Winter Ice Dynamics in a Semi-Closed Ice-Covered Sea: Numerical Simulations and Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winter Currents and Approaches to Estimating Them
2.2. Estimating Sea-Ice Concentration in the White Sea
2.3. The Numerical Model
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AOMIP | Arctic Ocean Intercomparison Program; |
BFM | Biogeochemical Flux Model; |
CICE | The Los Alamos Sea Ice Model (“Sea ICE”); |
FCT-TG | Finite-Element Flux Corrected Taylor–Galerkin Scheme; |
FEMAO | Finite-Element Model of the Arctic Ocean; |
FESIM | Finite-Element Sea Ice Model; |
FESOM | Finite Element Sea Ice-Ocean Model; |
INM | Institute of Numerical Mathematics of RAS; |
KRC | Karelian Research Centre of RAS; |
MOM | Module Ocean Model; |
NASA | National Aeronautics and Space Administration; |
NCEP | National Centers for Environmental Prediction, USA; |
NOAA | National Oceanic and Atmospheric Administration, USA; |
NSIDC | National Snow and Ice Data Center, USA; |
SMMR | Scanning Multichannel Microwave Radiometer; |
SSM/I | Special Sensor Microwave Imager; |
SSMIS | Special Sensor Microwave Imager/Sounder; |
DMSP | Defense Meteorological Satellite Program; |
RAS | Russian Academy of Sciences. |
References
- Filatov, N.; Pozdnyakov, D.; Johannessen, O.; Pettersson, L.; Bobylev, L. White Sea, Its Marine Environment and Ecosystem Dynamics Influenced by Global Change; Springer-Praxis: London, UK, 2005. [Google Scholar]
- Lisitsyn, A.; Nemirovskaya, I.; Shevchenko, V.; Vorontsova, V. (Eds.) White Sea System; Scientific World: Moscow, Russia, 2017; Volume I–IV. (In Russian) [Google Scholar]
- Comiso, J.C.; Meier, W.; Gersten, R. Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. 2017, N122, 6883–6900. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.; Babb, D.; Barger, D. Climate change and sea ice: Shipping in Hudson Bay, Hudson Strait, and Foxe Basin (1980–2016). Elem. Sci. Anthr. 2018, N6, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Baklagin, V. Spatio-temporal regularities of the White Sea ice regime formation. Adv. Oceanogr. Limnol. 2022, 13, 9849. [Google Scholar] [CrossRef]
- Zabolotskikh, E. Review of methods to retrieve sea-ice parameters from satellite microwave radiometer data. Izv. Atmos. Ocean. Phys. 2019, 55, 110–128. [Google Scholar] [CrossRef]
- Tschudi, M.; Meier, W.; Stewart, J. An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere 2020, 14, 1519–1536. [Google Scholar] [CrossRef]
- Kern, S.; Lavergne, T.; Notz, D.; Pedersen, L.; Tonboe, R. Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions. Cryosphere 2020, 14, 2469–2493. [Google Scholar] [CrossRef]
- Shalina, E. Regional peculiarities of changes in the ice situation in the seas of the Russian Arctic and on the route of the Northern Sea Route according to satellite observations. Curr. Probl. Remote Sens. Earth Space 2021, 18, 201–213. (In Russian) [Google Scholar]
- Shalina, E.; Johannessen, O.; Bobylev, L. Changes in the Arctic ice cover according to satellite passive microwave sensing data from 1978 to 2007. Curr. Probl. Remote Sens. Earth Space 2008, 2, 203–228. (In Russian) [Google Scholar]
- Cavalieri, D.; Parkinson, C. Arctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Shalina, E. Reduction of the Arctic ice cover according to satellite passive microwave sensing. Curr. Probl. Remote Sens. Earth Space 2013, 10, 328–336. (In Russian) [Google Scholar]
- Stroeve, J.; Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Johannessen, O.; Aleksandrov, V.; Frolov, I.; Sandven, S.; Pettersson, L.; Bobylev, L.; Kloster, K.; Smirnov, V.; Mironov, E.; Babich, N. Remote Sensing of Sea Ice on the Northern Sea Route: Study and Application; Scientific Research in the Arctic; Nauka: Saint Petersburg, Russia, 2007; Volume 3. (In Russian) [Google Scholar]
- Gluhovskiy, B.; Terziev, F. (Eds.) The White Sea. Reference book “Seas of the USSR”. In Hydrometeorology and Hydrochemistry of Seas of the USSR, Volume II, N.2: Hydrochemical Conditions and Oceanological Base for Bioproductivity; Hydrometeoizdat: Leningrad, Russia, 1991. (In Russian) [Google Scholar]
- Dobrovol’skij, A.; Zalogin, B. Seas of the USSR; Moscow State University: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Vihma, T.; Haapala, J. Geophysics of sea ice in the Baltic Sea: A review. Prog. Oceanogr. 2009, 80, 129–148. [Google Scholar] [CrossRef]
- Zalesny, V.B.; Gusev, A.V.; Ivchenko, V.O.; Tamsalu, R.; Aps, R. Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Model. 2013, 28, 85–100. [Google Scholar] [CrossRef]
- Soomere, T. Numerical simulations of wave climate in the Baltic Sea: A review. Oceanologia 2022. [Google Scholar] [CrossRef]
- Haapala, J.; Meier, H.M.; Rinne, J. Numerical Investigations of Future Ice Conditions in the Baltic Sea. AMBIO J. Hum. Environ. 2001, 30, 237–244. [Google Scholar] [CrossRef]
- Semenov, E.; Bulatov, M. Analysis of the Operative Model of Hydrophysical Field Results in the White Sea from July to August 2008. Dokl. Earth Sci. 2010, 432, 710–714. [Google Scholar] [CrossRef]
- Chernov, I.; Lazzari, P.; Tolstikov, A.; Kravchishina, M.; Iakovlev, N. Hydrodynamical and biogeochemical spatiotemporal variability in the White Sea: A modeling study. J. Mar. Syst. 2018, 187, 23–35. [Google Scholar] [CrossRef]
- Iakovlev, N. On the simulation of temperature and salinity fields in the Arctic Ocean. Izv. Atmos. Ocean. Phys. 2012, 48, 86–101. [Google Scholar] [CrossRef]
- Vichi, M.; Lovato, T.; Butenschön, M.; Tedesco, L.; Lazzari, P.; Cossarini, G.; Masina, S.; Pinardi, N.; Solidoro, C.; Zavatarelli, M. The Biogeochemical Flux Model (BFM): Equation Description and User Manual; BFM Report Series 1.2; BFM Version 5.2; CMCC: Bologna, Italy, 2020. [Google Scholar]
- Perezhogin, P.; Chernov, I.; Iakovlev, N. Advanced parallel implementation of the coupled ocean–ice model FEMAO (version 2.0) with load balancing. Geosci. Model Dev. 2021, 14, 843–857. [Google Scholar] [CrossRef]
- Mellor, G.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Craig, P.; Banner, M. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr. 1994, 24, 2546–2559. [Google Scholar] [CrossRef]
- Mellor, G.; Blumberg, A. Wave Breaking and Ocean Surface Layer Thermal Response. J. Phys. Oceanogr. 2004, 34, 693–698. [Google Scholar] [CrossRef]
- Griffies, S.; Gnanadesikan, A.; Pacanowski, R.; Larichev, V.; Dukowicz, J.; Smith, R. Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr. 1998, 28, 805–830. [Google Scholar] [CrossRef]
- Gent, P.; McWilliams, J. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 1990, 20, 150–155. [Google Scholar] [CrossRef]
- Visbeck, M.; Marshall, J.; Haine, T.; Spall, M. Specification of eddy transfer coeffcients in coarse resolution ocean circulation models. J. Phys. Oceanogr. 1997, 27, 381–402. [Google Scholar] [CrossRef]
- Nurser, A.; Bacon, S. The Rossby radius in the Arctic Ocean. Ocean Sci. 2014, 10, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Flather, R. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege 1976, 6, 141–164. [Google Scholar]
- Wang, Q.; Danilov, S.; Sidorenko, D.; Timmermann, R.; Wekerle, C.; Wang, X.; Jung, T.; Schroter, J. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: Formulation of an ocean general circulation model. Geosci. Model Dev. 2014, 7, 663–693. [Google Scholar] [CrossRef] [Green Version]
- Danilov, S.; Wang, Q.; Timmermann, R.; Iakovlev, N.; Sidorenko, D.; Kimmritz, M.; Jung, T.; Schroter, J. Finite-Element Sea Ice Model (FESIM), version 2. Geosci. Model Dev. 2015, 8, 1747–1761. [Google Scholar] [CrossRef] [Green Version]
- Hunke, C.; Lipscomb, W.; Turner, A.; Jeffery, N.; Elliott, S. CICE: The Los Alamos Sea Ice Model, Documentation and Software, Version 5.0; Los Alamos National Laboratory Technical Report LA-CC-06-012; Los Alamos National Laboratory: Los-Alamos, NM, USA, 2013.
- Loehner, R.; Morgan, K.; Peraire, J.; Vahdati, M. Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fluids 1987, 7, 1093–1109. [Google Scholar] [CrossRef] [Green Version]
- Semtner, A. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr. 1976, 6, 379–389. [Google Scholar] [CrossRef]
- Ridders, C. A new algorithm for computing a single root of a real continuous function. IEEE Trans. Circuits Syst. 1979, CAS26, 979–980. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Griffies, S. Elements of MOM4p1, GFDL Ocean Group Technical Report No. 6; Technical Report; NOAA/Geophysical Fluid Dynamics Laboratory: Princeton, NJ, USA, 2009.
- Chernov, I.; Tolstikov, A. The White Sea: Available Data and Numerical Models. Geosci. Model Dev. 2020, 10, 463. [Google Scholar] [CrossRef]
Satellite, Radiometer | Time Span |
---|---|
Nimbus-7 SMMR | 26 October 1978–20 August 1987 |
DMSP-F8 SSM/I | 21 August 1987–18 December 1991 |
DMSP-F8 SSM/I | 19 December 1991–29 September 1995 |
DMSP-F13 SSM/I | 30 September 1995–31 December 2007 |
DMSP-F17 SSMIS | 1 January 2008–31 December 2020 |
DMSP-F18 SSMIS | 1 January 2021–up to now |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernov, I.; Tolstikov, A.; Baklagin, V.; Iakovlev, N. Winter Ice Dynamics in a Semi-Closed Ice-Covered Sea: Numerical Simulations and Satellite Data. Fluids 2022, 7, 324. https://doi.org/10.3390/fluids7100324
Chernov I, Tolstikov A, Baklagin V, Iakovlev N. Winter Ice Dynamics in a Semi-Closed Ice-Covered Sea: Numerical Simulations and Satellite Data. Fluids. 2022; 7(10):324. https://doi.org/10.3390/fluids7100324
Chicago/Turabian StyleChernov, Ilya, Alexey Tolstikov, Vyacheslav Baklagin, and Nikolay Iakovlev. 2022. "Winter Ice Dynamics in a Semi-Closed Ice-Covered Sea: Numerical Simulations and Satellite Data" Fluids 7, no. 10: 324. https://doi.org/10.3390/fluids7100324
APA StyleChernov, I., Tolstikov, A., Baklagin, V., & Iakovlev, N. (2022). Winter Ice Dynamics in a Semi-Closed Ice-Covered Sea: Numerical Simulations and Satellite Data. Fluids, 7(10), 324. https://doi.org/10.3390/fluids7100324