Enhanced Energy Storage Using Pin-Fins in a Thermohydraulic System in the Presence of Phase Change Material
Abstract
:1. Introduction
2. Problem Statement
3. Finite Element Model and Boundary Conditions
Mesh Sensitivity and Convergence Criteria
4. Model Validation with Experimental Data
5. Results and Discussions
5.1. Effectiveness of Using Pin-Fins for Enhanced Heat Transfer
5.2. Phase Change Material in Block
5.3. Effectiveness of Pin-Fin Height on the Amount of Energy Stored in the Phase Change Material
6. Conclusions
- Pin-fins are the best approach to transfer heat to the phase change material;
- The use of pin-fins created a mixing flow in the liquid region, thus increasing the convective heat flux;
- The presence of pin-fins accelerated the heat storage capability in phase change material;
- The height of pin-fins influences the heat transfer, and for the present configuration, a 5 mm pin-fin is the optimum performance;
- Natural convection presence can accelerate the heat storage capability in the phase change material.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Bahloul, A.A.; Zeidan, E.-S.B.; El-Sharkawy, I.I.; Hamed, A.M.; Radwan, A. Recent advances in multistage sorption thermal energy storage systems. J. Energy Storage 2021, 45, 103683. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.H.; Karng, S.W. Cascaded latent thermal energy storage using a charging control method. Energy 2020, 215, 119166. [Google Scholar] [CrossRef]
- Navarro, M.; Martínez, M.; Gil, A.; Fernández, A.; Cabeza, L.; Olives, R.; Py, X. Selection and characterization of recycled materials for sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 2012, 107, 131–135. [Google Scholar] [CrossRef]
- Hrifech, S.; Agalit, H.; Bennouna, E.G.; Mimet, A. Selection methodology of potential sensible thermal energy storage materials for medium temperature applications. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 307, p. 01026. [Google Scholar]
- Malley-Ernewein, A.; Lorente, S. Constructal design of thermochemical energy storage. Int. J. Heat Mass Transf. 2018, 130, 1299–1306. [Google Scholar] [CrossRef]
- Zhang, H.; Baeyens, J.; Cáceres, G.; Degrève, J.; Lv, Y. Thermal energy storage: Recent developments and practical aspects. Prog. Energy Combust. Sci. 2016, 53, 1–40. [Google Scholar] [CrossRef]
- Saha, S.; Ruslan, A.R.; Morshed, A.K.M.M.; Hasanuzzaman, M. Global prospects and challenges of latent heat thermal energy storage: A review. Clean Technol. Environ. Policy 2020, 23, 531–559. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, S.; Mazhar, A.R.; Han, X.; Yang, L.; Yang, X. A review of solar-driven short-term low temperature heat storage systems. Renew. Sustain. Energy Rev. 2021, 141, 110824. [Google Scholar] [CrossRef]
- Aydin, D.; Casey, S.P.; Riffat, S. The latest advancements on thermochemical heat storage systems. Renew. Sustain. Energy Rev. 2015, 41, 356–367. [Google Scholar] [CrossRef]
- Haoshu, L.I.N.G.; Jingdong, H.E.; Yujie, X.U.; Liang, W.A.N.G.; Haisheng, C.H.E.N. Status and prospect of thermal energy storage technology for clean heating. Energy Storage Sci. Technol. 2020, 9, 861. [Google Scholar]
- Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Mawire, A. Performance of Sunflower Oil as a sensible heat storage medium for domestic applications. J. Energy Storage 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Dincer, I.; Dost, S.; Li, X. Performance analyses of sensible heat storage systems for thermal applications. Int. J. Energy Res. 1997, 21, 1157–1171. [Google Scholar] [CrossRef]
- Akgün, M.; Aydın, O.; Kaygusuz, K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl. Therm. Eng. 2008, 28, 405–413. [Google Scholar] [CrossRef]
- Trp, A.; Lenic, K.; Frankovic, B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl. Therm. Eng. 2006, 26, 1830–1839. [Google Scholar] [CrossRef]
- Trp, A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol. Energy 2005, 79, 648–660. [Google Scholar] [CrossRef]
- El Omari, K.; Kousksou, T.; Le Guer, Y. Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices. Appl. Therm. Eng. 2011, 31, 3022–3035. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.M.; Arshad, A.; Jabbal, M.; Verdin, P. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison. Int. J. Heat Mass Transf. 2018, 117, 1199–1204. [Google Scholar] [CrossRef] [Green Version]
- Nada, S.; Alshaer, W.G. Comprehensive parametric study of using carbon foam structures saturated with PCMs in thermal management of electronic systems. Energy Convers. Manag. 2015, 105, 93–102. [Google Scholar] [CrossRef]
- Moon, H.; Miljkovic, N.; King, W.P. High power density thermal energy storage using additively manufactured heat exchangers and phase change material. Int. J. Heat Mass Transf. 2020, 153, 119591. [Google Scholar] [CrossRef]
- Jiang, F.; Zhou, S.; Xu, T.; Song, N.; Ding, P. Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: Influence of 3D interconnected boron nitride network supported by polyurethane@ polydopamine skeleton. Compos. Sci. Technol. 2021, 208, 108779. [Google Scholar] [CrossRef]
- Ismail, K.; Alves, C.; Modesto, M. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl. Therm. Eng. 2001, 21, 53–77. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Heyns, P.S.; Chamkha, A.J.; Shirkhani, A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J. Therm. Anal. 2019, 138, 727–735. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Z.; Bai, Q.; Zhang, Q.; Jin, L.; Yan, J. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Appl. Energy 2017, 202, 558–570. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, P.S.; Chou, S.K. Enhanced thermal transport in microchannel using oblique fins. J. Heat Transf. 2012, 134, 101901. [Google Scholar] [CrossRef]
- Pandiyarajan, V.; Pandian, M.C.; Malan, E.; Velraj, R.; Seeniraj, R. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl. Energy 2011, 88, 77–87. [Google Scholar] [CrossRef]
- Al-Abidi, A.A.; Bin Mat, S.; Sopian, K.; Sulaiman, M.; Lim, C.; Th, A. Review of thermal energy storage for air conditioning systems. Renew. Sustain. Energy Rev. 2012, 16, 5802–5819. [Google Scholar] [CrossRef]
- Aprile, D.; Al-Banna, S.; Maheswaran, A.; Paquette, J.; Saghir, M. S Storing Energy from External Power Supplies Using Phase Change Materials and Various Pipe Configurations. Processes 2021, 9, 1160. [Google Scholar] [CrossRef]
- Yazdani, M.R.; Laitinen, A.; Helaakoski, V.; Farnas, L.K.; Kukko, K.; Saari, K.; Vuorinen, V. Efficient storage and recovery of waste heat by phase change material embedded within additively manufactured grid heat exchangers. Int. J. Heat Mass Transf. 2021, 181, 121846. [Google Scholar] [CrossRef]
- Saghir, M.Z. Forced Convection in Cylindrical and Rectangular Pin-Fins Channels Configuration, Mathematical Modelling of Fluid Dynamics and Nanofluids; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Saghir, M.Z.; Ghalayini, I. Thermo-hydraulic performance of Chevron pin-fins. Fluids 2022, 7, 195. [Google Scholar] [CrossRef]
- COMSOL. COMSOL Software User Manual; COMSOL: Newton, MA, USA, 2020. [Google Scholar]
- Ambreen, T.; Saleem, A.; Park, C.W. Thermal efficiency of eco-friendly MXene based nanofluid for performance enhancement of a pin-fin heat sink: Experimental and numerical analyses. Int. J. Heat Mass Transf. 2022, 186, 122451. [Google Scholar] [CrossRef]
ρ1 (kg/m3). | ρ2 (kg/m3) | Cp1 (J/kg/K) | Cp2 (J/kg/k) | k1 (W/m/s) | k2 (W/m/s) | |
---|---|---|---|---|---|---|
900 | 770 | 2400 | 1900 | 0.35 | 0.15 | 210 |
Mesh Size | Number of Elements | Nusselt Number |
---|---|---|
Extra coarse | 17,888 elements | 5 |
Coarser | 30,763 elements | 4.7 |
Coarse | 68,890 elements | 4.4 |
Normal | 124,125 elements | 4.2 |
Reynolds Number (Re) | Energy Stored (J) (With Pin-Fins) | Energy Stored in (J) (Without Pin-Fins) |
---|---|---|
50 | 5213 | 5210 |
100 | 10,854 | 10,778 |
150 | 16,511 | 16,465 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saghir, M.Z. Enhanced Energy Storage Using Pin-Fins in a Thermohydraulic System in the Presence of Phase Change Material. Fluids 2022, 7, 348. https://doi.org/10.3390/fluids7110348
Saghir MZ. Enhanced Energy Storage Using Pin-Fins in a Thermohydraulic System in the Presence of Phase Change Material. Fluids. 2022; 7(11):348. https://doi.org/10.3390/fluids7110348
Chicago/Turabian StyleSaghir, Mohamad Ziad. 2022. "Enhanced Energy Storage Using Pin-Fins in a Thermohydraulic System in the Presence of Phase Change Material" Fluids 7, no. 11: 348. https://doi.org/10.3390/fluids7110348
APA StyleSaghir, M. Z. (2022). Enhanced Energy Storage Using Pin-Fins in a Thermohydraulic System in the Presence of Phase Change Material. Fluids, 7(11), 348. https://doi.org/10.3390/fluids7110348