence Problem. Langmuir 2002, 18, 3600–3603. [Google Scholar] [CrossRef]
- Carré, A.; Woehl, P. Spreading of Silicone Oils on Glass in Two Geometries. Langmuir 2005, 22, 134–139. [Google Scholar] [CrossRef]
Model | Equation | Condition(s) | Reference |
---|---|---|---|
Hoffman | Experimental study; forced motion of silicone oil on a glass capillary; applicable for nonvolatile liquids with zero static contact angle; negligible inertia and gravity; flow with low capillary number | [106] | |
Tanner | ; | Experimental study and scaling analysis of spontaneous motion of a viscous liquid droplet on a horizontal substrate; steady-state flow; proportionality constant depends on physical characteristics of liquids and flow; based on lubrication assumption; is the time-varying droplet radius of the droplet and is the time-varying dynamic contact angle; suitable for small dynamic contact angles | [107] |
Hoffman–Voinov–Tanner | Dynamics of contact line motion at low capillary numbers on a substrate with zero static contact angle; microscopic region of the flow is excluded; also suitable for flow with finite (non-zero) static contact angle; derived by numerical, experimental, and theoretical studies; also applicable for physics of viscous evaporative droplet spreading on a substrate | [71,106,107,147,148,149,150,151,152] | |
Generalized Hoffman–Voinov–Tanner | Generalized hydrodynamics theory by Hoffman study; considers non-zero static contact angle; proportionality constant depends on physical characteristics of liquid | [71,106,107] | |
de Gennes | Experimental/theoretical work on liquid movement on a smooth substrate; non-zero finite static contact angle; similar to generalized “Hoffman-Voinov-Tanner” model; slip length is the length of microscopic part of the dynamic contact line in which slip condition is valid; lubrication assumption is applied in the analysis; describes the physics of dynamic contact line for flow at low capillary numbers in the mesoscopic region | [72] | |
Cox | ; ; ; denotes the shear viscosity ratio; positive sign is for advancing dynamic contact line; and negative sign is for receding dynamic contact line | Theoretical analysis; applies slip condition to resolve stress singularity at the dynamic contact line; slip length is the length of microscopic part of the dynamic contact line in which slip condition is valid | [69,108] |
Combined hydrodynamics–molecular kinetic | : positive sign stands for advancing dynamic contact line, and negative sign presents receding dynamic contact line : is Young’s static contact angle for stationary condition; positive sign is for receding liquid motion, and negative sign denotes advancing flow ; is the time-varying droplet radius, and denotes transient dynamic contact angle in the case of droplet spreading on a substrate | Modified hydrodynamics theory proposed by Voinov (1976) with contact line velocity-dependent static contact angle in which static contact angle is defined by molecular kinetic theory proposed by Blake et al. (1969) and Blake et al. (1993); three parameters need to be adjusted to describe the physics of dynamic contact line: λ, κ0, and Ls the combined model is only valid for slow dynamic contact line; not an appropriate model for describing the physics of dynamic contact line for high-speed coatings; a promising model for physics of dynamic contact line on real materials with variable hydrophobicity and diverse contact angle hysteresis | [68,109,110,111,112,113,153] |
Brochard-Wyart and de Gennes | Similar to combined hydrodynamics–molecular kinetic theory; receding dynamic contact line is an irreversible process with energy dissipation caused by out-of-balance surface tension and contact line speed; the equation is obtained considering energy loss due to viscous flow near the contact line and friction force; the equation is valid for flow at low capillary numbers | [110,111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad Karim, A.; Suszynski, W.J. Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory. Fluids 2022, 7, 318. https://doi.org/10.3390/fluids7100318
Mohammad Karim A, Suszynski WJ. Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory. Fluids. 2022; 7(10):318. https://doi.org/10.3390/fluids7100318
Chicago/Turabian StyleMohammad Karim, Alireza, and Wieslaw J. Suszynski. 2022. "Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory" Fluids 7, no. 10: 318. https://doi.org/10.3390/fluids7100318
APA StyleMohammad Karim, A., & Suszynski, W. J. (2022). Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory. Fluids, 7(10), 318. https://doi.org/10.3390/fluids7100318