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Abstract: CFD-DEM modelling of particle-laden turbulent flow is challenging in terms of the required
and obtained CFD resolution, heavy DEM computations, and the limitations of the method. Here,
we assess the efficiency of a particle-tracking solver in OpenFOAM with RANS-DEM and LES-DEM
approaches under the unresolved CFD-DEM framework. Furthermore, we investigate aspects of the
unresolved CFD-DEM method with regard to the coupling regime, particle boundary condition and
turbulence modelling. Applying one-way and two-way coupling to our RANS-DEM simulations
demonstrates that it is sufficient to include one-way coupling when the particle concentration is small
(O ~ 10−5). Moreover, our study suggests an approach to estimate the particle boundary condition
for cases when data is unavailable. In contrast to what has been previously reported for the adopted
case, our RANS-DEM results demonstrate that simple dispersion models considerably underpredict
particle dispersion and previously observed reasonable particle dispersion were due to an error in
the numerical setup rather than the used dispersion model claiming to include turbulence effects
on particle trajectories. LES-DEM may restrict extreme mesh refinement, and, under such scenarios,
dynamic LES turbulence models seem to overcome the poor performance of static LES turbulence
models. Sub-grade scale effects cannot be neglected when using coarse mesh resolution in LES-DEM
and must be recovered with efficient modelling approaches to predict accurate particle dispersion.

Keywords: particle-laden BFS; turbulent flows; dispersion model; unresolved CFD-DEM;
RANS-DEM; LES-DEM; OpenFOAM

1. Introduction

Two-phase systems consisting of a continuum phase (fluid) and a discrete phase (parti-
cles) are prevalent in industrial processes, biological phenomena, and nature. The behavior
of solid particles in continuous fluid flow is determined by complex physics and depends
on the particle and fluid characteristics and flow regime. According to Crowe et al. [1],
five key factors contribute to the turbulence modulation induced by particles: (1) Surface
effects: particle size normalized by a length scale dp/l; (2) inertial effects: flow Reynolds
number Re and particle Reynolds number Rep; (3) response effects: particle response time
or Stokes number St; (4) loading effects: particle volume fraction αp; and (5) interaction
effects: particle-particle as well as particle-wall. Numerical simulations of such systems
can be helpful in providing a detailed insight into the complex physics involved in particle
motion. However, modelling of particle motions in turbulent flow is difficult because it
involves the modelling of the surrounding flow field and resulting pressure gradients as
well as the particle-flow interaction, which involves the local flow around the particle and
the forces resulting from the stress applied on the particle by the flow [2].

In computational fluid dynamics (CFD), both phases can be treated as continuum
medium, also called the Eulerian–Eulerian method, in which Navier–Stokes (NS) equations
are solved for each phase, including the momentum exchange between the phases. The
Eulerian–Eulerian method is computationally less expensive but at the cost of losing the
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discrete nature of particles. On the other hand, a Lagrangian method is adopted for
granular systems, also called the Discrete Element Method (DEM), where each particle
is tracked using Newton’s second law of motion. With an increase in computational
power, advancements in CFD and DEM, and improved solution algorithms over the last
decade, the new and more detailed approach combining CFD and DEM for multiphase
systems, called the Eulerian–Lagrangian method (CFD-DEM), has become a popular tool
to investigate particle-laden flows. In particular, numerical approaches combining the
CFD and DEM have proven to be advantageous over many other options in terms of
computational efficiency and numerical convenience [3]. In CFD-DEM, the continuum
phase (fluid) is resolved using the NS equations, whereas the discrete phase (particles) is
tracked by solving Newton’s second law of motion for each particle in the fluid system. The
continuum and discrete phase are also coupled with each other using momentum transfer
mechanisms. This coupling level depends on the volumetric fraction of solid material
αp = Vp/V in the system, where Vp is particle volume, and V is total volume of particles
and fluid. A classification map is depicted in Figure 1, which can be used to incorporate the
level of coupling in numerical simulations [4]. Furthermore, the approximated CFD solution
can be obtained using Reynolds-averaged Navier–Stokes equations (RANS) or Large-Eddy
simulation (LES), instead of solving the flow using Direct Numerical Simulation (DNS),
which could save significant computational efforts, especially when tracking particles
using DEM.
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Figure 1. Classification map [4] showing the level of coupling required for numerical simulations
and interaction between particles and turbulence for 1© one-way coupling, 2© two-way coupling
where particles enhance the turbulent production, 3© two-way coupling where particles enhance the
turbulence dissipation, 4© four-way coupling.

The CFD-DEM method can be categorized into two approaches: unresolved and
resolved CFD-DEM. Unresolved CFD-DEM solves the flow at larger scales using filtering
(LES)/averaging (RANS) methods and can only be applied to particles smaller than the
CFD cell size. In unresolved CFD-DEM, some empirical equations are used to calculate the
fluid forces acting on the particles and the calculated fluid forces are included as additional
terms in governing DEM equations. In contrast, resolved CFD-DEM (particle resolved
DNS) can be applied to larger particles than the CFD cell size, where extreme fine meshing
is used to obtain detailed information on turbulence flow and forces acting on particles are
directly obtained by integrating fluid stress over the particle surface. In resolved CFD-DEM,
various techniques such as Adaptive mesh refinement (AMR) and Immersed boundary
method (IBM) are becoming popular, but are limited to a minimal number of particles [5].
Additionally, the particles can be assumed as point-particles (PP), representing point objects
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with a certain mass and whereupon DNS can be performed. Unlike resolved CFD-DEM,
here the forces acting on the particles are calculated using empirical equations, but the
application of PP DNS-DEM to particles larger than Kolmogorov scale is questionable and
highly discouraged.

DNS-DEM studies [6,7] are limited to simple flows, a small number of particles, and
mainly to the PP approach due to heavy computational requirements. DNS performed
on PP in rough-wall pipe with a small Reynold’s number indicates that particle volume
fraction (αp) and Stokes number (St) play an important role in turbulent modification [8].
Recently, a two-way coupled DNS study on particle-laden flow highlighted the effects of
the particle Stokes number (St) on near-wall turbulence [9]. Resolved CFD-DEM (particle
resolved DNS) is only possible if the spacing of the computational grid is small compared
to the size of a particle, therefore restricting its application to large particles compared to
the smallest scales of the turbulent flows and/or relatively small number of particles [10].
Even for single-phase fluid systems, DNS is not possible for the cases with high Reynolds
numbers and complex geometries due to computational limitations.

RANS-DEM is another economical approach where the mean flow fields are obtained,
and additional dispersion models incorporate the turbulence effect on the particle’s tra-
jectories. An accurate evaluation of instantaneous velocity fluctuations is required for
the realistic evaluation of turbulent diffusion effects for accurate predictions of particle
dispersion and deposition on surfaces [11,12]. A number of RANS-DEM studies on simple
cases [13,14] indicate that these simple dispersion models cannot accurately obtain the lost
fluctuating component due to averaging of NS equations. In contrast, Greifzu et al. [15]
showed that the simple dispersion models are indeed able to predict correct particle dis-
persion even for more complex flow (particle-laden BFS flow). However, we found out
that their conclusion was due to an error in the numerical setup (refer to the results and
discussion section for details). Therefore, further investigation is necessary to reach a
unanimous conclusion about the ability of the simple dispersion models in incorporating
the effect of turbulent fluctuations on particle motion.

A sensible and efficient approach would be LES-DEM, which might be a good compro-
mise between accuracy and computational feasibility. However, one also has to be cautious
about the sub-grid scales (SGS) fluid fluctuating motion seen by the particles, because in
several investigations, the effects of SGS on particle motion were shown to be significant
and hence should not be neglected [16–19], especially when the particle response time is
the same order of magnitude as that of the smallest time scale resolved in LES. To recover
the dynamic consequences of the SGS in the LES-DEM framework, stochastic models such
as an explicit stochastic forcing in the equations of particle motion were suggested [20,21].
Furthermore, the size of LES meshes in unresolved CFD-DEM is restricted by the require-
ment of particles being significantly smaller than the CFD cell size, unless particles are
considered as PP. This restriction prevents finer meshes near the boundaries (y+~1) and
can lead to poor performance of the static LES turbulence model, which require very fine
boundary meshes. Dynamic LES turbulence models could be adopted to avoid the poor
performance of static LES models in cases of low mesh resolutions.

On one hand, commercial software such as Fluent EDEM, STAR-CCM+ and AVL-
fire [22–26], in-house CFD programs such as LESOCC [27], and research codes [28–31] can
be applied to CFD-DEM simulations, but the accessibility of these solvers is limited. On
the other hand, some open-source CFD codes, such as OpenFOAM [32] have accelerated
research in the field. Some coupled CFD-DEM codes [33,34] are also available, which
couple OpenFOAM and DEM software such as LAMPS/LIGGGHTS and are not limited
to PP.

Particle-laden backward facing step (BFS) flow is popular among researchers in the
field due to its simple geometry and ability to produce interesting turbulent features
concerning flow separation and re-attachment. A few LES-DEM simulations on particle-
laden BFS have been performed [35–40], and some have attained a reasonable agreement
with the experiment. These LES-DEM studies used extreme fine meshing (y+~1) and were
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mainly based on the PP approach. The particle-laden BFS flow adopted in our study
had previously been numerically simulated by Greifzu et al. [15] in the context of RANS-
DEM. The authors concluded that RANS-DEM (and the simple dispersion model therein)
predicts the correct fluid and particle velocity profiles, as well as the particle dispersion.
Interestingly, we found that their OpenFOAM numerical setup was erroneous as a fluid
density of 1000 kg/m3 (water) instead of 1 kg/m3 (air) was used, although in the original
experiment the fluid was air, not water. Despite using an incorrect fluid density value,
the authors obtained an excellent agreement with the experimental data. However, these
results are questionable, as the density of the fluid should have been 1 kg/m3 as in the
original experiment—therefore requiring a reinvestigation.

Despite several experimental and numerical studies, fluid-particle systems remain
poorly understood due to the complex physics involved, such as turbulent modulation and
complex fluid-particle and particle-particle interaction. The CFD-DEM method could pro-
vide detailed insights into these multivariable and interdependent phenomena and can be
employed for large scale engineering applications. However, due to the huge computational
requirements and associated limitations of the CFD-DEM method, finding the trade-off
and compromise between the levels of flow resolution obtained (DNS/LES/RANS) and
the required computational efforts to predict the correct particle dispersion and trajectories
is difficult.

Here, we focus on different aspects of modelling such flows in terms of the compu-
tational requirements, the available models, as well as the challenges and limitations. In
particular, we perform RANS-DEM and LES-DEM simulations in 3D for particle-laden
BFS flow. Special attention is given to the ability of the respective approaches to predict
particle dispersion, coupling regime, particle boundary conditions, and turbulence mod-
elling. First, we discuss the theoretical background of the Eulerian–Lagrangian method
(CFD-DEM) in detail, focusing on the RANS and LES methods for resolving the fluid flow
fields. The following method and numerical setup section highlights the fundamental
structural differences in the numerical setup for different approaches adopted in our study.
Furthermore, the RANS-DEM and LES-DEM simulation results for the fluid and particle
phases are compared, especially in relation to particle dispersion. Additionally, different
aspects of the CFD-DEM method with regard to the coupling regime and particle bound-
ary conditions were investigated and their effects on fluid and particle phase results are
discussed. Before including particles into the system, single-phase RANS and LES simula-
tions are also performed and its accuracy in predicting mean and turbulent flow statistics
with different turbulence models are assessed. Taken together, RANS-DEM requires more
sophisticated dispersion models to predict correct particle dispersion, and LES-DEM has
limitations in terms of the flow resolution obtained, the computational resources required,
and the prerequisites of unresolved CFD-DEM, preventing extreme fine meshing unless
the particles are considered as PP.

2. CFD-DEM Approach and the Governing Equations

The unresolved CFD-DEM approach was adopted to investigate the two-phase system
containing fluid as a continuum and the particles as discrete mediums. The full NS
equations describe the continuum fluid phase for unsteady incompressible flow, which
is a slightly modified version of the standard NS equations to incorporate the particle
fraction in each computational cell. Newton’s second law of motion describes the discrete
particle phase.

∂α

∂t
+

∂αui
∂xi

= 0, (1)

∂αui
∂t

+ uj
∂αui
∂xj

= −1
ρ

∂αp
∂xi

+ υ
∂2αui
∂xj∂xj

+ αgi −
f p
i
ρ

, (2)

m(k) ∂up(k)
i
∂t

=
nc(k)

∑
l=1

Fc(kl)
i + F f (k)

i + Fg(k)
i , (3)
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I(k)
∂wp(k)

i
∂t

=
nc(k)

∑
l=1

Mc(kl)
i , (4)

dxp(k)
i
dt

= up(k)
i . (5)

where:
α = volume fraction of fluid in each cell; unitless
ui = fluid velocity field in direction i; m/s
p = fluid pressure; N/m2

υ = kinematic viscosity of fluid; m2/s
gi = gravitational acceleration in direction i; m/s2

ρ = density of fluid; kg/m3

m(k) = mass of particle k; kg
nc(k) = number of particles colliding with particle k; unitless
I(k) = moment of inertia of particle k; kgm2

up(k)
i = velocity of particle k in direction i; m/s

wp(k)
i = angular velocity of particle k in direction i; 1/s

F f (k)
i = surface forces acting on particle k (including drag, lift, added-mass, basset

history forces etc.: coupled forces); N
f p
i = volumetric fluid-particle interaction momentum source in direction i; N/m3

Fg(k)
i = body forces acting on particle k; (gravity + buoyancy: uncoupled forces)

= m(k)gi

(
1− ρ

ρp

)
; N

ρp = density of particle; kg/m3

Fc(kl)
i = particle-particle interaction/contact force between particle k and l; N

Mc(kl)
i = particle-particle interaction moment between particle k and l; Nm

x and t are space and time with units m and s, respectively.
Mc(kl)

i = particle-particle interaction moment between particle k and l; Nm
x and t are space and time with units m and s, respectively.
OpenFOAM considers the particles as point-particles (PP), meaning that they are

represented as point objects having a certain mass. This assumption automatically neglects
the torque acting on the particles, meaning that OpenFOAM does not consider Equation (4)
in calculating the trajectories of the particles.

In the above equations, the momentum transfer term consists of several forces coupled
between the continuum phase and discrete phase, such as drag force, lift force, pressure
gradient force, basset history force, added-mass force, etc. In the references, it has been
established that the major contribution in the momentum transfer term originates from the
drag force [41], and lift force is more relevant for light particles than heavy particles [10].
The particles considered in the present study are dense copper particles. Therefore, the lift
force seems to be insignificant for our case. However, we have also included the pressure
gradient force in addition to the drag force in our numerical setup. Ultimately, the coupled
forces term reduces to:

F f (k)
i = FD(k)

i + FPG(k)
i , (6)

FD(k)
i =

3
4

ρ

ρp
m(k)

d(k)
CD

(
us(k)

i − up(k)
i

)∣∣∣us(k)
i − up(k)

i

∣∣∣, (7)

CD =

 24
Rep(k)

(
1 + 1

6 (Rep(k))
2
3

)
when Rep(k) ≤ 1000

0.424 when Rep(k) ≥ 1000
, (8)

Rep(k) =
d(k)

∣∣∣us(k)
i − up(k)

i

∣∣∣
υ

, (9)
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FPG(k)
i =

π

6
(d(k))

3
ρ

Dus(k)
i

Dt
. (10)

From the equations above, one can see that to calculate forces acting on particles
(thus to calculate their trajectories), information is needed on the fluid velocity at the
location of particle (ui

s(k)). We obtain this information from the fluid phase solution (CFD).
The solution of fluid phase can be categorized into three types, namely Direct Numerical
Simulation (DNS), Large-Eddy Simulation (LES), and Reynolds-averaged Navier–Stokes
equations (RANS), depending on the level of flow resolution needed and the computational
resources available.

2.1. Direct Numerical Simulation (DNS)

DNS solves the full NS equations numerically, thus resolving everything from the
largest scale to the smallest dissipative eddies present in the system. In DNS under
consideration of the point-particles (PP) approach, the velocity of the fluid at the particle
location can be obtained directly from the DNS solution.

ui
s(k) = ui

DNS(xp(k)(t), t) = ui (xp(k)(t), t). (11)

Since turbulent flows possess a varying range of time and length scales, the exact
solution (DNS), even for the simplest turbulent flows, requires enormous computational
resources and extreme fine meshing. Initial estimation of the computational resources
required for DNS can be made based on Kolmogorov scales (smallest time, length and
velocity scales) in the system. In our case, the Kolmogorov length scale is about 170 µm,
meaning the mesh resolution should be smaller than 170 µm for DNS. It has been demon-
strated that the restrictions that DNS needs for simple channel flow in terms of grid point
and time steps [42], thus require huge computational resources even for simple channel
flow. Computational resources requirement by DNS in the sense of both processor speed
and memory size for storing intermediate results is vast and increases exponentially with
the Reynolds number of the flow. In order to obtain the maximum possible information
about the flow fields with an affordable computational cost, the full NS equations are
approximated with some averaging/filtering approaches. The resulting averaged/filtered
NS equations have almost the same form as the original NS equations with additional
terms, which can be calculated based on eddy viscosity.

2.2. Large-Eddy Simulation (LES)

LES aims to resolve large-scale turbulence while small-scale turbulence is modelled
using the filtering operation. Compared to DNS, where nearly all the computational effort
is used to resolve the smallest dissipative eddies, LES resolves only up to the inertial
subrange, not all the way to the dissipative scales. This can save significant computational
effort, yet preserves enough information of the fluid flow. LES converges to DNS when
finer meshing and smaller time steps are used.

The common idea behind LES is to decompose the instantaneous flow field u(x, t) into
resolved (or filtered) component u(x, t) and residual (or sub-grid scale; SGS) component
u′(x, t) by a filtering operation, as follows:

ui(x, t) = ui(x, t) + ui
′(x, t), (12)

ui(x, t) =
∫

ui
(
x′, t

)
G
(
x, x′; ∆

)
dx′, (13)

where, G(x, x′; ∆) is the filter function that depends on mesh discretization. The filtering
operation results in extra terms, called residual stresses (τR

ij ) in the original NS equations.
Calculation of residual stresses is based on the Boussinesq hypothesis of eddy viscosity
(turbulence viscosity υT), which is being modelled. Various models are available for
this purpose, such as Smagorinsky, one-equation model (kEqn), dynamic Smagorinsky,
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dynamicKEqn, Spallart–Allmaras, and many others. We found that the dynamicKEqn
turbulence model was able to predict correct flow fields in terms of mean and fluctuating
components with reasonable accuracy, whereas static turbulence models were performing
poorly with provided mesh resolution.

In cases where the particle response time (Stokes number) is large compared to the
smallest time scale resolved in LES, the fluid velocity of the sub-grid scales does not
significantly influence the particle’s motion [10,43,44]. Considering this, one does not
need an extra dispersion model to incorporate the effect of turbulence in the particle’s
motion; thus, the LES solution can be directly equated to the fluid velocity at the location
of the particle.

ui
s(k) = ui

LES(xp(k)(t) , t) = ui(xp(k)(t) , t). (14)

2.3. Reynolds-Averaged Navier–Stokes Equations (RANS)

RANS resolve only the mean flow statistics; thus, RANS solution for fluid flow fields
cannot be directly equated with the fluid velocity at the location of the particle. In RANS,
the instantaneous flow field u(x, t) decomposes into a time average component 〈u(x, t)〉
and a fluctuating component u′(x, t):

ui(x, t) =< ui(x, t) > +ui
′(x, t), (15)

< ui(x, t) >= lim
T→∞

1
T

∫ T

0
ui(x, t) dt. (16)

The averaging operation results in some new terms, < u′iu
′
j >, called Reynolds stresses,

to appear in the original NS equations, which are also modelled based on eddy viscosity.
The terms < u′iu

′
j >, although named as Reynolds stresses, have a unit of stress only when

multiplied by the fluid density ρ. Similar to LES, eddy viscosity υT can be calculated based
on several models such as k-ε, k-ω, k-ω SST and many others. We used the k-ω SST model
to close the Reynolds-averaged NS equations of our RANS and RANS-DEM simulations,
as it was the best performing.

In RANS, the effect of fluctuating components (turbulence) on particles is incorpo-
rated using some dispersion models [45]. The resulting fluid velocity at the location of
a particle (ui

s(k)) can be equated to the sum of the RANS (mean) velocity field and the
modelled fluctuations.

ui
s(k) = ui

RANS(xp(k)(t) , t)+ui
′ =< ui(xp(k)(t) , t) > + ui

′. (17)

All three approaches (DNS, LES, and RANS) for calculating the fluid velocity at the
location of particles have their limitations in terms of accuracy and computational cost
and can be adopted as per the details required and computational resources available.
Figure 2 shows the extent of modelling certain types of turbulent models [46], where
DNS resolves everything from the largest to the smallest dissipative eddies present in
the system. LES resolves up to energy-containing eddies while dissipative eddies are
modelled. RANS resolves only the mean flow statistics, and the fluctuating components are
modelled. More information on the implementation of the turbulence models used in our
RANS-DEM and LES-DEM and the dispersion models can be found on the OpenFOAM
webpage [32]. We have used RANS-DEM and LES-DEM approaches to solve particle-laden
BFS flow and investigated the case by comparing the fluid and particle-phase results with
the experimental data and literature.
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2.4. Particle Dispersion Modelling

The approximated NS equations provide mean (RANS)/filtered (LES) flow statistics
and information about turbulent fluctuations are lost due to simplifications of original
NS equations. The fluid-particle interaction forces (F f (k)

i ) such as pressure gradient force,
added mass force, drag force and history force, contain unfiltered components and are
required to be estimated to close certain terms in particle equations of motion. In LES-DEM,
the sub-grid scales only have a small effect on the particle’s trajectories, especially when
the particle response time is large compared to the typical time scales of the turbulent
flow and the smallest time scale resolved in LES. However, the sub-grid scales can be
significant in many physical processes such as in turbophoresis [17]. On the other hand, the
effect of turbulent fluctuations must be included in RANS-DEM to predict realistic particle
trajectory. There are mainly two types of modelling approaches to account for missing
turbulent fluctuations: either by adding stochastic noise forcing to the NS equations [47]
or by adding an additional velocity to the particle equation of motion [48]. The stochastic
models, which aim to recover the lost turbulence effects on a particle’s trajectories, can
be formulated based on (a) transport equations of the turbulent kinetic energy (Discrete
Random Walk; DRW, or Eddy Interaction Model; EIM) or (b) generalized Langevin equation
(Continuous Random Walk; CRW). We have considered the DRW/EIM stochastic model in
our numerical simulation. Here, particles are assumed to be trapped by an eddy during
its lifetime, resulting in the mean flow fields seen by the particles being those of the fluid
and the fluctuating components, which are randomly distributed following Gaussian
distribution, whose root mean square values are equal and deduced from the turbulent
kinetic energy.

In OpenFOAM, two dispersion models are available to model the turbulent fluctua-
tions ui

′, namely StochasticDispersionRAS and GradientDispersionRAS models, which are
basically DRW/EIM type of stochastic dispersion models. These dispersion models use the
turbulent kinetic energy (TKE; k) provided by the RANS solution to model the turbulence
fluctuations such that,

ui
′ =

√
2
3

k xrnd ei (18)

where xrnd is a random factor that reproduces a probability density function with Gaussian

distribution with an expected value µ = 0 and standard deviation σ =
√

2
3 k. ei is a unit
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vector that points either in a random direction (in StochasticDispersionRAS) or in −∇k (in
GradientDispersionRAS).

2.5. Coupling between Continuum and Discrete Phases

As shown in Figure 1, the continuum and discrete phases interact with each other and
are required to be coupled. Several studies have emphasized on one-way and two-way
coupling [49–52] for dilute particle-laden flows and fluid-structure interaction. Depending
on the coupling regime, specific terms vanish in the respective governing equations. The
coupling regime required for numerical simulations can be made using the volumetric
particle concentration (αp).

• One-way coupling (fluid→ particle): when the volumetric concentration of particles
is small (αp < 0.0001%), the fluid flow fields affect the particle motion, but particles
have a negligible effect on fluid flow fields. This results in only specific terms being
considered in the governing CFD-DEM equations as follows:

F f (k)
i 6= 0; f p

i = 0; Fc(kl)
i = 0. (19)

• Two-way coupling (fluid←→ particle): when the volumetric concentration of par-
ticles increases (0.1% < αp < 0.0001%), both fluid and particles affect each other’s
motion. Two-way coupling can be further categorized into two categories, one in
which particles enhance the turbulence dissipation and a second in which particles
enhance turbulence production, which depends on the ratio of particle reaction time
(τp = ρpd2

p/18ρυ) to the Kolmogorov time scale (τk = ( υ
ε )

1/2) and to the turnover time
of large eddies (τe = l/u), respectively, where ρp is the density of particle, dp is the
diameter of particle, ρ is the density of fluid, υ is the kinematic viscosity of fluid, ε
is turbulence dissipation rate, l is turbulence length scale, and u is the fluid velocity.
Two-way coupling results in the following CFD-DEM equations:

F f (k)
i 6= 0; f p

i 6= 0; Fc(kl)
i = 0. (20)

• Four-way coupling (fluid←→ particle, particle←→ particle): When the volumetric
concentration of the particles further increases (αp > 0.1%), the interaction among
particles becomes significant. In this regime, fluid and particle affect each other’s
motion; additionally, the particle collision term needs to be included in the govern-
ing equations:

F f (k)
i 6= 0; f p

i 6= 0; Fc(kl)
i 6= 0. (21)

3. Method and Numerical Setup

The original experiment [53] includes a blower and particle feeders, where the blower
injects fluid (air), and the particle feeders feed the particles into the system at a specific
mass flow rate. This arrangement provides uniform fluid velocity and particle loading
at the inlet of the development section, which has a length of 5.2 m, ensuring that the
turbulent flow is fully developed at the inlet of the test section (backward facing step; BFS)
and gives the particles enough time/length to become uniformly mixed with the fluid flow
and attain equilibrium with the fluid phase before it reaches the inlet of BFS. The fully
developed turbulent flow has a centerline velocity of 10.5 m/s, and the Reynolds numbers
based on it are 13,800 and 18,400 at the channel section (based on channel half-height h)
and at the step (based on step height H), respectively. The geometry of the test section, fluid
(air) and particle-phase description in the experiment and their corresponding adoption for
numerical simulations are shown in Table 1.
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Table 1. Geometry, fluid, and particle phase characteristics in the original experiment [53] and their
corresponding setting for the numerical setup.

Experimental Setup Our Numerical Setup

Geometry

Channel half-height, h = 20 mm Channel half-height, h = 20 mm
Channel span, Lu = 457 mm Channel span, Lu = 457 mm

Step height, H = 26.7 mm Expansion channel length, Ld = 935 mm
Expansion ratio (H + 2h/2h) = 5:3 Step height, H = 26.7 mm

Aspect ratio (B/H) = 17:1 Width (B) = 114.25 mm

Continuum phase (air)

Centerline velocity, U0 = 10.5 m/s
Friction velocity, uτ = 0.5 m/s
Viscous length scale = 31 µm

Dissipation, ε (centerline estimated) = 4.3 m2/s3

Kolmogorov length scale, η
(Centerline estimated) = 170 µm

Large eddy time scale,
τf = 5H/U0 = 12.7 ms

Density (ρ) = 1.225 kg/m3

Kinematic viscosity (υ) = 1.5 × 10−5 m2/s
Centerline velocity (U0) at

Inlet = (10.5 0 0) m/s
Average velocity (Uavg) at

inlet = (9.39 0 0) m/s

Discrete phase (copper
particle)

Nominal diameter, dp= 70 µm
Material = copper

Number mean diameter = 68.2 µm
Standard deviation of diameter = 10.9 µm

Density, ρp= 8800 kg/m3

Mass flow rate of particle
(Mass loading),

.
mp/

.
m f = 10%

Stokes mean particle time constant,
τp, stokes = (2ρp + ρ)d2

p/36µ= 130 ms
Modified mean particle time constant,

τp = τp, stokes/
(

1 + 0.15Re0.687
p

)
= 88 ms

Particle Reynolds number, Rep =
dpUrel

υ = 5.5

Particle size distribution (PSD): Normal
distribution with expected value of 68.2 µm and

standard deviation of 10.9 µm
Density, ρp= 8800 kg/m3

Mass flow rate of particle (mass loading),
.

mp/
.

m f = 10%

The geometry considered (test section; BFS) for numerical simulation can be seen in
Figure 3. Due to computational limitations, the development channel before the inlet of BFS
is not considered in the geometry. To achieve a fully developed turbulent flow at the inlet of
BFS without providing a development channel, mapped boundary conditions are applied,
in which flow fields are mapped from 400 mm downstream of the inlet of BFS, resulting in
a fully developed fluid velocity profile at the inlet of BFS with a centerline velocity (U0)
of 10.5 m/s and average velocity (Uavg) of 9.39 m/s. Regarding the particle boundary
condition in OpenFOAM, in addition to the mass flow rate (mass flux) of particles, one
also needs to provide a particle injection velocity. In the original experiment, particle
velocity was not measured at the inlet of the BFS; thus, no data is available for specifying
boundary conditions at the model inlet concerning particle injection velocity. We have
tested several boundary conditions for the particle injection velocity. Assuming that all the
particles have attained a constant velocity (injection velocity) as they reach the inlet of the
BFS, two extreme bounds of particle injection velocity are tested, where the particles are
injected with (10.5, 0, 0) m/s (upper bound) and (0, 0, 0) m/s (lower bound) of injection
velocity. Furthermore, we assume that the particles have attained a velocity that follows
the mean fluid velocity profile at the inlet, which is also tested (i.e., particles injected at the
center will have an injection velocity similar to the centerline velocity of the fluid, whereas
particles injected near to the walls will have almost zero injection velocity due to the no-slip
boundary condition for the fluid phase). The options mentioned above for obtaining the
best approximation of particle boundary conditions are tested against both the approaches
adopted in our study to simulate particle-laden BFS flow.
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RANS-DEM and LES-DEM simulations are performed in 3D. In the first step, RANS-
DEM simulations were performed for a 10% mass loading of ~70 µm copper particles for
one-way and two-way coupling. Although the volumetric particle fraction (O ~ 10−5)
lies in the range of two-way coupling, we have also considered one-way coupling in
addition to two-way coupling under RANS-DEM to facilitate the comparison between
them. Interestingly, our RANS-DEM results almost overlap for one-way coupling and two-
way coupling, indicating that it should be enough to include one-way coupling, even when
the particle concentration is slightly greater than the threshold suggested by Elghobashi [4].
However, we decided to only use two-way coupling for our LES-DEM simulations for 10%
mass loading of ~70 µm copper particles due to the fact that the particle volume fraction
lies in range of two-way coupling and the CPU time for the case was roughly the same for
one-way and two-way coupled RANS-DEM simulations (~10 min more). RANS-DEM and
LES-DEM have basic structural differences in their numerical setup as they both require
different input parameters, depending on the models used to close the averaged/filtered
NS equations. We have used the k-ω SST (kOmegaSST) and dynamicKEqn turbulence
models in the case of RANS-DEM and LES-DEM, respectively. We have ensured that
the single-phase results match the experimental data before the particles are included
in it. In our single-phase LES simulations, we have tested the predictive capability of
static turbulence model (kEqn) as well. Once the correctness of the single-phase results
has been verified, the cases were modified to incorporate particles and solved using the
DPMFoam solver. Although DPMFoam is based on the discrete parcel method (DPM), we
have considered only one particle in each parcel, therefore it is equivalent to the discrete
element method (DEM). More details about the RANS-DEM and LES-DEM case setup can
be found in Table 2.

As mentioned in the introduction, unresolved CFD-DEM requires the CFD mesh
to be much larger than the particle size. This is assured as the smallest CFD mesh cell
size is 0.2 mm and 0.15 mm in our RANS and LES setup, respectively, which is much
greater than the particle size (~70 µm), thus considering them as point-particles (PP) is
justified. To resolve the interesting flow features developing near walls, mesh grading is
performed, providing us with the flexibility to provide larger cells away from the wall,
which saves some additional computational efforts. Mesh is also refined in streamwise
direction near the step, whereas uniform mesh is used in spanwise direction. Before we
finalize our final mesh, the mesh is refined in a stepwise manner until we obtain almost the
same results for fluid and particle velocity profiles between consecutive refinements (grid
independence). The selection y+ as 3 instead of 1 in our LES-DEM simulations allowed us
to keep the particle size significantly smaller than the CFD cell (PP approach), and extreme
fine meshing is avoided due to computational limitations and the resources available. In the
review published on LES simulations [54], it has been reported that dynamic LES models
are expected to perform better than static models. Our investigation on LES turbulence
models also showed that static LES turbulence models such as Smagorinsky or kEqn
models cannot predict correct fluid velocity flow fields with the provided mesh resolution
(y+~3). Therefore, we used the dynamicKEqn model in our LES-DEM simulations, which
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seems to overcome the poor performance of static turbulence models when using relatively
coarse mesh resolution. However, standard DPMFoam solver does not come with dynamic
turbulence models in OpenFOAM-v1912 (the solver used in our RANS-DEM and LES-
DEM study), and we needed to compile the dynamicKEqn model as a separate library for
two-phase systems and included it in our LES-DEM simulations.

Table 2. RANS-DEM and LES-DEM settings.

Description RANS-DEM LES-DEM

Solution domain 3-Dimension 3-Dimension

Turbulence model kOmegaSST dynamicKEqn with
cubeRootVolume delta function

Dispersion model StochasticDispersionRAS -

Mesh resolution 1,105,280 hexahedra cells 3,533,376 hexahedra cells

y+ - ~3

Resolved TKE - 80–90%

boundary condition at
inlet (air)

mappedPatch (Mapped from
400 mm downstream of inlet)

mappedPatch (Mapped from
400 mm downstream of inlet)

Front and back
boundary treatment Cyclic Cyclic

Wall treatment Wallfunctions Resolved

Particle injection velocity
at inlet (particle

boundary condition)

(10.5, 0, 0) m/s
(0, 0, 0) m/s

Varying as per fluid velocity
distribution

(10.5, 0, 0) m/s
(0, 0, 0) m/s

Varying as per fluid velocity
distribution

Mass loading of particles 10% 10%

Coupling regime One-way and two-way Two-way

Simulation duration 1 s 3 s

OpenFOAM solvers, namely pimpleFoam and DPMFoam, are used for single and two-
phase simulations, respectively, in OpenFOAM-v1912. Both pimpleFoam and DPMFoam
use the pimple algorithm to couple velocity and pressure fields. Backward and least Squares
schemes are used for time and gradient discretization, respectively. All the divergence
terms are discretized using Gauss linear method. The resulting discretized equations were
solved using algebraic multigrid (AMG) and algorithms based on a point-implicit linear
equation solver (Gauss–Seidel). DEM data (particle position, velocity, etc.) are mapped
onto CFD mesh, and particle volume fraction in each computational cell is calculated. The
interaction forces are locally averaged in each cell and incorporated in NS equations and
the calculated flow data are communicated back to the DEM side. All the simulations were
performed in parallel on 56 processors in the Linux cluster of Leibniz Supercomputing
Centre (LRZ). The total CPU computational time corresponding to different simulations
can be found in Table 3.

Table 3. Total CPU computational time.

Simulation
Total CPU Computational Time (in Seconds)

RANS-DEM (Run Time = 1 s) LES-DEM (Run Time = 3 s)

Single-phase 3925 29,682
Two-phase (one-way coupled) 12,693 -
Two-phase (two-way coupled) 13,385 109,921
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Fluid and particle velocity profiles at the measurement locations are compared with
the experimental data. Fluid flow fields can be directly extracted and plotted at the
measurement locations from the OpenFOAM results. Time averaging on particles cannot
be performed as done for the continuum phase (air) due to the discrete nature of the
particles. The particles are evaluated in a slice around the measurement locations with a
thickness of 0.15H and the center lies precisely at the measurement locations for every 0.1 s
interval from the start to the end of the simulation. The slice thickness of 0.15H is adopted
as the same slice thickness was considered for sampling the particles in the previous
study [15]. The particle data collected for all the selected time intervals are combined,
and averaging is performed in each slice on the particles with the same location (only the
y-component). The resulting average particle velocity profiles are then compared with the
experimental data.

4. Results and Discussion

The results shown below are arranged in such a way that they indicate the workflow
adopted to investigate and solve the particle-laden BFS flow in OpenFOAM. The normal-
ized mean and fluctuating fluid velocity profiles are compared with the experimental data
at their respective measurement locations (x/H = 2, 5, 7, 9, 14). Normalized average particle
velocity profiles are compared with observed data in the experiment at their respective
measurement locations (x/H = 2, 5, 7, 9, 12) to assess the particle-phase results. We have
somewhat amplified the normalized velocity fields in order to highlight the deviations.

4.1. Single-Phase RANS and LES

To obtain correct results for discrete phase (particles), one must have acceptable results
for the continuum phase (air) with reasonable accuracy. Therefore, we first performed the
single-phase RANS and LES simulations using the pimpleFoam solver, which is able to
predict fluid velocity profiles with acceptable precision. For RANS and LES results, the
methods and formulae used to calculate the fluctuating components (Urms) are different.
Regarding the RANS models, for everything above mean flow fields, the fluctuating
component is calculated (with the assumption of isotropic turbulence holds true) directly
from the modelled turbulent kinetic energy (TKE; k) using Equation (22), which is the
modelled part of the fluctuating component.

Urms =

√
2
3

k (22)

In LES simulations, we aim to resolve 80–90% TKE, and the calculated Urms represents
the resolved fluctuating component. Urms is calculated by subtracting the mean flow field
from the instantaneous flow fields, as shown below:

Urms =

√√√√ 1
N

N

∑
i=0

(Ui −UMean)2 (23)

UMean =
1
N

N

∑
i=0

Ui (24)

where, Ui is the instantaneous velocity, UMean is the time-averaged velocity, and N is the
total number of time steps.

Figure 4 compares simulated streamwise air mean and fluctuating velocity profiles
under RANS (with kOmegaSST turbulence model) and LES (with kEqn and dynamicKEqn
turbulence models) frameworks with the experiment data. It is evident from the streamwise
air mean velocity profile plots (Figure 4a) that both RANS and LES (with dynamicKEqn
turbulence model) predict the correct mean flow and are able to predict the re-attachment
point (x/H ~ 7) quite accurately as observed in the original experiment (x/H ~ 7.4). On the
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other hand, Figure 4b shows that the streamwise air fluctuating components (Urms) from
RANS are somewhat underpredicted, which is not surprising as they represent only the
modelled part of the turbulent fluctuations. LES (with dynamicKEqn turbulence model)
is able to resolve the turbulent fluctuations more accurately and realistically than RANS.
LES simulation with static turbulence model (kEqn) performs very poorly with provided
LES mesh resolution (y+ ~ 3). The static LES turbulence model is not only unable to predict
flow separation but also overpredicts the mean flow and turbulent fluctuating velocities
by a huge margin. In LES, the calculated mean and fluctuating velocities represent the
statistical fields, which is a function of time over which the averaging is performed (in
our case: 3 s). A more accurate and realistic approximation of flow statistics would be
obtained if performed over a longer duration. In Figure 5, the simulated velocity fields are
shown under (a) RANS and (b) LES (using dynamicKEqn turbulence model) frameworks,
representing the level of resolution obtained under these approaches. RANS flow fields
are very smooth as they represent mean values, while eddy generation and decay can be
seen in LES flow fields. It must be emphasized that with the mesh resolution used in our
LES simulations (y+ ~ 3), static LES turbulence models were unable to predict correct fluid
velocity profiles, whereas the dynamic LES turbulence model resulted in a relatively real
estimation of mean and fluctuating fluid velocity with the used relatively coarser mesh, as
shown in our fluid velocity plots.
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Figure 5. OpenFOAM simulated velocity fields (magnitude) under (a) RANS (kOmegaSST) and
(b) LES (dynamicKEqn) frameworks.

In our next RANS-DEM and LES-DEM sections, we mainly focused on the simulation’s
accuracy in predicting particle dispersion on the influence of the carrier fluid (air) flow
turbulence. However, even the presence of the particles can modify the turbulence, as
discussed in the introduction. The potential modification in air turbulence due to the
presence of particles is not explicitly discussed in this study. Additionally, the turbulence
models employed do not consider the presence of particles as they are developed for
single-phase fluid flow and some works have noticed the potential failure of employed
turbulence models in specific flow scenarios [55]. However, new mathematical turbulence
models considering the particle’s presence are yet to be developed and do not come under
the scope of this study.

4.2. RANS-DEM

We have investigated the effect of one-way and two-way coupling on the continuum
and discrete phase results and found almost no difference between the results of either
coupling regime. The mass flow rate of 10% and the corresponding volumetric fraction
of particles is in order of ~10−5, which is indeed in the range of the two-way coupling
threshold suggested by Elghobashi [4]. Interestingly our one-way and two-way coupling
results for fluid phase (Figure 6) and particle phase (Figures 7 and 8; red circles) almost
overlap each other, suggesting that one-way coupling might also be adopted when particle
volumetric fraction is slightly greater (O ~ 10−5) than the threshold for one-way coupling.
As demonstrated by our fluid and particle phase results, one-way coupling seems to be
sufficient even for particle concentration in O ~ 10−5, which is slightly greater than the
standard threshold for one-way coupling.

Figure 9 also shows that when using RANS-DEM, the fluid mean velocity profiles
agree very well with the experimental data, as in the single-phase results. For brevity, we
show here streamwise air mean velocity profiles (Figure 9) only for two-way coupling
corresponding to different particle boundary conditions (injection velocity), as they are
very similar to RANS-DEM results for one-way coupling and single-phase RANS results.
Figure 9 shows that the air-phase results are independent of particle injection velocities due
to small particle concentration. Under the RANS-DEM framework, turbulent fluctuations
are significantly underpredicted, which can be seen in single-phase plots, and this under-
prediction of turbulent fluctuation also reflects in particle velocity plots (Figures 7 and 8;
red circles), where particles move roughly like a patch and do not disperse below the
step (y/H < 1) even after flow re-attachment (x/H ~ 7). This underprediction of particle
dispersion behind the step can also be seen in Figure 10a, which shows the particle spread
behind the step at t = 1 s.
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Figure 7. Comparisons of experimental and OpenFOAM simulated average streamwise particle
velocity profiles at the measurement locations for one-way coupling and 10% mass loading of copper
particles under RANS-DEM framework. (a) Particle injection velocity as (10.5, 0, 0) m/s, (b) particle
injection velocity same as that of the fluid velocity profile at inlet, (c) particle injection velocity as (0,
0, 0) m/s.
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Figure 8. Comparisons of experimental and OpenFOAM simulated average streamwise particle
velocity profiles at the measurement locations for two-way coupling and 10% mass loading of copper
particles under RANS-DEM and LES-DEM frameworks. (a) Particle injection velocity as (10.5, 0,
0) m/s, (b) a particle injection velocity same as that of the fluid velocity profile at the inlet, (c) particle
injection velocity as (0, 0, 0) m/s.
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Figure 9. Comparisons of experimental and OpenFOAM simulated streamwise air mean velocity
profiles at the measurement locations for two-way coupling and 10% mass loading of copper particles
under RANS-DEM framework. (a) Particle injection velocity as (10.5, 0, 0) m/s, (b) particle injection
velocity same as that of the fluid velocity profile at the inlet, (c) particle injection velocity as (0, 0,
0) m/s.
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Figure 10. Screenshot showing particle dispersion behind the step at 1 s under (a) RANS-DEM and
(b) LES-DEM frameworks.

One of the main questions that we tried to answer is: how effectively can RANS-
DEM, with simple dispersion models, predict particle dispersion in turbulent flows? In
other words, its effectiveness in obtaining instantaneous flow fields so that the turbulence
effect on the particle’s motion can be modelled accurately. For this purpose, two sim-
ple dispersion models are available in OpenFOAM, namely, GradientDispersionRAS and
StochasticDispersionRAS, based on Equation (18). An initial investigation reveals that the
StochasticDispersionRAS dispersion model gives slightly better results in relation to particle
dispersion and was also adopted by Greifzu et al. [15] in their RANS-DEM numerical simu-
lations. Therefore, we decided to use the StochasticDispersionRAS model in our RANS-DEM
simulations. Figure 7 shows the normalized streamwise average particle velocity profiles
corresponding to one-way coupling for different particle boundary conditions (injection ve-
locity). The results demonstrate that particle-phase results are also very similar for one-way
(Figure 7) and two-way coupling (Figure 8), but different particle injection velocities have a
notable effect on particle-phase results, unlike air-phase results. When particles are injected
with (10.5, 0, 0) m/s of injection velocity from the inlet of BFS (Figure 7a), the particle
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velocities at all the measurement locations are overpredicted, and their dispersion (spread
in the y-direction) is underpredicted. When particles are injected with the velocity that
follows the fluid velocity profile at the inlet (Figure 7b), the results improved slightly but
were still far from the experimental data, in which the particles moved roughly like a patch,
and a minimal number of particles were dispersed below the step (y/H < 1). When particles
are injected with (0, 0, 0) m/s of injection velocity (Figure 7c), the particle velocity profiles
provide a better match with the experimental data, but the dispersion of the particles is still
considerably underpredicted, similar to other RANS-DEM cases. It can also be seen from
Figure 8 that a very similar particle dispersion behavior is observed, even for two-way
coupling under the RANS-DEM framework. In the RANS-DEM framework, all the cases
with different boundary conditions for the particle-phase and under the considered cou-
pling regime underpredict the particle dispersion by a considerable margin and a minimal
number of particles are found below the step (y/H < 1) even after the flow re-attachment
point (x/H ~ 7). On the other hand, experimental data shows that particles disperse across
the extended channel section until they reach the re-attachment point (x/H ~ 7), and, after
this, the particle concentration below and above the step becomes almost uniform. Our
analysis shows that the simple dispersion models (DRW) are ineffective in incorporating
turbulence effects on the trajectory of particles.

In comparison to the RANS-DEM results of Greifzu et al. [15], our fluid flow results
are in good agreement with them and with the experimental data as well, but the particle-
phase results are entirely different. Their results showed that the RANS-DEM (and simple
dispersion model therein) can predict the correct particle dispersion and their velocity
profiles. Interestingly, we found that they were using a fluid density of 1000 kg/m3 (water)
instead of 1 kg/m3 (air) in their OpenFOAM numerical setup, even though the fluid used
in the experiment was air, not water. Using a density of 1000 kg/m3 results in a higher
body (buoyant force) and coupled forces (drag and pressure gradient force) acting on the
particles, which would disperse the particles in the domain even before the re-attachment
point, as observed in the particle velocity plots of Greifzu et al. [15]. It is demonstrated
that particles will be dispersed into the recirculation region only when their large-eddy
Stokes numbers are less than one [56]. The large-eddy Stokes numbers for fluid as air
(density = 1 kg/m3) and as water (density = 1000 kg/m3) are found to be 6.9 and 0.053,
respectively. Obviously, when the fluid density is that of water, the Stokes number is
significantly smaller than one, so the particles will also be dispersed into the recirculation
region (as they behave similar to tracers). Fluid flow results remain almost the same even
if the density of water is used instead of air because the momentum transferred from the
particle phase to the fluid phase remains of the same order of magnitude. This can be
explained as small particle concentrations result only in a few numbers of particles in each
computational cell and are simply not numerous enough to modify the fluid flow fields.
So, even by considering two-way coupling and a density of fluid as that of water does not
modify the fluid flow fields. This explanation also indicates that the previous observation
regarding the ability of the simple dispersion model (DRW) in accurately incorporating
turbulence effects on particle’s trajectory is not true and supports our observation about
simple dispersion models.

The dispersion models available in OpenFOAM are essentially discrete random walk
(DRW) type models and are calculated using the modelled turbulent kinetic energy (TKE).
These models are simple models based on rough assumptions, e.g., that the turbulence is
isotropic in the whole domain, which leads to the inappropriate modelling of turbulence
seen by particles. However, the turbulence is very anisotropic in the boundary layers, and
this anisotropic behavior is even more significant for wall-bounded flows with complex
geometries such as BFS flow. The shortcomings of the discrete random walk (DRW) type
of dispersion models can be avoided by better treatment of boundary layer effects. For
this purpose, an option could be the Continuous Random Walk (CRW) method to be
included in OpenFOAM, which offers a more physically sound way of modelling particle
dispersion [57]. The anisotropic behavior of turbulent flow is better modelled using the
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CRW method, recently presented by Mofakham [13]. An alternative stochastic approach to
describe the particle dispersion due to turbulence could be a straightforward generalization
of the stochastic approach introduced by Pope [58], which was originally developed to
describe single-phase flow. This approach is extended to describe the two-phase system by
Peirano et al. [59]. Xiang [14] used this stochastic model in their numerical simulation in
OpenFOAM and reported that it performs better than the already implemented dispersion
models (DRW models) in OpenFOAM. Although even with their implemented stochastic
model, the simulated particle dispersion was far from the reference data. There are also
the Reynolds stress transport models (RSTM) that directly evaluate the components of
Reynolds stresses and account for the anisotropy of turbulent fluctuations [60–62]. However,
knowledge of instantaneous fluctuations is required for specific problems, such as the one
involving particle dispersion and deposition. It was recently shown that a RANS approach
in conjunction with RSTM and DRW does not improve the results in terms of particle
dispersion, and that more sophisticated dispersion models such as CRW must be used [13].

In the original experiment, the particles traversed a sufficient distance (a development
channel length of 5.2 m) before they reached the inlet of BFS. This assured that the particles
had attained equilibrium with the fluid phase before the inlet of BFS, as they had enough
time (at least three particle response time, in the worst case) to come to equilibrium with the
fluid phase [53]. As at the inlet of BFS, the particle velocity profile was not measured and/or
available in the literature, and we do not know the exact particle velocity when they reach
the inlet of BFS. It is quite difficult to approximate the real particle velocities at the inlet of
BFS without this development channel. Our results demonstrate that the straightforward
assumption that all the particles have attained mean flow velocity seems unreasonable. The
best approximation of particle injection velocity was found to correspond to an injection
velocity of (0, 0, 0) m/s. This might be due to the fact that the particles may obtain real
physical velocity depending upon the particle reaction time and fluid flow around it. The
additional injection velocity, which one needs to provide along with the mass flux of the
particles, does not seem to be necessary as we specify mass flux of particles (e.g., kg/s)
that is injected from the inlet of the BFS. Once the particles are in the domain, they attain
velocities depending upon the flow around them and the particle response time (Stokes
number). However, this approach may vary in individual cases, and the results might look
different when the inlet channel (before BFS) length is increased. It also depends on the
different algorithms that different software use for particle generation and insertion. The
best practice guidelines for CFD should still be the extension of the inlet channel length and
allowing particles to develop real physical velocity, but this might be extra computational
overhead for CFD-DEM simulations.

4.3. LES-DEM

We decided to perform LES-DEM simulations to investigate the case in more detail;
fluid flow fields are calculated using the LES approach, then particle trajectories are cal-
culated based on resolved LES fluid flow fields without considering additional models to
include the effects of SGS on the motion of the particle. LES-DEM simulated fluid-flow
fields agree well with the experimental data, such as single-phase LES simulations. LES-
DEM simulated fluid velocity profiles are not shown here for the sake of brevity. The
LES-predicted turbulent fluctuation was a significant improvement over the RANS ap-
proach (see Figure 4b), and this is also reflected in particle dispersion, as seen in Figure 8
(green circles) and Figure 10b.

Figure 8 shows normalized streamwise average particle velocity profiles for 10% mass
loading of ~70 µm copper particles for two-way coupling corresponding to the different
options concerning the particle injection velocities under RANS-DEM (red circles) and
LES-DEM (green circles) frameworks. Compared to the RANS-DEM results, particle dis-
persion and velocity profiles have been improved considerably due to the ability of LES
to resolve flow fields in greater detail and improved predictions in view of the improved
representation of the flow field seen by the particles. Moreover, when the particles are
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injected with an injection velocity of (10.5, 0, 0) m/s from the inlet (Figure 8a), the par-
ticle velocities at all measurement locations are slightly overpredicted. When particles
are injected with an injection velocity that follows the fluid velocity profile at the inlet
(Figure 8b), the particle velocity profiles seem to be slightly overpredicted compared to
those observed in the experiment. When particles are injected with an injection velocity of
(0, 0, 0) m/s from the inlet of BFS (Figure 8c), the particle velocity profiles give a reasonably
good match with the experimental data at all the measurement locations. In all the three
LES-DEM cases, a very small number of particles is found in the recirculation region,
but after the re-attachment point (x/H ~ 7), enough particle dispersion is predicted as
observed in the original experiment. Compared to the original experiment, our LES-DEM
still underpredicts the particles’ dispersion, especially in the recirculation region. Taking
both the correctness of predicting particle velocity and their dispersion into account, we
found that the best results were obtained when particles are injected with (0, 0, 0) m/s of
injection velocity, and the probable reason of it being the best option to approximate the
particle boundary condition without extending the inlet channel is already explained in
our RANS-DEM section.

It can be clearly seen that the overall particle-phase results have improved considerably
with the LES-DEM approach. The particle-phase results, especially its dispersion, under
the LES-DEM framework can be further improved with increased mesh resolution (y+~1)
and/or with the inclusion of missing SGS in the equation of particle motion. However,
one must always bear in mind that extreme fine meshing can cause stability problems,
as CFD cells cannot be smaller than particle diameter under the unresolved CFD-DEM
framework, and can thus only be applied under consideration of point-particles (PP).
Additionally, further mesh refinement would require much more computational resources.
A recent study indicates that the use of stochastic dispersion models is necessary even in
the LES-DEM framework, especially for the fine particles, where the corresponding particle
relaxation time is of the same order as the smallest fluid flow time scale [63]. Our LES-DEM
results also indicate that the effect of SGS cannot be neglected and has a significant effect on
particle trajectories, especially for the particles with a small Stokes number, which was also
suggested by Ref. [10]. The effect of SGS on particle’s trajectory seems to play an even more
important role in LES-DEM simulations, where very fine meshes might not be possible
due to the prerequisite of unresolved CFD-DEM, where a particle must be significantly
smaller than the CFD cell size and must be recovered with efficient modelling approaches,
as shown in our results.

5. Summary and Conclusions

In this work, we have assessed the capability of OpenFOAM to solve the particle-laden
BFS flow in the different frameworks of RANS-DEM and LES-DEM. The RANS method
only provides the mean flow fields. Therefore, an additional dispersion model is used to
include the effect of turbulent fluctuation on the trajectory of particles. In contrast, LES
can resolve up to energy-containing eddies, but several constraints such as particles being
smaller than the CFD mesh in the unresolved CFD-DEM and computational limitations
restrict the extreme refinement of CFD mesh. Thus, it is necessary to make a compromise
between the accuracy obtained and the computational resources required, which is quite
challenging. Collectively, the following conclusions can be drawn from our study:

• We found that the threshold of coupling regime suggested by Elghobashi [4] is rigidly
formulated and it might be sufficient to include one-way coupling even when the
particle concentration is in O ~ 10−5, since we found almost no difference between the
fluid and particle phase results for one-way and two-way coupling;

• Under the RANS-DEM framework, simple dispersion models based on DRW sig-
nificantly underpredicted the particle dispersion. Consequently, more sophisticated
dispersion models such as CRW must be used in conjunction with RANS-DEM. Previ-
ously claimed results about the ability of the simple dispersion models in accurately
incorporating turbulence effects on particles were due to error in the numerical setup;
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• When using relatively coarse mesh resolution (y+ > 1), Dynamic LES turbulence
models seem to overcome the poor performance of static LES turbulence models in
predicting the mean and fluctuating components of turbulent flow. We recommend
using dynamic LES models when extreme mesh refinement is not possible due to the
limitation of particles being smaller than CFD cell size in unresolved CFD-DEM;

• Resolved CFD-DEM (particle resolved DNS) requires huge computational resources
and is restricted to a small number of particles. Point particle DNS-DEM is also com-
putationally expensive and should not be applied for larger particles than Kolmogorov
length scale. The LES-DEM seems to be a good compromise between accuracy and
computational feasibility. However, its application is mostly restricted to simple cases
(point-particles or small particles) due to the constraint of the particles being smaller
than the CFD cells in unresolved CFD-DEM. In addition, the unresolved component
of the turbulent velocity (SGS) seems to have a significant effect on particle dispersion
and cannot be neglected, especially when using larger y+ in LES-DEM;

• Our analysis of different options for approximating the initial particle velocity (particle
injection velocity) indicates that a suitable numerical approach might be to inject
particles with (0, 0, 0) m/s of particle injection velocity. The difference between the
results is small, but still might be appropriate so as to let the particles attain the real
physical velocity according to physics, for the cases where the initial particle velocity
is unavailable. However, this approach is case-dependent and software-specific. The
best practice guidelines for CFD should still be the extension of the inlet channel length
and allowing particles to develop real physical velocity, but this might be an extra
computational overhead for CFD-DEM simulations.

From our point of view, one of the best options for gaining success in predicting
dilute particle dispersion in turbulence flow can be an accurate calculation of the mean
flow statistics and a good stochastic model, although here, further benchmarking is still
necessary. More fundamental research and validations are required in both RANS-DEM
and LES-DEM before the complex physics related to fluid-particle systems can be studied
in detail, considering all factors such as surface, inertial, response, loading, and interaction
effects into account. Application of RANS-DEM and LES-DEM for real problems would
require larger CFD meshes, resulting in loss of information about turbulent fluctuations.
If we could recover this lost information with simple yet efficient methods, then it would
be of great engineering application. With the currently available computational resources,
both resolved CFD-DEM (particle-resolved DNS-DEM) and point-particle DNS-DEM are
still limited to simple cases with a small number of particles. More efficient algorithms and
computer architecture are required to achieve this, and more research should be encouraged
in this field.
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