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Abstract: The paper describes a numerical method that considers specific computational fluid dy-
namics (CFD) aspects of viscous incompressible flow simulations in the vicinity of interfaces between
unmatched fragments of unstructured grids. The method is based on the general grid interface
(GGI) principle, which involves conservative flux interpolation and does not require original grid
modification at unmatched interfaces. A method is presented which combines adjacent unmatched
fragments of an unstructured grid into a single domain by means of virtual interfaces considering
connections between adjacent cells through virtual faces. The performance of the method is illustrated
by the finite-volume discretization of the transport equation in the region of matched interfaces and
its modification for the case of unmatched interfaces. The efficiency of the proposed method is
demonstrated by three-dimensional CFD simulations with grid models composed of unmatched
unstructured grid fragments. The simulation results are compared with equivalent simulations on
matched grids. The influence of unmatched interfaces on the convergence rate and accuracy of the
solution is assessed.

Keywords: hydrodynamic flows; unmatched grids; general grid interface; SIMPLE algorithm;
unmatched grid interface

1. Introduction

At present, demand for CFD simulations of industrial objects based on the solution
of the three-dimensional Navier–Stokes equations and involving large-scale models has
grown significantly. Examples of such applications are simulations in nuclear power
engineering, shipbuilding, and aircraft engineering, as well as other simulations that model
hydrodynamic flows in complex-geometry structures [1–6]. In most cases, such simulations
are done on a single grid that can contain more than a billion computational points (cells).
The generation of such grid models representing all the details of physical processes taking
place in the computational model is a nontrivial and generally time- and resource-intensive
task. Dividing a complex initial geometry into simpler fragments makes the task of grid
generation much easier, provides higher-quality grids, and efficiently saves computational
resources. For example, optional grid refinement in individual fragments delivers a more
accurate solution without significantly increasing the cell count in the grid model. Such grid
models are usually composed of unmatched grid fragments generally having a different
number and position of nodes at their adjacent boundaries. CFD simulations on such
grids cannot be performed by standard approaches and require special methods to be
developed. A key feature of CFD simulations using such grid models is that the unmatched
grid fragments must be combined into a single computational model by means of special
unmatched grid interfaces. The main problem of the unmatched grid interfaces is that they
are nonconservative, which may lead to an unstable solution or perturbations [7].
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Among the grid interface matching approaches proposed in the literature, there are a
number of algorithms that geometrically merge fragments of arbitrary unstructured grids
into a single grid model [8–10]. This is done by the modification of the original grid and
the transformation of interfaces into a set of inner faces. These methods keep the grid
model calculations conservative, but the process of the geometric merging of arbitrary
unstructured grids requires using a large number of computational geometry algorithms
(exact positioning of new nodes, node merging, projection of resulting nodes to edges and
faces, etc.) and does not exclude the risk of creating domains with “poor” cells, the quality
of which falls beyond admissible criteria.

There is a different group of methods, the so-called buffer/zipper layer [11,12], which
is based on the creation in the region of unmatched grid interfaces of an intermediate un-
structured layer to link the unmatched grid fragments. These methods are also conservative
in grid model calculations. The drawback of this group of methods is that they cannot be
used with grid models containing arbitrary unstructured grids, which limits the range of
their applications in industry-oriented simulations on arbitrary-geometry grids.

In terms of computational efficiency, the most attractive approach is to use conservative
methods based on the interpolation of quantities in the region of the unmatched interfaces.
Such methods neither modify nor reconstruct the original grid at interfaces, which makes
their programming much easier. One such method is the “patched grid” [13], which is
widely used in calculations on multidomain grids. The drawback of this method is that it
requires a high-quality structured grid.

One of the interpolation-based methods for combining unmatched unstructured grid
interfaces is the general grid interface (GGI) method [14]. The GGI algorithm does not
require modifying the original grid and is based on the use of weights determined by
the face area ratio of virtual faces created by face projection from one of the interfaces
to the other. The GGI method formed the basis for the development and successful
implementation of a method enabling computations of nonoverlapping moving grids [15].
The authors of the GGI method demonstrated the conservativeness of the GGI interface
and its modifications, given that the weights satisfy some criteria, but did not demonstrate
that such weights can be found in all cases (for example, for unmatched unstructured
interfaces). The authors also did not describe the procedure of interpolation between the
faces of unmatched interfaces, which requires additional algorithms.

This paper describes a numerical method, which considers specific aspects of solving
the Navier–Stokes equations in viscous incompressible flow simulations in the vicinity of
interfaces between unmatched arbitrary unstructured grid fragments. The method is based
on the philosophy of the GGI method. As distinct from the latter, our method does not
require calculating the weights because it creates an identical set of virtual faces at adjacent
unmatched interfaces, which guarantees its conservativeness. We propose a method of inter-
polation between the faces of unmatched interfaces based on area averaging. This method
makes it possible to combine adjacent unmatched grid fragments into a single domain by
linking adjacent cells through virtual faces, which saves time for problem-solving.

The numerical methods presented in this paper are implemented within the Russian
software package LOGOS [16,17]. The performance of our method is demonstrated by
simulations of turbulent flows in a circular pipe with a sudden restriction and in a circular
diffuser. Each of the simulations is done using grid models consisting of matched and
unmatched unstructured grid fragments. The influence of the unmatched interfaces on the
convergence rate and accuracy of the solution is assessed.

2. Mathematical Model and Numerical Method
2.1. Mathematical Model

We consider a mathematical model of an isothermal flow of a viscous incompressible
fluid. Under the given assumptions, the flow is described by the Navier–Stokes equations
in the following form [18,19]:
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{
∇ · u = 0,
ρ
(

∂u
∂t + (u · ∇)u

)
−∇ · τ = −∇p.

(1)

where ρ is the simulated fluid density, t is the time, u is the velocity vector of the averaged
flow in three-dimensional Cartesian coordinates, τ = τµ + τt is the sum of the molecular
and turbulent components in the viscous part of the stress tensor, p is the pressure, Γ is the
diffusion coefficient, and ϕ is a scalar quantity.

The system of Equation (1) is solved by numerical integration on a finite-volume
grid. As an illustration of the final-volume discretization of Equation (1), consider the
discretization of the equation of transfer of scalar quantity ϕ:

ρ
∂ϕ

∂t
+ ρ∇(uϕ)−∇(Γ∇ϕ) = 0 (2)

The first term in (2) is an unsteady member, the second one is a convective member,
and the next one is a diffusive member. To simplify our presentation below, we consider
the diffusion coefficient Γ to be a constant. In the general case, the complete form for
the discrete equivalent of the differential equation of transfer of the scalar quantity (2),
considering the assumptions above, with the time member approximated by an implicit
Eulerian scheme [20], for the reference volume (cell) P is given by:

ρ
ϕP −ϕt−1

P
∆t

VP + CP − DP = 0. (3)

Here, ϕP is the scalar quantity at the center of cell P at the current time step, ϕt−1
P is

the scalar quantity at the center of cell P at the previous time step, CP is the convective
member for cell P at the current time step, and DP is the diffusive member for cell P at the
current time step.

In what follows, the method is described for the case of discrete equivalents of the
convective CP and diffusive DP members for a matched interface and their modification for
an unmatched interface.

Consider a computational model composed of two grid fragments representing areas
A and B, the adjacent boundaries of which fit each other in both the number and position
of their nodes and create a pair of matched interfaces (Figure 1).

Approximated on the finite-volume grid, the convective and diffusive members at the
current time step for cell P lying at the matched interface are given by

CP = ∑
f= f ace(Pinner ,Pbound)

ρϕ f (u f · S f ) + ∑
f= f ace(Pinter f ace)

ρϕ f (u f · S f ), (4)

DP = ∑
f= f ace(Pinner ,Pbound)

Γ(∇ϕ f · S f ) + ∑
f= f ace(Pinter f ace)

Γ(∇ϕ f · S f ), (5)

where Sf = Sf nf is the area normal to face f, Sf is the area of face f, ϕf is the scalar quantity
at the center of face f at the current time step, uf is the velocity at the center of face f at the
current time step, ∇ϕf is the gradient of the scalar quantity on face f at the current time
step, f = face(Pinner, Pbound) is summing over all the inner and boundary faces of cell P, and
f = face(Pinterface) is summing over the interface faces of cell P.

The values of unknowns ϕf and uf for the inner and interface faces can be calculated
by any of the known approximation schemes [18]. For the approximation scheme CD, the
values of ϕf and uf are determined on face f assuming the linear variation in ϕf and uf
between the centers of cells P and N (Figure 1), and are defined by

ϕf = λf ϕP + (1 − λf) ϕN, (6)

uf = λf uP + (1 − λf) uN, (7)
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where the value of the geometric interpolation coefficient λf is defined as the ratio of
distances fN and PN projected on face normal nf for cell P adjacent to cell N through face f
(Figure 1), and is given by

λ f =

∣∣∣n f · dN f
∣∣∣∣∣∣n f · dN f

∣∣∣+ ∣∣∣n f · dP f
∣∣∣ , (8)

where dNf and dPf are the vectors constructed between the cell centers and face center f
(Figure 1).
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The calculations of the gradients on the faces of arbitrary unstructured grids are
corrected for nonorthogonality [21]. The value of gradient ∇ϕn

f on interface face f of cell P
(Figure 1) at the n-th iteration of the current time step is defined by

∇ϕn
f = (ϕn

N −ϕn
P)

S f

S f · dPN
+∇ϕn−1

f
− (∇ϕn−1

f · dPN)
S f

S f · dPN
, (9)

where ∇ϕn−1
f = λ f∇ϕ

n−1
P + (1 − λ f )∇ϕ

n−1
N is the interpolated gradient of the scalar

quantity on face f at the previous iteration.
In turn, gradient ∇ϕP at the center of cell P can be calculated by the Green–Gauss

algorithm [18] (the same is for cell N):

∇ϕP =
1

VP
∑

f= f ace(P)
ϕ f S f , (10)

where f = face(P) is summing over all faces of cell P, including inner, boundary, and
interface faces.

The discrete equivalent of the differential equation of transfer of the scalar quantity
(3) can finally be represented as a system of algebraic equations, in which the following
equation is constructed for each cell P in the domain (Figure 1):
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aPϕP + aPNϕN + ∑
i=nb(P)

aiϕi = bP, (11)

where aP is the diagonal coefficient of cell P, aPN is the nondiagonal coefficient relating cells
P and N through the matched interface, ai are the nondiagonal coefficients relating cell P
to the cells in domain A through common (inner) faces, bP is the right-hand member, and
i = nb(P) is summing over all neighbor cells i having common faces with cell P.

As a result, for the grid model composed of two matched domains A and B (Figure 2),
a system of algebraic equations, (12), is developed, which can be solved by one of the
iteration methods [22]:

aA1 · · · 0 aA1,B1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · aAN 0 · · · aAN ,BN

aA1,B1 · · · 0 aB1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · aAN ,BN 0 · · · aBN

(ϕ) = (b), (12)

where aAi , i ∈ [1 . . . N] are the diagonal coefficients of the cells in area A, aBi are the
diagonal coefficients of the cells in area B, aAi Bi are the nondiagonal coefficients relating
cells Ai to cells Bi through the interface faces, (ϕ) is the vector of the sought scalar quantity,
and (b) is the vector of the right-hand member.

Fluids 2022, 7, x  5 of 17 
 

where f = face(P) is summing over all faces of cell P, including inner, boundary, and in-
terface faces. 

The discrete equivalent of the differential equation of transfer of the scalar quantity 
(3) can finally be represented as a system of algebraic equations, in which the following 
equation is constructed for each cell P in the domain (Figure 1): 

( )
φ φ φP P PN N i i P

i nb P
a a a b

=

+ + = , (11)

where aP is the diagonal coefficient of cell P, aPN is the nondiagonal coefficient relating 
cells P and N through the matched interface, ai are the nondiagonal coefficients relating 
cell P to the cells in domain A through common (inner) faces, bP is the right-hand mem-
ber, and i = nb(P) is summing over all neighbor cells i having common faces with cell P. 

As a result, for the grid model composed of two matched domains A and B (Figure 
2), a system of algebraic equations, (12), is developed, which can be solved by one of the 
iteration methods [22]: 

 
     

 
 

     
 

1 1 1

1 1 1

,

,

,

,

0 0

0 0
(φ) ( )0 0

0 0

N N N

N N N

A A B

A A B

A B B

A B B

a a

a a
ba a

a a

 
 
 
  = 
 
 
 
 

, (12)

where 
iAa , i∈ [1…N] are the diagonal coefficients of the cells in area A, 

iBa are the di-

agonal coefficients of the cells in area B, 
i iA Ba are the nondiagonal coefficients relating 

cells Ai to cells Bi through the interface faces, (φ) is the vector of the sought scalar quan-
tity, and (b) is the vector of the right-hand member. 

 
Figure 2. Schematic example of a grid with a matched interface. 

To simplify the presentation, we do not show the nondiagonal coefficients relating 
the cells through the inner faces in Equation (12). Let us write the diagonal coefficients in 
Equation (12) for the cells in area A (the same is for the cells in area B) without consider-
ing the boundary conditions at the n-th iteration of the current time step: 

φ
ρ
Δ

i i i

i i

n
A A A

A A innera V S S
t

= + + interface , (13)

Figure 2. Schematic example of a grid with a matched interface.

To simplify the presentation, we do not show the nondiagonal coefficients relating
the cells through the inner faces in Equation (12). Let us write the diagonal coefficients in
Equation (12) for the cells in area A (the same is for the cells in area B) without considering
the boundary conditions at the n-th iteration of the current time step:

aAi = ρ
ϕn

Ai

∆t
VAi + SAi

inner + SAi
inter f ace, (13)

where the term SAi
inner is created due to the adjacency of cell Ai with the cells in area A

through inner faces f :

SAi
inner = ∑

f= f ace(Ainner)

(
ρλ f un

f · S f − Γ
S f

n f · dAi Aj

)
, (14)
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where Ai is the cell adjacent to cell Aj through the inner face, the term SAi
inter f ace is created

due to the adjacency of cell Ai with cell Bi through interface faces f :

SAi
inter f ace = ∑

f= f ace(Ainter f ace)

(
ρλ f un

f · S f − Γ
S f

n f · dAi Bi

)
. (15)

The nondiagonal coefficients in the system of linear algebraic Equation (12) relating
the cells in area A (the same is for the cells in area B) through the inner faces at the n-th
iteration of the current time step are given by

aAi Aj = ∑
f= f ace(Ainner)

(
ρ(1− λ f )u

n
f · S f + Γ

S f

n f · dAi Aj

)
. (16)

The nondiagonal coefficients in the system of linear algebraic Equation (12) relating
cell Ai to cell Bi through the interface faces at the n-th iteration of the current time step are
given by

aAi Bi = ∑
f= f ace(Ainter f ace)

(
ρ(1− λ f )u

n
f · S f + Γ

S f

n f · dAi Bi

)
. (17)

The coefficients on the right side of the system of linear algebraic Equation (12) for
the cells in area A (the same is for the cells in area B) without considering the boundary
conditions at the n-th iteration of the current time step are given by

bAi = ρ
ϕt−1

Ai

∆t
VAi + binner

Ai
+ binter f ace

Ai
, (18)

where binner
Ai

and binter f ace
Ai

are given by

binner
Ai

= ∑
f= f ace(Pinner)

ΓS f

[
∇ϕ f · n f −

∇ϕ f · dAi Aj

n f · dAi Aj

]n−1

, (19)

binter f ace
Ai

= ∑
f= f ace(Pinter f ace)

ΓS f

[
∇ϕ f · n f −

∇ϕ f · dAi Bi

n f · dAi Bi

]n−1

. (20)

The finite-volume discretization algorithm described above applies to all of the equa-
tions in (1). The method can be used in calculations of viscous incompressible flows on
grid models of any dimensionality. However, the potential of its application is limited to
calculations on models composed of a single grid or a grid composed of matched grid
fragments. At present, this limitation makes the method much more difficult to use in most
industry-oriented calculations, when grids are built of unmatched fragments to resolve
details of specific physical processes. Such calculations require special interfaces, in which
quantitiesϕf, uf in (4) and (5), and quantities∇ϕf in (9) on the faces belonging to unmatched
interfaces cannot be calculated by standard approximation schemes, and the neighborhood
of cell P with several cells on the opposite interface must be taken into account.

Below we describe a modification of the numerical method, which considers specific
CFD aspects of viscous incompressible flow simulations in the vicinity of interfaces between
unmatched grid fragments.

2.2. Unmatched Interface Linking Method

We consider a computational model composed of two grid fragments representing
areas A and B, the adjacent boundaries of which create a pair of unmatched interfaces
(Figure 3). The unmatched interfaces are understood to be adjacent boundaries of un-
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matched grid fragments, in which the number and position of nodes are different in the
general case.
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Figure 3. Creation of virtual faces.

To merge the unmatched interfaces, the original faces are replaced by virtual ones. The
geometric parameters of the virtual faces are determined by the successive projection of
the original faces in area A to all of the original faces in area B. To identify the coordinates
of the nodes created at the face intersections, one can use any of the polygon intersection
algorithms [23]. The resulting set of virtual faces constitutes a virtual interface, which links
the cells of the unmatched adjacent grid areas (Figure 3).

In the general case, the virtual interface consists of a set of inner and boundary virtual
faces (Figure 4). The boundary virtual faces are not linked to the cells on the opposite
interface and must be treated in accordance with the chosen boundary conditions. The
inner virtual faces create a link between the adjacent cells on the interface.
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Consider the modification of the diffusive (4) and convective (5) members with a
transition from the original to the virtual faces for the case of cell P belonging to the
unmatched interface (Figure 5).

A discrete equivalent of convective member (4) for cell P belonging to the unmatched
interface is expressed as:

CP = ∑
f= f ace(Pinner ,Pbound)

ρϕ f (u f · S f ) + ∑
f= f ace(Pinter f ace)

∑
v
ρϕ f v(u f v · S f v), (21)

where ϕ f v and u f v are the scalar quantity and velocity on virtual face fv created on original
face f at the current time step, and S f v is the area of virtual face fv normal to original face f.
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A discrete equivalent of diffusive member (5) for cell P belonging to the unmatched
interface is expressed as:

DP = ∑
f= f ace(Pinner ,Pbound)

Γ(∇ϕ f · S f ) + ∑
f= f ace(Pinter f ace)

∑
v

Γ(∇ϕ f v · S f v), (22)

where ∇ϕ f v is the gradient of the scalar quantity on virtual face fv.
The values of unknownsϕn

f v , un
f v in (21) belong to the center of virtual face fv (Figure 5)

and can be calculated by any of the known schemes [20]. For the approximation scheme
CD, the values of ϕ f v and u f v are determined on face fv assuming the linear variation in
ϕ f v and u f v between the centers of cells P and Nv (Figure 5) and are defined by

ϕ f v = λ f vϕP + (1− λ f v)ϕNv , (23)

u f v = λ f v uP + (1− λ f v)uNv , (24)

where the value of the geometric interpolation coefficient λ f v is defined as the ratio of
distances f Nv and P Nv projected on face normal nf for cell P adjacent to cell Nv through
face fv (Figure 5), and is given by

λ f v =

∣∣∣n f · dNv f v
∣∣∣∣∣∣n f · dNv f v

∣∣∣+ ∣∣∣n f · dP f v
∣∣∣ , (25)

where dNv f v
and dPv f v

are the vectors constructed between the cell centers and face center f
(Figure 5).

Considering the nonorthogonality correction, the value of gradient ∇ϕn
f v on virtual

face fv of cell P (Figure 1) at the n-th iteration of the current time step equals:

∇ϕn
f v = (ϕn

Nv
−ϕn

P)
S f v

S f v · dPNv

+∇ϕn−1
f v − (∇ϕn−1

f v · dPNv)
S f v

S f v · dPNv

, (26)
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where ∇ϕn−1
f v = λ f v∇ϕn−1

P + (1− λ f v)∇ϕn−1
Nv

is the interpolated gradient of the scalar
quantity on face fv calculated at the previous iteration.

The value of gradient∇ϕP at the center of cell P belonging to the unmatched interface
is calculated by the Green–Gauss algorithm (the same is for cells Nv):

∇ϕP =
1

VP

 ∑
f= f ace(Pinner ,Pbound)

ϕ f S f + ∑
f= f ace(Pinter f ace)

ϕav
f S f

, (27)

where ϕav
f =

∑
v
ϕ f v S f v

∑
v

S f v
is the averaged value of the scalar quantity on interface face f.

As a result of the above transformations, additional terms incorporating the link
between the adjacent cells through the virtual faces are included in the discrete equivalent of
the equation of transfer (11) for each cell P belonging to the unmatched interface (Figure 5).
In the general case, for the grid model composed of two unmatched areas A and B (Figure 6),
a system of linear algebraic equations, (28), is developed, which can be solved by one of the
iteration methods [22]:

aA1 · · · 0 aA1,B1 aA1,B2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · aAN 0 0 · · · aAN ,BM−1 aAN ,BM

aA1,B1 · · · 0 aB1 · · · · · · 0 0
aA1,B2 · · · 0 · · · aB2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · aAN ,BM−1 0 0 · · · aBM−1 0
0 · · · aAN ,BM 0 0 · · · 0 aBM


(ϕ) = (b), (28)

where aAi , i ∈ [1 . . . N] are the diagonal coefficients of cells Ai, aBj , j ∈ [1 . . . M] are the
diagonal coefficients of cells Bj, aAi Bj are the nondiagonal coefficients relating cells Ai to
cells Bj j through the virtual faces of the unmatched interface, (ϕ) is the vector of the sought
scalar quantity, and (b) is the vector of the right-hand member.

Fluids 2022, 7, x  10 of 17 
 

 
Figure 6. Schematic example of a grid with an unmatched interface. 

To simplify the presentation, we do not show the nondiagonal coefficients relating 
the cells through the inner faces in the system of linear algebraic equations (28). Let us 
write the diagonal coefficient in the system of linear algebraic equations (28) for the cells 
in area A without considering the boundary conditions at the n-th iteration of the current 
time step (the same is for the cells in area B): 

φ
ρ
Δ

i

i i i i

n
A inner

A A A Aa V S S
t

= + + interface , (29) 

where 
i

inner
AS  is the term created due to the adjacency of cell Ai with the cells in area A 

through the inner faces, just as in (14), and 
i

interface
AS  is the term created due to the adja-

cency of cell Ai with cells Bi through the virtual faces of the unmatched interface: 

( )
ρλ Γ

v

v v v
i i i

interface

finterface n
A A Bf f f

f face A v f

S
S

=

 
 = ⋅ −
 ⋅ 

  u S
n d

. (30) 

Nondiagonal coefficients 
i jA Aa  in the system of linear algebraic Equation (28) re-

lating the cells in area A through the inner faces at the n-th iteration of the current time 
step are determined identically to (16). 

The nondiagonal coefficients in the system of linear algebraic Equation (28) relating 
cells Ai to cell Bj through the virtual faces of the unmatched interface at the n-th iteration 
of the current time step are defined by 

( )
ρ(1 λ ) Γ

v

v v v
i j i j

interface

fn
A B A Bf f f

f face A v f

S
a

=

 
 = − ⋅ +
 ⋅ 

  u S
n d

, (31) 

where Bj, j∈ [1…M] are the cells bordering on cell Ai through virtual faces fv. 
The coefficients on the right side of the system of linear algebraic Equation (12) for 

the cells in area A (the same is for the cells in area B) without considering the boundary 
conditions at the n-th iteration are given by 

1φ
ρ
Δ

i

i i i i

t

An inner
A A A Ab V b b

t

−

= + + interface , (32) 

where 
i

inner
Ab  is determined identically to (19), and 

iAbinterface  is given by 

Figure 6. Schematic example of a grid with an unmatched interface.

To simplify the presentation, we do not show the nondiagonal coefficients relating the
cells through the inner faces in the system of linear algebraic Equation (28). Let us write
the diagonal coefficient in the system of linear algebraic Equation (28) for the cells in area A
without considering the boundary conditions at the n-th iteration of the current time step
(the same is for the cells in area B):

aAi = ρ
ϕn

Ai

∆t
VAi + Sinner

Ai
+ Sinter f ace

Ai
, (29)
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where Sinner
Ai

is the term created due to the adjacency of cell Ai with the cells in area A

through the inner faces, just as in (14), and Sinter f ace
Ai

is the term created due to the adjacency
of cell Ai with cells Bi through the virtual faces of the unmatched interface:

Sinter f ace
Ai

= ∑
f= f ace(Ainter f ace)

∑
v

(
ρλ f v un

f v · S f v − Γ
S f v

n f · dAi Bi

)
. (30)

Nondiagonal coefficients aAi Aj in the system of linear algebraic Equation (28) relating
the cells in area A through the inner faces at the n-th iteration of the current time step are
determined identically to (16).

The nondiagonal coefficients in the system of linear algebraic Equation (28) relating
cells Ai to cell Bj through the virtual faces of the unmatched interface at the n-th iteration of
the current time step are defined by

aAi Bj = ∑
f= f ace(Ainter f ace)

∑
v

(
ρ(1− λ f v)un

f v · S f v + Γ
S f v

n f · dAi Bj

)
, (31)

where Bj, j ∈ [1 . . . M] are the cells bordering on cell Ai through virtual faces fv.
The coefficients on the right side of the system of linear algebraic Equation (12) for

the cells in area A (the same is for the cells in area B) without considering the boundary
conditions at the n-th iteration are given by

bn
Ai

= ρ
ϕt−1

Ai

∆t
VAi + binner

Ai
+ binter f ace

Ai
, (32)

where binner
Ai

is determined identically to (19), and binter f ace
Ai

is given by

binter f ace
Ai

= ∑
f= f ace(Pinter f ace)

∑
v

[
ΓS f v

(
∇ϕ f v · n f −

∇ϕ f v · dAi Bj

n f · dAi Bj

)]n−1

. (33)

This method combines adjacent unmatched grid fragments into a single domain by
means of created virtual interfaces and can be used for all equations in (1). It does not
require the modification of the original grid and considers connections between adjacent
cells through a set of virtual faces, which creates additional terms in the system of linear al-
gebraic equations of the computational model. Thus, the calculations on models composed
of unmatched computational domains by this method are equivalent to the calculations on
matched computational models in terms of their computational expenses but are much less
expensive in terms of the grid model construction.

In the section below, we illustrate the performance of our algorithm using simulations
of a turbulent flow in a circular pipe with a sudden restriction, and in a round diffuser.

3. Numerical Experiments

Our method was implemented in the Russian software package LOGOS which is
intended for three-dimensional heat and mass transfer simulations [16]. The performance
of the method was demonstrated by numerical experiments which simulated widely known
tests based on empirical calculations [24]. LOGOS had already been successfully verified
by a series of test CFD calculations [25], so the numerical experiments were only aimed
at comparing the results of calculations with identical models on the grids composed of
matched and unmatched grid fragments.

3.1. Turbulent Incompressible Fluid Flow in a Circular Pipe with a Sudden Restriction

Let us consider how the method behaves in the numerical simulations of a turbulent
incompressible fluid flow in a circular pipe with a sudden restriction [11]. The geometry of
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the computational model and the locations of control sections are shown in Figure 7. To
test the method, the calculations were run on a matched and unmatched grid model.
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Figure 7. Model geometry and location of control sections. Dimensions are given in mm.

The unmatched grid model consisted of two unmatched fragments constructed inde-
pendently by the pre- and postprocessor of the LOGOS software package. The unmatched
grid fragments in the restriction area are shown in Figure 8. The matched grid model was
constructed by the geometric merging of the unmatched grid fragments in the LOGOS pre-
and postprocessor.
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The calculations were performed by LOGOS in a steady setup on 80 parallel pro-
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To analyze the results, we compared the profiles of the velocity module (V) and 
pressure (P) along the horizontal line passing through the middle of the computational 

Figure 8. Unmatched grid fragments in the longitudinal and lateral sections.

The governing parameters in the computational models included a fluid density equal
to 998.2 kg/m3 and a dynamic viscosity equal to 0.00101 kg/(m·s). Turbulence was modeled
by the RANS SST turbulence model [26] with a 0.05 percent turbulence intensity and a
0.001 m mixing length. The convective members in the calculations were approximated by
the first-order upwind scheme UD [18].

Figure 9 shows the boundary conditions of the computational models. The outer
boundaries were impermeable no-slip rigid walls. The inlet flow rate was V = 0.4227 m/s.
The outlet pressure was P = 0 Pa. Under set parameters, the flow Reynolds number was
20925. To match the solution in the unmatched model, we used the interfaces imple-
mented in LOGOS in accordance with the method described above (Figure 9). For the
nonintersecting interface area, the impermeable no-slip wall boundary condition was used.
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The calculations were performed by LOGOS in a steady setup on 80 parallel processors
up to a convergence in mass in the order of 10−6 kg. The iteration convergence graph is
shown in Figure 10.
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To analyze the results, we compared the profiles of the velocity module (V) and pres-
sure (P) along the horizontal line passing through the middle of the computational model
(Figure 11), and the profiles of velocity and pressure at the control sections (Figures 12 and 13).

The resulting profiles of velocity and pressure in the longitudinal and transverse
sections demonstrated the close agreement between the results calculated by the matched
and unmatched grid models. The convergence graphs indicate that the presence of the
unmatched interface has a minor effect on the iteration convergence rate.
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3.2. Turbulent Incompressible Fluid Flow in a Circular Diffuser

Let us consider how the method behaves in the numerical simulations of a turbulent
flow in a circular pipe with a conical diffuser [24]. The geometry of the computational
model and the locations of control sections are shown in Figure 14. To test the method, the
calculations were run on a matched and unmatched grid model.
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Figure 14. Computational model geometry (dimensions are given in mm) and grid fragment in the
diffuser area.

The unmatched grid model consisted of three unmatched areas (upstream pipe frag-
ment, diffuser, and downstream pipe fragment). Grids in each of the areas were generated
independently. A grid fragment in the diffuser area is shown in Figure 14. The matched
grid model was constructed by an original mesh transformation in the LOGOS pre- and
postprocessor to transform the unmatched interfaces into matched ones.

The governing parameters in the computational models included fluid density equal to
772.9 kg/m3 and a dynamic viscosity equal to 0.002682 kg/(m·s). Under set parameters, the
flow Reynolds number was 49989. Turbulent mixing was modeled by the SST turbulence
model [26] with a 0.05 percent turbulence intensity and a 0.001 m mixing length. The
convective members in the calculations were approximated by the first-order upwind
scheme UD [18].

Figure 15 shows the boundary conditions of the computational models. The outer
boundaries were impermeable no-slip rigid walls. The inlet velocity was constant and
controlled by a constant flow rate of Q = 3.159662 kg/s. To match the solution in the
unmatched model, we used the interfaces implemented in LOGOS in accordance with the
method described above.

The calculations were performed by LOGOS in a steady setup on 80 parallel processors
up to a convergence in mass in the order of 10−6 kg. The iteration convergence graph is
shown in Figure 16.

To analyze the results, we compared the profiles of the velocity module and pressure
along the horizontal line passing through the middle of the computational model (Figure 17),
and the profiles of velocity and pressure at the control sections (Figures 18 and 19).
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The resulting profiles of velocity and pressure in the longitudinal and transverse
sections demonstrated a close agreement between the results calculated by the matched
and the unmatched grid models. The convergence graphs indicate that the presence of the
unmatched interface has a minor effect on the iteration convergence rate.

4. Conclusions

In the paper, we described a numerical method, which considers specific aspects
of solving the Navier–Stokes equations in viscous incompressible flow simulations in
the vicinity of interfaces between unmatched unstructured grid fragments. The method
combines adjacent unmatched fragments of an unstructured grid into a single domain by
means of virtual interfaces considering the connections between adjacent cells through
virtual faces. The algorithm of this method was implemented in the software package
LOGOS within its CFD solver, which was used to run test calculations. Results of the test
calculations by this method on grid models with matched and unmatched interfaces were
presented. The presence of the unmatched interfaces was shown to have no significant
effect on the flow pattern and solution convergence rate.
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