
Citation: Mousivand, M.; Roohi, E.

On the Rarefied Thermally-Driven

Flows in Cavities and Bends. Fluids

2022, 7, 354. https://doi.org/

10.3390/fluids7110354

Academic Editors:

Mehrdad Massoudi and

Tomoaki Kunugi

Received: 6 October 2022

Accepted: 16 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

On the Rarefied Thermally-Driven Flows in Cavities and Bends
Mostafa Mousivand 1 and Ehsan Roohi 1,2,*

1 High Performance Computing (HPC) Laboratory, Department of Mechanical Engineering,
Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran

2 State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied
Mechanics (ICAM), School of Aerospace Engineering, Xi’an Jiaotong University (XJTU), Xianning West Road,
Beilin District, Xi’an 710049, China

* Correspondence: e.roohi@xjtu.edu.cn or e.roohi@um.ac.ir; Tel.: +86-155-2923-3701

Abstract: This study examined rarefied thermally-driven flow in a square cavity (Case 1) and
rectangular bend (Case 2), with various uniform wall temperatures in two dimensions. We employed
the direct simulation Monte Carlo (DSMC) to solve problems with a wide range of Knudsen numbers
Kn = 0.01 to 10, and the discrete unified gas kinetic scheme (DUGKS) solver was used at Kn = 0.01.
The scenario was that, in case 1, the bottom side and its opposite were set hot, and the other sides
were set cold. Diffuse reflector boundary conditions were set for all walls. The imposed temperature
differences created four primary vortices. The results of the continuum set of equations of the slow
non-isothermal flow (SNIT) solver proved that the primary vortices in the square cavity were caused
by nonlinear thermal stress effects, and other smaller vortices appearing at Kn = 0.01, 0.1 were
brought about by thermal creep processes. As the Kn increased, vortices generated by thermal creep
disappeared, and eddies created by nonlinear thermal stress occupied the cavity. In case 2, i.e., a
rectangular bend, two sides were set cold, and the others were hot. Two primary vortices were
formed, which were caused by nonlinear thermal stress effects. The direction of streamlines in the
two main vortices was opposite, from the warm to the cold zone, as some eddies on the left were
counterclockwise, and others were clockwise.

Keywords: rarefied flow; square cavity; direct simulation Monte Carlo (DSMC); nonlinear thermal
stress; thermal creep

1. Introduction

A thorough understanding of the flow and heat pattern process in small-scale devices
is crucial, due to the rapid development seen in the production of these devices. Broad
categories of flow rarefaction regimes, including continuum, slip, transition, and free
molecular regimes may occur in extra-small devices. The ratio of the gas mean free path
to its characteristic length, in gas conduits or Kn = λ/L, is used to calculate the Knudsen
number. This is the most crucial parameter for determining the rarefaction in a gas flow.
A Knudsen number magnitude classification governs the rarefied gas flow regime [1]. If
Kn < 0.001, the continuum theory is accurate. The slip regime is defined as 0.001 < Kn < 0.1,
and the range of 0.1 < Kn < 10 is the transition regime. If Kn > 10, the flow is classified
as free molecular. This categorization is based on the flow in long isothermal tubes; i.e.,
the border between above mentioned the regimes should be determined numerically or
empirically for any given geometry, because it is not strictly defined [2].

The conventional Navier–Stokes–Fourier equations start to vary from the accurate
solution when the deviation from equilibrium starts [1]. The Navier–Stokes–Fourier (NSF)
equations can be used in conjunction with appropriate boundary conditions for the temper-
ature jump and slip velocity at the slip regime in simple geometries. When the Knudsen
number increases, employing the NSF equations yields an incorrect answer, necessitating
the use of more accurate strategies, based on the Boltzmann equation. Rarefied gas flows
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can be modeled at various rarefaction conditions using the direct simulation Monte Carlo
(DSMC) technique [3–8].

In recent years, thermally-driven flows in rarefied regimes have drawn widespread
attention from researchers. Different types of thermally driven flows, including thermal
edge flow, nonlinear thermal stress flow, thermal stress slip flow, and thermal creep flow
(in the first-order and second-order modes), were seen and documented in rarefied flow
regimes [9]. The rarefied flow produced near a sharp edge was considered by Aoki et al. [10].
Inside a vessel container a cold plate was placed. They demonstrated that a steady temper-
ature field causes a constant flow field in this domain. Thermal edge flow is the name given
to the induced flow [9]. Another attempt was made by Aoki et al. [11], who considered
the flow caused by alternative wall temperatures. In this case, gas was contained within a
square hollow, and the left and right walls of the cavity were each set to a different temper-
ature. They discovered that as the Knudsen numbers decrease, the flow field is inclined to
transform into a limiting area. The significant flow zone is constrained to a single location
when the wall temperature changes, moving away from the continuum limit.

Han et al. [12] used various techniques to study flow, driven by different temperature
gas flows in micro/nano-scale conduits. In two scenarios, Taguchi and Aoki [13] examined
thermally driven gas flow next to a heated flat plate placed in a container: In the first
instance, the plate was heated on both sides, causing thermal edge flow. In the second
instance, the plate was only heated on one side, while remaining cool on the other, creating
radiometric flow. They discussed the normal stress behavior and the causes of the radio-
metric force. Another attempt was made by Taguchi and Aoki [14], who employed several
plates to simulate rarefied gas flowing down a long channel. The array moves toward
the cold side when each plate heats up, due to the radiometric force acting on one side of
each plate. Taguchi and Tsuji [15] used kinetic theory to investigate how a small channel
impacted the motion of a mildly rarefied gas with a discontinuous surface temperature.
They developed a Stokes set of equations to describe the macroscopic behavior of the
gas in the channel. The flow of gas around a pair of cold/hot arms was examined by
Wang et al. [16] using the DSMC technique, and a sophisticated surface–gas interaction
model. Zeng et al. [17] suggested a double-plate arrangement as an alternative to a single
radiometric plate. They used molecular kinetics and DSMC to study the flow around the
double plate for a range of gap-to-radius ratios and plate temperatures.

Roohi and colleagues looked into a variety of thermally driven flows in diverse
situations [18–23], such as the thermal creep flow in a square cavity [18], radiometric flow
around ratchets and plates with varying surface qualities [19–22], and nonlinear thermal
stress flow in an elliptical conduit [23].

Several shapes of cavity flow have been used in numerous industrial applications,
among the varied geometries in MEMS/NEMS (micro/nano-electro-mechanical systems).
In the rarefied regime, various lid-driven cavity flows were considered [24–34]. The authors
presented simulation results for lid-driven square [24–28,30,31], lid-driven trapezoidal [32],
and lid-driven triangular [29] cavities. There have been reports on the behavior of textured
microchannels and micro-ridges [33,34].

The current work initially considered the thermally-driven flow in two cases: in a
square cavity and in a rectangular bend, as a continuation of the two streams mentioned
above. A few research works [11,18,27] have already reported the investigation of thermally-
driven flow in square cavities and rectangular enclosures; however, there has been no
analysis of the thermally-driven flows in rectangular bends and square cavities with
different wall temperatures on the lateral sides. There are different temperatures on the
lateral sides of the cavity, as the opposite sides have the same temperature in the cavity and
geometry of the rectangular bend, which has not been investigated. As a result, the issue
is significantly more unique than the example of coaxial elliptic cylinders with a smooth
border described in [23].

Two different cases were considered in this paper: first, in a square cavity, the opposite
sides (top and bottom) were heated, while the two other sides were kept cool. As a result,
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as the flow moves from the cavity’s top or bottom to its lateral sides, the temperature
changes. In the second case, a new geometry was investigated, as two sides were set hot
and the others were cold. Every wall is a diffusive reflector in both cases. In both cases,
all walls had no outside forces and zero velocity. The slow non-isothermal (SNIT) solver,
DSMC method, and discrete unified gas kinetic scheme (DUGKS) were applied to obtain
the solution. Although the DSMC technique is applicable to the entire flow rarefaction
range, the DUGKS solver was used at low Knudsen numbers, because the DSMC method
is time-consuming in the low Kn range. The DUGKS family solver [35] was compared
to Navier–Stokes equations in the cavity [36], and the results matched well. To detect
the origin of the primary vortices that appeared in both cases, we employed the SNIT
solver to show that these vortices are caused by nonlinear thermal stress. Monatomic argon
gas’s hydrodynamic and thermal properties are reported. The literature review mentioned
above indicated that there have been no previous studies on the flow field and thermal
behavior in rarefied thermally-driven geometries considered in both cases in this paper.
Thermally-driven square cavities with the same temperature on opposite sides and the
geometry of rectangular bends with different side temperatures have not been studied. The
rarefied flow in these geometries exhibits interesting physical phenomena that make their
study crucial for the research community.

2. Techniques
2.1. DSMC, or Direct Simulation Monte Carlo Method

Here, a molecular-based method known as DSMC is used to handle the Boltzmann
equation [37–43]. This is the Boltzmann equation:

∂ f
∂t

= D[ f ] + Q[ f , f∗], (1)

where the velocity distribution function of particles moving at velocity V is represented by
f = f (V,x,t) or f∗, and operators D and Q are operators defining the particle convection and
binary interactions, respectively, with the following forms:

D = −V.∇, (2)

Q =
y (

f ′∗ f ′ − f∗ f
)

B(g, θ)dΩ(θ)dx (3)

Post-collision distribution functions are indicated by primes, B(g, θ), which are de-
pendent on the intermolecular potential, θ. The variation in particle velocity caused by an
intermolecular collision is expressed by the unit vector, the relative molecular velocity is ex-
pressed by g, and dΩ is a stable angle component in the direction of θ. The discrete velocity
distribution function at time tk is separated using the following splitting methodology in
the traditional DSMC method, to offer the Boltzmann equation solution at time tk.

f [tk + δt, x(tk), ξ(tk + δt)] = Sδt,h
Q { f [tk, x(tk), ξ(tk)]}, (4)

f [tk + δt, x(tk + δt), ξ(tk + δt)] = Sδt
D{ f [tk + δt, x(tk), ξ(tk + δt)]}, (5)

where δt represents the time step and operators Sδt,h
Q and Sδt

D are the DSMC numerical
methods, and where these algorithms, respectively, approximate the collision and free
molecular motion terms in the Boltzmann equation [37]. In addition to being derived using
the Boltzmann equations, Stefanov’s N-particle equation [37] can also be used to derive
DSMC. The DSMC technique is applicable across the whole flow rarefaction range, from a
Kn approaching zero to infinite.

We used OpenFOAM-2.4.0-Strath’s dmcFoamStrath, a recently released variant of the
original DSMC solver [44]. The VHS (variable-hard-sphere) collision model was used to
describe intermolecular collisions. We used a Maxwellian velocity distribution function at
the surface temperature to calculate the particle velocities in diffusive walls. This research
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demonstrates that simulation outcomes are independent of the grid size and particle
number per cell (PPC). Compared to the averages of the collision time and transit time, we
chose a tiny time step. Argon was the gas employed in the simulation; its molecular weight
is 6.63 × 10−26 Kg, its diameter is 4.17 × 10−10 m, and its viscosity–temperature index is
ω = 0.81 [3]. Tref = 273 K was chosen to serve as the reference temperature.

2.2. DUGKS, or Discrete Unified Gas Kinetic Scheme

Non-equilibrium flows were modeled and simulated using the DUGKS approach. This
is based on the Bhatnagar–Gross–Krook (BGK) and Shakhov models. It was discovered that
DUGKS performed better computationally for low-speed flow at low Knudsen values [45,46],
and we compared the DUGKS and DSMC approaches in [21]. Boltzmann’s equation and the
Shakhov collision model were combined to provide the governing equation:

∂ f
∂t

+ V.∇ f =
p
µ

(
f S − f

)
, (6)

where p and µ stand for pressure and the viscosity coefficient, respectively. The definition
of time of relaxation is given by τ and is represented as 1/τ = p/µ. The Maxwell distri-
bution function plus a heat flux adjustment component form the formula for Shakhov’s
distribution function:

f S = f M
[

1 + (1− Pr)
c.q

5pRT

(
c2

RT
− 5
)]

; f M =
ρ

(2πRT)3/2 exp
(
− c2

2RT

)
, (7)

where the Prandtl number, particular gas constant, unusual velocity, and fluid velocity are
represented by Pr, R, c = V-U, and U, respectively. The DUGKS is a numerical technique
used to resolve a simulated 2-D Boltzmann equation, i.e., by displaying reduced distribution
functions, the z-direction dependence of the velocity distribution function is eliminated.
References [45,46] goes into more detail on how to solve Equation (6) in the DUGKS.

The primary distinction between DUGKS and the unified gas kinetic scheme (UGKS)
is the adoption in DUGKS of a reforming distribution function that incorporates both the
normal distribution function and the collision term. The distribution function and collision
term are connected using this technique. Thus, at a cell interface, the distribution function’s
updating procedure and reconstruction are made simpler; i.e., together, the distribution
function and collision term are taken into account. It should be remembered that, provided
an appropriate discretization in physical space and velocity space is offered, the DUGKS
scheme applies across the entire range of flow rarefaction from an Kn approaching zero
to infinite. At large Knudsen values, the DUGKS solution could actually take longer than
DSMC, because a refined velocity space is needed.

2.3. SNIT (Slow Non-Isothermal Thermal)

The addition of thermal stress variables in the momentum equation of the continuum
set of equations served as the foundation for the construction of slow non-isothermal
equations [47–49]. The Boltzmann system is described by these equations, as an asymptotic
theory for small mean free time and small mean free path [9]. The general behavior
of the mildly rarefied gas is described by equations of the type used in fluid dynamics.
Asymptotic analysis, based on Knudsen numbers, Kogan–Galkin–Friedlander (KGF) power
series expansion, and evaluation of the order of magnitude are used to create the following
second-order equations for continuum flows [9,48,49]. Following KGF expansion, macro-
variables such as velocity and temperature are enlarged in terms of the Knudsen number.
The time-independent Boltzmann equation’s solution, however, can be split up into various
length scales at minimal Knudsen numbers. Take into account the separation shown below:

f = fH + fkn (8)



Fluids 2022, 7, 354 5 of 24

where fH is the scale O(1) fluid-dynamic component of the velocity distribution function
and fkn is the Knudsen-layer adjustment on the scale O(Kn). In a power series of Kn,
the distribution function fH and the macroscopic variables hH = ρH, uiH, and TH can be
extended as follows:

fH = fH0 + fH1Kn + fH2Kn2 + · · ·
hH = hH0 + hH1Kn + hH2Kn2 + · · ·

(9)

We obtain the following system of equations of the fluid-dynamic type by substituting
Equation (10) into the Boltzmann equation and taking into account terms of the same order
of Kn:

∂pH0

∂xi
= 0 (10)

∂

∂xi

(
uiH1

TH0

)
= 0 (11)

∂pH1

∂xi
= 0 (12)

∂uiH1

∂xi
=

γ2

2
∂

∂xi

(√
TH0

∂TH0

∂xi

)
(13)

∂
∂xi

( uiH1ujH1
TH0

)
− γ1

2
∂

∂xj

(√
TH0

(
∂uiH1

∂xj
+

∂ujH1
∂xi
− 2

3
∂ukH1

∂xk
δij

))
− γ7

TH0

∂TH0
∂xi

∂TH0
∂xj

( ujH1

γ2
√

TH0
− 1

4
∂TH0
∂xj

)
= − 1

2
∂p+H2
∂xi

+
p2

H0FiH2
TH0

(14)

The energy and momentum equations are given in Equations (14) and (15), respectively,
and P+

H2 is calculated as follows:

p+H2 = pH0 pH2 +
2γ3

3
∂

∂xk

(
TH0

∂TH0

∂xk

)
− γ7

6

(
∂TH0

∂xk

)2
(15)

The correlations shown above are general to all molecular models. The only thing a
molecular model can predict is the transport coefficients. A gas–particle model can be used
with the hard-sphere approach, to calculate the following non-dimensional coefficients [48]:

γ1 = 1.270042427 γ2 = 1.922284066

γ3 = 1.947906335 γ7 = 1.758705
(16)

The nonlinear thermal term, which has coefficients of γ3 and γ7 on the left side of Equa-
tion (14) and the right side of Equation (15), are of Knudsen number order. After setting up
the initial values for velocity, pressure, and temperature, the momentum equation is first
solved, and an iteration loop and trial-and-error procedure then determine the temperature.
The momentum equation is solved using the SIMPLE (semi-implicit method for pressure
linked equations) method, even though a thermal stress term is present, and the pressure
and velocity are calculated. The SNIT equations are developed at the limit of Kn approach-
ing 0. As a result, these equations are only used in this work at very low Kn, to demonstrate
the origin of the vortices. With correct assumptions about the velocity distribution function,
higher-order continuum equations can be derived from the Boltzmann equations [5]. Why
do we require higher-order continuum-based equations? Since DSMC can solve the flow
field throughout the complete range of Knudsen numbers. Continuum-based solutions
explain the observed behavior, and the purpose of the current study’s use of higher-order
SNIT continuum equations was to demonstrate that the nonlinear thermal stress effects are
the primary cause of the central vortex emerging in both cases.
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3. Geometry and Verification
3.1. The Geometry

Both geometries are shown in Figure 1. In case 1, the cavity is a 2-D square shape,
with a side length of L. Opposite walls are at the same temperature, i.e., the top and bottom
sides are hot at 1500 K, with adjacent cold walls at 300 K. Case 2 is a rectangular bend,
with the top and right side hot, with a temperature of 1500 K, and the other walls are cold,
with a temperature of 300 K. Both cases use a diffuse reflector for all borders as a boundary
condition. We defined the Knudsen number in the introduction, and it is λ/L in this paper.
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3.2. Grid and Particle Independence Test of DSMC Solver for Cases 1 and 2

In case 1, the square geometry was divided into small areas using structured cells.
To obtain accurate results, the mean free path of gas molecules should be larger than the
size of the cells [4–8], and the grid size and particle per cell (PPC) should be adequate.
The normalized density and temperature are shown in Figure 2 at Kn = 0.1 on the cavity’s
bottom side. We used three different grid sizes, with maximum cell sizes of 0.13λ, 0.1λ,
and 0.07λ; i.e., grids of 5184, 10,000, and 20,164 cells were employed to show the grid
independence of the solutions. Density and temperature were normalized to the average
density and average temperature. The frames in Figure 2 show the nearly identical results
for the three grid sizes; thus, the grid with 10,000 cells was used to solve this test case.

In case 2, the rectangular bend geometry was divided into small areas using structured
cells. In the rectangular bend’s cold side, normalized velocity components in the x and
y directions and temperature are shown in Figure 3 at Kn = 0.1. We used three different
grid sizes, with maximum cell sizes of 0.1λ, 0.08λ, and 0.07λ; i.e., grids of 30,000, 46,875,
and 58,800 cells. The velocity in the direction of x, y, and temperature were normalized to
average velocity and average temperature, respectively. The frames in this figure show the
nearly identical results for three grid sizes; thus, a grid with 30,000 cells was used to solve
case 2.
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Fluids 2022, 7, x FOR PEER REVIEW 8 of 26 
 

  

(a) (b) 

 
(c) 

Figure 3. (a–c) Grid independence of the DSMC solver for case 2 on the cold side of rectangular 
bend at Kn = 0.1, (a) U-velocity, (b) V-velocity, (c) temperature. 

The particle per cell (PPC) independence test is reported in Figure 4 for case 1. PPC 
values of 50, 100, and 200 were used to analyze three cases. The chart demonstrates that 
there was little to no difference in the data from the three PPCs used for pressure and 
temperature. There was a slight difference between PPC = 100 and 50 and 200 at the dips 
and peaks in the U-velocity profile. Therefore, for the simulations described in this paper, 
we employed at least PPC = 100. 

In the domain of one typical case at Kn = 0.1, Figure 4d displays the contours of the 
separation of free pathways, or SOF, which is the ratio of mean collision separation to 

X/L

U
/V

av
e

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Cells=30000
Cells=46875
Cells=58800

X/L

V/
V a

ve

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Cells=30000
Cells=46875
Cells=58800

X/L

T/
T a

ve

0 0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

0.52 Cells=30000
Cells=46875
Cells=58800

Figure 3. (a–c) Grid independence of the DSMC solver for case 2 on the cold side of rectangular bend
at Kn = 0.1, (a) U-velocity, (b) V-velocity, (c) temperature.



Fluids 2022, 7, 354 8 of 24

The particle per cell (PPC) independence test is reported in Figure 4 for case 1. PPC
values of 50, 100, and 200 were used to analyze three cases. The chart demonstrates that
there was little to no difference in the data from the three PPCs used for pressure and
temperature. There was a slight difference between PPC = 100 and 50 and 200 at the dips
and peaks in the U-velocity profile. Therefore, for the simulations described in this paper,
we employed at least PPC = 100.
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Figure 4. (a−c) PPC independence for the DSMC solver in case 1 at Kn = 0.1, pressure, temperature,
and U-velocity on square cavity’s bottom side, (d) Separation of free paths (SOF) in the entire domain
for the DSMC solver.

In the domain of one typical case at Kn = 0.1, Figure 4d displays the contours of the
separation of free pathways, or SOF, which is the ratio of mean collision separation to mean
free path. An excellent way to tell if enough particles are present is to look at the SOF
contours. For a self-validated DSMC solution, the value of SOF should be less than 0.3,
according to Bird [7]. As seen in the picture, this value is within 0.034, which means that
the number of particles is more than adequate, and the collision was carried out accurately
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in the simulation domain. The other Knudsen number cases that were considered and
simulated had a low SOF value.

The sample size of a typical simulation was 246 × 104. Thus, the error in the simulated
velocity in this example is around 2.8% percent with PPC = 100 and Machave = 1.71 × 10−3

at Kn = 0.1.

E|v| ≈
1√

nsample sizePPC

1
Machave

√
γ
=

1√
2460000× 100

× 1
1.71× 10−3 ×

√
1.67

≈ 2.8% (17)

The PPC independence test is depicted in Figure 5 for case 2. PPC values of 15, 30, and
45 were used to analyze three simulations. The chart demonstrates there was little to no
difference in the data from the three PPCs used for the pressure and temperature. There
was a small difference at the beginning of the graph in the U-velocity. Therefore, for the
simulations described in this paper, we employed at least PPC = 30. The contour separation
of free pathways or (SOF) is displayed in Figure 5d. Similarly to case 1, values of SOF were
less than 0.3, indicating particles were sufficient in this domain and the collisions were
modeled accurately, according to Bird [7].
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and U-velocity on rectangular bend’s cold side. (d) Separation of free paths (SOF) in the entire domain
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The sample size for a typical case 2 simulation was around 2587 × 104. The error in
the simulated velocity in this example was approximately 0.6% percent, with PPC = 30 and
Machave = 4.35 × 10−3 at Kn = 0.1.

E|v| ≈
1√

nsample sizePPC

1
Maave

√
γ
=

1√
25870000× 30

× 1
4.35× 10−3 ×

√
1.67

≈ 0.6% (18)

3.3. Verification of the DUGKS Solver for Cases 1 and 2

Since the DSMC solver is time-consuming at low Knudsen numbers, the DUGKS
method was used to examine the properties of the flow field at small Kn for case 1. Three
independent grid sizes of 10,000, 20,164, and 40,000 cells, with a Gauss–Hermit quadra-
ture expansion using a velocity grid of 28 × 28 cells, were evaluated. All cases had a
Courant–Friedrichs–Lewy (CFL) number of 0.5. Figure 6 displays the normalized den-
sity, temperature, and U-velocity distribution on the bottom side of the square cavity at
Kn = 0.01. There was little difference in the three used grid sizes for density, tempera-
ture, and U-velocity, but the lines show a converging trend. Thus, we used a grid size of
10,000 cells to solve the problem.
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In case 2, grid sizes of 30,000, 46,875, and 58,800 cells, and a Gauss–Hermit quadrature
expansion for the velocity grid of 28 × 28 cells were tested, and the results are depicted in
Figure 7. All cases had a Courant–Friedrichs–Lewy (CFL) number of 0.5. A trend similar to
that of case 1 was observed. We used grid 1 with 30,000 cells.
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Figure 7. Grid independence check for the DUGKS solver in case 2 at Kn = 0.01, (a) temperature,
(b) U-velocity, and (c) velocity magnitude on the bottom side of the cavity.

3.4. Verification of the SNIT Solver for Cases 1 and 2

The grid independence with three cell sizes of 5184, 10000, and 20,164 cells is reported
in Figure 8 for the SNIT solver in case 1, to find a suitable grid size. The SNIT solver
was used to prove that nonlinear thermal stress effects caused the primary vortices that
appeared in both cases. A normalized temperature distribution, U-velocity, and V-velocity
are depicted in Figure 8. In case 2, three cases of 15,123, 30,000, and 46,875 cells are
considered in Figure 9. In this figure, normalized pressure, temperature, and U-velocity are
shown. We employed a grid size with 10,000 cells for case 1 and 30,000 cells for case 2.
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Figure 8. SNIT grid independence check for case 1 on the bottom of the cavity, (a) temperature
distributions and (b,c) velocity components.
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Figure 9. (a–c) SNIT grid independence check for case 2 on the cold side of the rectangular bend,
pressure distributions, temperature distribution, and U-velocity.

4. Results and Discussion
4.1. Streamlines and Temperature Contours in the Square Cavity in Case 1

The streamlines and temperature contours are shown in Figure 10 for Kn = 0.01, 0.1, 1,
and 10 for the DSMC and DUGKS solvers. At Kn = 1, 10, the realm is entirely dominated
by four enormous vortices directed from the warm to the cold area, while at Kn = 0.01,
both the DSMC and DUGKS solvers’ streamline directions are from the cold to warm zone.
As the Knudsen number increases, the vortices’ nature changes, causing the direction to
reverse. Since the isothermal curves are not straight and there is a significant temperature
differential, primary vortices are likely the result of nonlinear thermal stress flow effects.
This was compared to concentric elliptical cylinders in Ref. [23]. The SNIT equations
could capture these vast vortices, while the NSF equations could not do so, as we will
demonstrate in Section 4.4. It is evident that the nonlinear thermal stress caused these
sizable vortices. Formula (8)–(16) in Section 2.3 explain how flow (in our case, vortices) is
created by nonlinear thermal stress. Sone [9] asserted that the induced thermal field causes
the nonlinear thermal stress flow in this domain. In contrast to the thermal stress slip and
thermal creep flows, where the walls play an active part, the walls only play a secondary
function in creating such a flow field. When the temperature fluctuations are not small,
thermal stress, a function of the temperature gradient, can be seen in Equation (16). A force
parallel to the temperature gradient pulls the gas in the opposite direction.

The primary distinction between the present study and earlier publications [23,50,51]
concentrating on thermally induced flows in elliptical cylinder geometries is the singular
nature of the square geometry. Notwithstanding the fact nonlinear thermal stress flow
happens in a square, singularities may have the potential to influence and change it. The
singularity at the sharp edges (points of the plate), as studied in [13,21–23], is so strong
that it dominates the overall flow field for both the thermal edge flow and the radiometric
edge flow. The sharp corners in the square problem may have a less significant impact
but still contend with the nonlinear thermal stress flow and influence it. There were four
tiny vortices near to the square’s corners at Kn = 0.01 and eight vortices in the vicinity
of all sides, though those disappeared at Kn = 1, 10. In the current issue, there are four
acute corners where the wall temperature is discontinuous; thus, the bottom/top and side
walls close to the corner experience a significant temperature jump. A sharp temperature
gradient develops in the gas along the bottom/top and side walls close to the corners.
Due to this strong temperature gradient, flows are induced in the corners and along all
side walls that move toward the corners at Kn = 0.1 (the so-called thermal creep). At
Kn = 0.01, near the corner, these flows create four and eight vortices along all sides at
Kn = 0.1. When Kn is increased, the vortices created by thermal creep disappear, because
with an increasing Knudsen number, vortices formed by nonlinear thermal stress become
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stronger and surround the entire cavity. Temperature increases as Kn rises, showing a more
significant temperature jump along the bottom and top sides.

4.2. Velocity Distribution and Force in Case 1 with the DSMC Solver

The velocity profile over a horizontal line for the range of Kn = 0.01 to Kn = 10 is
shown in Figure 11 on the bottom side’s cavity. There is a concavity at Kn = 1, 0.01, which
becomes deeper at Kn = 0.01. As it moves toward the side’s center, the velocity decreases at
Kn = 10, until X/L = 0.5, which is zero. There are three concavities at Kn = 0.1. The local
maximum velocity at Kn = 1 is higher in comparison with other Knudsen numbers.
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Figure 10. (a–e) Streamlines and temperature contours in the square cavity for Case 1 (DSMC-
DUGKS).
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Figure 11. Velocity distribution over a horizontal line on the bottom side’s cavity with the
DSMC solver.

The normalized normal force on the bottom wall for a wide range of Knudsen numbers
is shown in Figure 12. The axial force’s order is substantially lower than the normal force’s
order. The graph shows that when Kn increases, the normal force decreases. This indicates
that even when the size of the vortices grows as Kn rises, the generated flow reduces
as the vortices’ strength falls and the temperature gradient becomes weaker. By taking
into account the average velocity in the domain, as shown in Figure 5, this can be further
substantiated. For the entire range of the investigation, the curve fitting to the normalized
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force exhibits a dependence on 1/Kn. Therefore, throughout the problem’s explored range,
the combined effects of the temperature gradient and Knudsen number dependency yield
a force that drops with 1/Kn.
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4.3. Comparison of the DUGKS and DSMC Solvers for Case 1

Figure 13 compares the temperature and velocity components in the axial and normal
directions on the heated surface of the square in Case 1 at Kn = 0.01. As shown in Figure 13,
both solvers produced nearly identical results for the temperature field and velocities.
There is little difference in U-velocity and V-velocity at 0.2 < X/L < 0.4 and 0.7 < X/L < 0.9
between the DSMC and DUGKS solvers. At 0.2 < X/L < 0.4 in the U-velocity, the results
of DSMC are higher in comparison with DUGKS, in the opposite of 0.7 < X/L < 0.9, the
regions where U-velocity was obtained by the DUGKS solver were higher than with DSMC.
For the V-velocity at both zones, the values obtained from DSMC were smaller than with
the DUGKS solver.

4.4. SNIT Solver for Case 1

The streamlines in the cavity in case 1 are depicted in Figure 14 using SNIT predictions
at Kn = 0.01. The simulation results showed that the large vortices in the cavity were caused
by nonlinear thermal stress flow. By solving the set of SNIT equations and by setting the
coefficients γ3 and γ7 on the left-hand side of Equations (14) and (15) to zero, no vortex
or flow was observed in the domain. This shows that the nonlinear thermal stress factor
was the parameter that caused the induced flow in the square under consideration. Four
tiny vortices can be seen in the DSMC forecasts around the four corners at Kn = 0.01, but
not in the SNIT prediction. This may be a result of the SNIT equation’s flaw: the SNIT
equation includes O(1) for temperature and O(Kn) effects in flow velocity; as a result, SNIT
cannot capture vortices close to the corners which are O(Kn2). The position and shape of
the vortices with SNIT and the predictions of DSMC and DUGKS depicted in Figure 10
differ, as the vortices’ centers are closer to the corners in the solution of SNIT compared to
DSMC and DUGKS. The DSMC and DUGKS streamline directions are from the cold to the
hot zone.
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Figure 13. Difference between DUGKS and DSMC on the bottom wall in case 1, Kn = 0.01, (a) tem-
perature, (b) U−velocity, (c) V-velocity.
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4.5. Streamlines and Temperature Contours in the Rectangular Bend in Case 2

The streamlines produced by the DSMC and DUGKS solvers are displayed in Figure 15
for Kn = 0.01, 0.1, 1, and 10. DUGKS was used to obtain the Kn = 0.01, and the DSMC
solver provided the others. At all Knudsen numbers, the realm was entirely dominated by
two enormous vortices. Due to the non-straight isothermal curves and the significant tem-
perature differential |TH -TC|/TC, these vortices were most likely the result of nonlinear
thermal stress effects.
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Figure 15. (a–d) Streamlines and temperature contours in the rectangular bend in case 2,
0.01 ≤ Kn ≤ 10.

4.6. Velocity Distribution and Force in Case 2 with the DSMC Solver

The velocity profile over a horizontal line for the range of Kn = 0.01 to Kn = 10 is
shown in Figure 16 on the cold side of the geometry. There is a rising trend in all Knudsen
numbers except Kn = 0.01, which decreases in the region 0 < X/L < 0.84; then it increases.
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Figure 16. Velocity distribution in case 2 over a horizontal line on the cold side with the DSMC solver.

The normalized normal force on the cold wall for a wide range of Knudsen numbers
is shown in Figure 17. The graph shows that when Kn increases, the normal force falls.
Vortices become weaker and the generated flow becomes weaker as the temperature
gradient weakens with the increase in Kn. For the whole range of the experiment, the
normalized force curve indicates a dependence on 1/Kn.
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4.7. Comparison of the DUGKS and DSMC Solvers in Case 2

In Case 2 at Kn = 0.01, Figure 18 compares the velocity profile and temperature on
the rectangular bend’s cold surface. As seen in Figure 18, both solvers produced nearly
identical results. The temperature fields of the two solvers varied slightly, as the values
obtained by the DUGKS solver were larger than DSMC’s, which might be because the
two solvers use different temperature models. The DUGKS and DSMC solvers are based
on the Shakhov model and the Boltzmann equations, respectively, so a slight difference
is acceptable.
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Figure 18. Difference between DUGKS and DSMC on the cold wall in case 2, Kn = 0.01, (a) tempera-
ture, (b) U-velocity.

4.8. Verification of the SNIT Solver for Case 2

In Case 2, the streamlines in the cavity from the SNIT predictions at Kn = 0.01 are
depicted in Figure 19. Large vortices in the cavity are seen in the simulation results and were
caused by nonlinear thermal stress flow. In the SNIT predictions, two small vortices appear
close to the top right corner. These could be Moffat vortices growing close to the rectangular
bend’s corners. Due to the abrupt change in geometry and boundary temperature near the
corners, the SNIT equations are invalid, making the tiny vortices nonphysical.
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Figure 19. SNIT forecast of velocity streamlines and temperature contour in the rectangular bend.

4.9. Average velocity in Cases 1 and 2

The average velocity magnitude for cases 1 and 2 is shown in Figure 20 for various
Knudsen numbers. The average velocity trend is nearly the same in both cases, as the
maximum average velocity is reached at Kn = 0.1, and then decreases. In both cases, the
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velocity average increases until Kn = 0.1, and falls with a different slope, as the incline of
case 2 at 1 < Kn < 10 is greater in comparison with case 1.
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5. Conclusions

Three numerical techniques were used in the current work to examine the thermally-
driven flow in a square cavity and rectangular bend, in two separate scenarios. Direct
simulation Monte Carlo (DSMC), discrete unified gas kinetic scheme (DUGKS), and asymp-
totic solution for slow non-isothermal flow (SNIT) were used as numerical methods. Three
solvers were used, all from the open-source OpenFOAM computing platform. The first test
case was a square cavity: the top and bottom sides were set to warm, with adjacent cold
walls. The second test case was a rectangular bend, where two sides were set cold, and the
other sides were set to warm. The four central vortices inside the cavity were created by
nonlinear thermal stress, as evidenced by the SNIT solver’s solution in case 1. In addition
to the primary vortex, small vortices were observed that can be attributed to thermal creep
effects at Kn = 0.01, 0.1. In the SNIT forecasts, these vortices were not present. The distance
of the vortex’s center from the corners was greater at Kn = 0.01, 0.1 than Kn = 1, 10. At
Kn = 0.01, four vortices were attached to corners, and at Kn = 0.1, eight small vortices
formed in the vicinity of the cavity’s side, caused by thermal creep effects. In case 2, there
were two giant vortices that seemed to be induced by nonlinear thermal stress. The velocity
streamlines in vortices that were located on the left were counterclockwise, opposite to the
other vortices located on the bottom. The direction of streamlines in the two main vortices
was from the warm to cold region.
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Nomenclature

c Peculiar velocity R Gas Constant
D Operator describing particle convection SOF Separation of free path
d Mean molecular diameter Sδt

D Streaming operator
EV Inaccuracy in velocity Sδt,h

Q Collision operator
f Velocity distribution function T Temperature
f∗ Velocity distribution function TH Hot temperature

fH
Fluid-dynamic part of the velocity TC Cold temperature
distribution function

fkn Knudsen-layer adjustment TH0 Temperature
f M Maxwell distribution function tk Characteristic time

f S Shakhov equilibrium distribution U,V Velocity components
function

FY Force in direction y uiH Velocity
γ Ratio of specific heat capacity

g Relative velocity of molecules δt Time step
hH Arbitrary variable δij Kronecker delta function
Kn Knudsen number θ Unit vector
L Length λ Mean free path
Mach Mach number γ1, γ2,γ3, γ7 non-dimensional coefficients
m Molecular Mass µ Viscosity coefficient
P Pressure π Pi
PPC Particle per cell ρ Density
Pr Prandtl number τ Relaxation time
P+

H2 Function of pressure Ω Solid angle element
Q Operator describing binary interactions ω Viscosity-Temperature index
q Heat flux
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