Numerical Simulation of Mixing Fluid with Ferrofluid in a Magnetic Field Using the Meshless SPH Method
Abstract
:1. Introduction
2. Physical Models Description
3. Governing Equations
4. Numerical Procedure
5. Results and Discussions
5.1. Validation
5.2. Mixing Process under the Effect of Magnetic Fields
6. Conclusions
- By increasing the number of electrical wires, for some Reynolds numbers, the vortex shedding intensifies and causes an increase in the interface between the two fluids, which leads to a better mixing efficiency;
- The homogeneity of the mixing is improved by increasing the number of wires;
- The micromixer with three wires has optimum performance for a range of Reynolds numbers compared to the cases of one and two wires;
- For , the variation of efficiency for different numbers of wires is not as significant as that of the other Reynolds numbers at the outlet of the channel;
- If one aims to design a micromixer working in a wide range of Reynolds numbers, the results show that the case with three magnetic wires is recommended.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, G.S.; Chung, S.; Kim, C.B.; Lee, S.H. Applications of micromixing technology. Analyst 2010, 135, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—A review on passive and active mixing principles. Chem. Eng. Sci. 2005, 60, 2479–2501. [Google Scholar] [CrossRef]
- Nguyen, N.T. Micromixers: Fundamentals, Design and Fabrication; William Andrew: Norwich, NY, USA, 2011. [Google Scholar]
- Lin, Y.; Gao, C.; Gao, Y.; Wu, M.; Yazdi, A.A.; Xu, J. Acoustofluidic micromixer on lab-on-a-foil devices. Sens. Actuators B Chem. 2019, 287, 312–319. [Google Scholar] [CrossRef]
- Van Phan, H.; Coşkun, M.B.; Şeşen, M.; Pandraud, G.; Neild, A.; Alan, T. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. Lab A Chip 2015, 15, 4206–4216. [Google Scholar] [CrossRef]
- Ang, K.M.; Yeo, L.Y.; Hung, Y.M.; Tan, M.K. Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing. Biomicrofluidics 2016, 10, 054106. [Google Scholar] [CrossRef] [Green Version]
- Tan, H. Numerical study of a bubble driven micromixer based on thermal inkjet technology. Phys. Fluids 2019, 31, 062006. [Google Scholar] [CrossRef]
- Huang, K.R.; Chang, J.S.; Chao, S.D.; Wung, T.S.; Wu, K.C. Study of active micromixer driven by electrothermal force. Jpn. J. Appl. Phys. 2012, 51, 047002. [Google Scholar] [CrossRef]
- Niu, X.; Lee, Y.K. Efficient spatial-temporal chaotic mixing in microchannels. J. Micromech. Microeng. 2003, 13, 454. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Ma, Z.; Ye, X.; Zhou, Z. On-chip fast mixing by a rotary peristaltic micropump with a single structural layer. Sci. China Technol. Sci. 2013, 56, 1047–1054. [Google Scholar] [CrossRef]
- Wang, X.; Ma, X.; An, L.; Kong, X.; Xu, Z.; Wang, J. A pneumatic micromixer facilitating fluid mixing at a wide range flow rate for the preparation of quantum dots. Sci. China Chem. 2013, 56, 799–805. [Google Scholar] [CrossRef]
- Abbas, Y.; Miwa, J.; Zengerle, R.; Von Stetten, F. Active continuous-flow micromixer using an external braille pin actuator array. Micromachines 2013, 4, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Zhong, S. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration. Fluid Dyn. Res. 2013, 45, 025504. [Google Scholar] [CrossRef]
- Abdolahzadeh, M.; Tayebi, A.; Omidvar, P. Mixing process of two-phase non-newtonian fluids in 2D using smoothed particle hydrodynamics. Comput. Math. Appl. 2019, 78, 110–122. [Google Scholar] [CrossRef]
- Yao, L.B.; Wu, W.; Wu, X.S.; Chu, G.W.; Luo, Y.; Sun, B.C. Intensification of micromixing efficiency in a spinning disk reactor: Experimental investigation. Chem. Eng. Process. Process Intensif. 2021, 166, 108500. [Google Scholar] [CrossRef]
- Usefian, A.; Bayareh, M.; Shateri, A.; Taheri, N. Numerical study of electro-osmotic micro-mixing of Newtonian and non-Newtonian fluids. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 238. [Google Scholar] [CrossRef]
- Usefian, A.; Bayareh, M. Numerical and experimental study on mixing performance of a novel electro-osmotic micro-mixer. Meccanica 2019, 54, 1149–1162. [Google Scholar] [CrossRef]
- Kumar, V.; Paraschivoiu, M.; Nigam, K. Single-phase fluid flow and mixing in microchannels. Chem. Eng. Sci. 2011, 66, 1329–1373. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, H.; Shi, L.; Liu, Z.; Joo, S.W. An enhanced electroosmotic micromixer with an efficient asymmetric lateral structure. Micromachines 2016, 7, 218. [Google Scholar] [CrossRef] [Green Version]
- Neuringer, J.L.; Rosensweig, R.E. Ferrohydrodynamics. Phys. Fluids 1964, 7, 1927–1937. [Google Scholar] [CrossRef]
- Cai, G.; Xue, L.; Zhang, H.; Lin, J. A review on micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Andersson, H.; Valnes, O. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech. 1998, 128, 39–47. [Google Scholar] [CrossRef]
- Kafoussias, N.; Tzirtzilakis, E. Biomagnetic fluid flow over a stretching sheet with non linear temperature dependent magnetization. Z. Für Angew. Math. Und Phys. ZAMP 2003, 54, 551–565. [Google Scholar] [CrossRef]
- Tzirtzilakis1, E.; Sakalis, V.; Kafoussias, N.; Hatzikonstantinou, P. Biomagnetic fluid flow in a 3D rectangular duct. Int. J. Numer. Methods Fluids 2004, 44, 1279–1298. [Google Scholar] [CrossRef]
- Tzirtzilakis, E.; Kafoussias, N. Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet. J. Heat Transf. 2010, 132, 011702. [Google Scholar] [CrossRef]
- Tzirtzilakis, E. A mathematical model for blood flow in magnetic field. Phys. Fluids 2005, 17, 077103. [Google Scholar] [CrossRef]
- Tsai, T.H.; Liou, D.S.; Kuo, L.S.; Chen, P.H. Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sens. Actuators A Phys. 2009, 153, 267–273. [Google Scholar] [CrossRef]
- Wen, C.Y.; Liang, K.P.; Chen, H.; Fu, L.M. Numerical analysis of a rapid magnetic microfluidic mixer. Electrophoresis 2011, 32, 3268–3276. [Google Scholar] [CrossRef]
- Cao, Q.; Han, X.; Li, L. An active microfluidic mixer utilizing a hybrid gradient magnetic field. Int. J. Appl. Electromagn. Mech. 2015, 47, 583–592. [Google Scholar] [CrossRef]
- Sharifi, A.; Yekani Motlagh, S.; Badfar, H. Investigation of the effects of two parallel wires’ non-uniform magnetic field on heat and biomagnetic fluid flow in an aneurysm. Int. J. Comput. Fluid Dyn. 2018, 32, 248–259. [Google Scholar] [CrossRef]
- Bayareh, M.; Usefian, A.; Ahmadi Nadooshan, A. Rapid mixing of Newtonian and non-Newtonian fluids in a three-dimensional micro-mixer using non-uniform magnetic field. J. Heat Mass Transf. Res. 2019, 6, 55–61. [Google Scholar]
- Tokas, S.; Zunaid, M.; Ansari, M.A. Non-Newtonian fluid mixing in a Three-Dimensional spiral passive micromixer. Mater. Today Proc. 2021, 47, 3947–3952. [Google Scholar] [CrossRef]
- Saadat, M.; Shafii, M.B.; Ghassemi, M. Numerical investigation on mixing intensification of ferrofluid and deionized water inside a microchannel using magnetic actuation generated by embedded microcoils for lab-on-chip systems. Chem. Eng. Process. Process Intensif. 2020, 147, 107727. [Google Scholar] [CrossRef]
- Badfar, H.; Motlagh, S.Y.; Sharifi, A. Numerical Simulation of Magnetic Drug Targeting to the Stenosis Vessel Using Fe3O4 Magnetic Nanoparticles Under the Effect of Magnetic Field of Wire. Cardiovasc. Eng. Technol. 2020, 11, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Motlagh, S.Y.; Badfar, H. Numerical investigation of magnetic drug targeting using magnetic nanoparticles to the Aneurysmal Vessel. J. Magn. Magn. Mater. 2019, 474, 236–245. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L. A review on micromixers actuated with magnetic nanomaterials. Microchim. Acta 2017, 184, 3639–3649. [Google Scholar] [CrossRef]
- Cao, Q.; Fan, Q.; Chen, Q.; Liu, C.; Han, X.; Li, L. Recent advances in manipulation of micro-and nano-objects with magnetic fields at small scales. Mater. Horiz. 2020, 7, 638–666. [Google Scholar] [CrossRef]
- Meng, X.; Bachmann, M.; Artinov, A.; Rethmeier, M. The influence of magnetic field orientation on metal mixing in electromagnetic stirring enhanced wire feed laser beam welding. J. Mater. Process. Technol. 2021, 294, 117135. [Google Scholar] [CrossRef]
- Orthmann, J.; Kolb, A. Temporal Blending for Adaptive SPH; Computer Graphics Forum; Wiley Online Library: Malden, NJ, USA, 2012; Volume 31, pp. 2436–2449. [Google Scholar]
- Robinson, M.; Cleary, P.; Monaghan, J. Analysis of mixing in a twin cam mixer using Smoothed Particle Hydrodynamics. AIChE J. 2008, 54, 1987–1998. [Google Scholar] [CrossRef]
- Lenaerts, T.; Dutré, P. Mixing Fluids and Granular Materials; Computer Graphics Forum; Wiley Online Library: Malden, NJ, USA, 2009; Volume 28, pp. 213–218. [Google Scholar]
- Abdolahzadeh, M.; Tayebi, A.; Omidvar, P. Thermal effects on two-phase flow in 2D mixers using SPH. Int. Commun. Heat Mass Transf. 2021, 120, 105055. [Google Scholar] [CrossRef]
- Tayebi, A.; Shekari, Y.; Heydari, M.H. A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. J. Comput. Phys. 2017, 340, 655–669. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, K.; Liu, Z. Three-dimensional MLS-based numerical manifold method for static and dynamic analysis. Eng. Anal. Bound. Elem. 2019, 109, 43–56. [Google Scholar] [CrossRef]
- Tayebi, A.; Jin, Y.C. Development of moving particle explicit (MPE) method for incompressible flows. Comput. Fluids 2015, 117, 1–10. [Google Scholar] [CrossRef]
- Hon, Y.C.; Šarler, B.; Yun, D.F. Local radial basis function collocation method for solving thermo-driven fluid-flow problems with free surface. Eng. Anal. Bound. Elem. 2015, 57, 2–8. [Google Scholar] [CrossRef]
- Mramor, K.; Vertnik, R.; Šarler, B. Application of the local RBF collocation method to natural convection in a 3D cavity influenced by a magnetic field. Eng. Anal. Bound. Elem. 2020, 116, 1–13. [Google Scholar] [CrossRef]
- Liu, G.R.; Gu, Y.T. An Introduction to Meshfree Methods and Their Programming; Springer Science & Business Media: Dordrecht, The Netherland, 2005. [Google Scholar]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Jiang, T.; Ouyang, J.; Li, Q.; Ren, J.; Yang, B. A corrected smoothed particle hydrodynamics method for solving transient viscoelastic fluid flows. Appl. Math. Model. 2011, 35, 3833–3853. [Google Scholar] [CrossRef]
- Kiara, A.; Hendrickson, K.; Yue, D.K. SPH for incompressible free-surface flows. Part II: Performance of a modified SPH method. Comput. Fluids 2013, 86, 510–536. [Google Scholar] [CrossRef]
- Monaghan, J.J. Simulating free surface flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Cleary, P.W. Modelling confined multi-material heat and mass flows using SPH. Appl. Math. Model. 1998, 22, 981–993. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.; Kocharyan, A. SPH simulation of multi-phase flow. Comput. Phys. Commun. 1995, 87, 225–235. [Google Scholar] [CrossRef]
- Aristodemo, F.; Federico, I.; Veltri, P.; Panizzo, A. Two-phase SPH modelling of advective diffusion processes. Environ. Fluid Mech. 2010, 10, 451–470. [Google Scholar] [CrossRef]
- Gobby, D.; Angeli, P.; Gavriilidis, A. Mixing characteristics of T-type microfluidic mixers. J. Micromech. Microeng. 2001, 11, 126. [Google Scholar] [CrossRef]
- Erickson, D.; Li, D. Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir 2002, 18, 8949–8959. [Google Scholar] [CrossRef]
- Bedram, A.; Moosavi, A.; Hannani, S.K. Analytical relations for long-droplet breakup in asymmetric T junctions. Phys. Rev. E 2015, 91, 053012. [Google Scholar] [CrossRef] [Green Version]
- Violeau, D. Fluid Mechanics and the SPH Method: Theory and Applications; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Bonet, J.; Lok, T.S. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 1999, 180, 97–115. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703. [Google Scholar] [CrossRef]
- Monaghan, J.J.; Kos, A. Solitary waves on a Cretan beach. J. Waterw. Port Coastal Ocean Eng. 1999, 125, 145–155. [Google Scholar] [CrossRef]
- Abdolahzadeh, M.; Tayebi, A.; Mansouri Mehryan, M. Numerical Simulation of Mixing in Active Micromixers Using SPH. Transp. Porous Media 2022, 1–18. [Google Scholar] [CrossRef]
- Lee, E.S.; Moulinec, C.; Xu, R.; Violeau, D.; Laurence, D.; Stansby, P. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 2008, 227, 8417–8436. [Google Scholar] [CrossRef]
- Shadloo, M.S.; Zainali, A.; Sadek, S.H.; Yildiz, M. Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput. Methods Appl. Mech. Eng. 2011, 200, 1008–1020. [Google Scholar] [CrossRef]
- Xu, R.; Stansby, P.; Laurence, D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 2009, 228, 6703–6725. [Google Scholar] [CrossRef]
- Tayebi, A.; Dehkordi, B.G. Development of a piso-sph method for computing incompressible flows. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 481–490. [Google Scholar] [CrossRef]
- Morris, J.P. Analysis of Smoothed Particle Hydrodynamics with Applications; Monash University Australia: Melbourne, Australia, 1996. [Google Scholar]
- Kim, Y.D.; An, S.J.; Maeng, J.S. Numerical analysis of the fluid mixing behaviors in a microchannel with a circular cylinder and an oscillating stirrer. J. Korean Phys. Soc. 2007, 50, 505–513. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdolahzadeh, M.; Tayebi, A.; Ahmadinejad, M.; Šarler, B. Numerical Simulation of Mixing Fluid with Ferrofluid in a Magnetic Field Using the Meshless SPH Method. Fluids 2022, 7, 341. https://doi.org/10.3390/fluids7110341
Abdolahzadeh M, Tayebi A, Ahmadinejad M, Šarler B. Numerical Simulation of Mixing Fluid with Ferrofluid in a Magnetic Field Using the Meshless SPH Method. Fluids. 2022; 7(11):341. https://doi.org/10.3390/fluids7110341
Chicago/Turabian StyleAbdolahzadeh, Mohsen, Ali Tayebi, Mehrdad Ahmadinejad, and Božidar Šarler. 2022. "Numerical Simulation of Mixing Fluid with Ferrofluid in a Magnetic Field Using the Meshless SPH Method" Fluids 7, no. 11: 341. https://doi.org/10.3390/fluids7110341
APA StyleAbdolahzadeh, M., Tayebi, A., Ahmadinejad, M., & Šarler, B. (2022). Numerical Simulation of Mixing Fluid with Ferrofluid in a Magnetic Field Using the Meshless SPH Method. Fluids, 7(11), 341. https://doi.org/10.3390/fluids7110341