Internal Energy Relaxation Processes and Bulk Viscosities in Fluids
Abstract
:1. Introduction
2. A Simplified Two-Temperature Model
2.1. Kinetic Framework
2.2. Relaxation and Bulk Viscosity
3. A Two-Mode Two-Temperature Model
3.1. Kinetic Framework
3.2. Relaxation and the Slow Mode Bulk Viscosity
3.3. The Effective Bulk Viscosity
4. A State-to-State Model for Gas Mixtures
4.1. Kinetic Framework
4.2. Equilibrium Population and Bulk Viscosities
4.3. Symmetric Zeroth-Order Relaxation Equations
4.4. Bulk Viscosity at Zeroth Order
4.5. Bulk Viscosity at First Order
5. Numerical Experiments for the Simplified Two-Temperature Model
5.1. Kinetic Theory of Spontaneous Fluctuations
5.2. Simulation of Spontaneous Fluctuations in a Dilute Gas
- Cell width to mean free path ratio: 0.3
- Timestep to mean collision time ratio: 0.05
- Average number of simulated particles per cell: 20
5.3. Simulations for a Model Gas
6. Numerical Experiments for a Quantum State Population
6.1. Internal Energy Spectrum and Energy-Exchange Collisions
6.2. Green–Kubo Bulk Viscosity in DSMC Simulations
6.3. Results
7. Fluid and Mathematical Aspects
7.1. Impact in Fluid Mechanics
7.2. Chapman–Enskog Method for the Simplified Two-Temperature Model
7.3. Multiple Time Expansions for the Simplified Two-Temperature Model
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The One-Temperature Two-Mode Bulk Viscosity
References
- Capitelli, M.; Armenise, I.; Bruno, D.; Cacciatore, M.; Celiberto, R.; Colonna, G.; de Pascale, O.; Diomede, P.; Esposito, F.; Gorse, C.; et al. Non-equilibrium Plasma Kinetics: A state-to-state approach. Plasma Sourc. Sci. Tech. 2007, 16, S30–S44. [Google Scholar] [CrossRef]
- Colonna, G.; Armenise, I.; Bruno, D.; Capitelli, M. Reduction of state-to-state kinetics to macroscopic models in hypersonic flows. J. Thermophys. Heat Transf. 2006, 20, 477–486. [Google Scholar] [CrossRef]
- Chikhaoui, A.; Dudon, J.P.; Kustova, E.V.; Nagnibeda, E.A. Transport properties in reacting mixture of polyatomic gases. Physica A 1997, 247, 526–552. [Google Scholar] [CrossRef]
- Kustova, E.V.; Nagnibeda, E.A. Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium. Chem. Phys. 1998, 233, 57–75. [Google Scholar] [CrossRef]
- Kustova, E.V. On the simplified state-to-state transport coefficients. Chem. Phys. 2001, 270, 177–195. [Google Scholar] [CrossRef]
- Kustova, E.V.; Nagnibada, E.A.; Chikhaoui, A. On the accuracy of nonequilibrium transport coefficients calculation. Chem. Phys. 2001, 270, 459–469. [Google Scholar] [CrossRef]
- Bruno, D.; Capitelli, M.; Esposito, F.; Longo, S.; Minelli, P. Direct simulation of non-equilibrium kinetics under shock conditions in nitrogen. Chem. Phys. Lett. 2002, 360, 31–37. [Google Scholar] [CrossRef]
- Zhdanov, V.M. Transport Processes in Multicomponent Plasmas; Taylor and Francis: London, UK, 2002. [Google Scholar]
- Nagnibeda, E.; Kustova, E. Non-Equilibrium Reacting Gas Flow; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Brun, R. Introduction to Reactive Gas Dynamics; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Kustova, E. On the role of bulk viscosity and relaxation pressure in non-equilibrium flows. Aip Conf. Proc. 2009, 1084, 807–812. [Google Scholar]
- Kustova, E.V.; Nagnibeda, E.A. Kinetic model for multi-temperature flows of reacting carbon dioxide mixture. Chem. Phys. 2012, 398, 111–117. [Google Scholar] [CrossRef]
- Kustova, E.; Mekhonoshina, M. Models for bulk viscosity in carbon dioxide. Aip Conf. Proc. 2019, 2132, 150006. [Google Scholar]
- Munafò, A.; Panesi, M.; Magin, T.E. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. Phys. Rev. E 2014, 89, 023001. [Google Scholar] [CrossRef]
- Munafò, A.; Liu, Y.; Panesi, M. Modeling of dissociation and energy transfer in shock-heated nitrogen flows. Phys. Fluids 2015, 27, 127101. [Google Scholar] [CrossRef]
- Kohler, M. Reibung in mäsig verdünnten gasen als folge verzögerter einstellung der energie. Zeitschr. Phys. 1949, 125, 715–732. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; Wiley: New York, NY, USA, 1954. [Google Scholar]
- Waldmann, L.; Trübenbacher, E. Formale kinetische Theorie von Gasgemischen aus anregbaren molekülen. Zeitschr. Naturforschg. 1962, 17, 363–376. [Google Scholar] [CrossRef]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Ferziger, J.H.; Kaper, H.G. Mathematical Theory of Transport Processes in Gases; North Holland Publishing Company: Amsterdam, The Netherlands, 1972. [Google Scholar]
- McCourt, F.R.; Beenakker, J.J.; Köhler, W.E.; Kuscer, I. Non Equilibrium Phenomena in Polyatomic Gases; Volume I: Dilute Gases, Volume II: Cross Sections, Scattering and Rarefied Gases; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Giovangigli, V. Multicomponent Flow Modeling; Birkhaüser: Boston, MA, USA, 1999. [Google Scholar]
- Ern, A.; Giovangigli, V. The Kinetic equilibrium regime. Physica-A 1998, 260, 49–72. [Google Scholar] [CrossRef]
- de Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Keizer, J. Statistical Thermodynamics of Nonequilibrium Processes; Springer: New York, NY, USA, 1987. [Google Scholar]
- Bruno, D.; Giovangigli, V. Relaxation of internal temperature and volume viscosity. Phys. Fluids 2011, 23, 093104, Erratum in Phys. Fluids 2013, 25, 039902. [Google Scholar] [CrossRef] [Green Version]
- Bruno, D.; Esposito, F.; Giovangigli, V. Relaxation of rotational-vibrational energy and volume viscosity in H-H2 Mixtures. J. Chem. Phys. 2013, 138, 084302. [Google Scholar] [CrossRef] [Green Version]
- Bruno, D.; Esposito, E.; Giovangigli, V. Relaxation of quantum state population and volume viscosities in He/H2 mixtures. Aip Conf. Proc. 2014, 1628, 1237–1244. [Google Scholar]
- Hermans, P.W.; Hermans, L.F.J.; Beenakker, J.J.M. A survey of experimental data related to the non-spherical interaction for the hydrogen isotopes and their mixture with noble gases. Physica A 1983, 122, 173–211. [Google Scholar] [CrossRef]
- Prangsma, G.J.; Borsboom, L.J.M.; Knaap, H.F.P.; den Meijdenberg, C.J.N.V.; Beenakker, J.J.M. Rotational relaxation in ortho Hydrogen between 170 and 300 K. Physica 1972, 61, 527–538. [Google Scholar] [CrossRef]
- Prangsma, G.J.; Alberga, A.H.; Beenakker, J.J.M. Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K. Physica 1973, 64, 278–288. [Google Scholar] [CrossRef]
- Tisza, L. Supersonic absorption and Stokes viscosity relation. Phys. Rev. 1941, 61, 531–536. [Google Scholar] [CrossRef]
- Turfa, A.F.; Knaap, H.F.P.; Thijsse, B.J.; Beenakker, J.J.M. A classical dynamics study of rotational relaxation in nitrogen gases. Physical A 1982, 112, 19–28. [Google Scholar] [CrossRef]
- Ern, A.; Giovangigli, V. Multicomponent Transport Algorithms; Lecture Notes in Physics, New series Monographs; Springer: Berlin/Heidelberg, Germany, 1994; Volume 24. [Google Scholar]
- Ern, A.; Giovangigli, V. Volume viscosity of dilute polyatomic gas mixtures. Eur. J. Mech. B/Fluids 1995, 14, 653–669. [Google Scholar]
- Mansour, M.M.; Garcia, A.L.; Lie, G.C.; Clementi, E. Fluctuating Hydrodynamics in a Dilute Gas. Phys. Rev. Lett. 1987, 58, 874–877. [Google Scholar] [CrossRef] [Green Version]
- Bruno, D.; Capitelli, M.; Longo, S.; Minelli, P. Monte Carlo simulation of light scattering spectra in atomic gases. Chem. Phys. Lett. 2006, 422, 571–574. [Google Scholar] [CrossRef]
- Ivanov, M.S.; Gimelshein, S.F. Computational hypersonic rarefied flows. Annu. Rev. Fluid Mech. 1998, 30, 469–505. [Google Scholar] [CrossRef]
- Oran, E.; Oh, C.; Cybyk, B. Direct simulation Monte Carlo: Recent advances and applications. Ann. Rev. Fluid Mech. 1998, 30, 403–441. [Google Scholar] [CrossRef]
- Bird, G. Recent advances and current challenges for DSMC. Comp. Math. App. 1998, 35, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Frezzotti, A. A particle scheme for the numerical solution of the Enskog equation. Phys. Fluids 1997, 9, 1329–1335. [Google Scholar] [CrossRef]
- Bruno, D.; Capitelli, M.; Longo, S.; Minelli, P.; Taccogna, F. Particle kinetic modelling of rarefied gases and plasmas. Plasma Sources Sci. Technol. 2003, 12, 89–97. [Google Scholar] [CrossRef]
- Esposito, F.; Gorse, C.; Capitelli, M. Quasi-classical dynamics calculations and state-selected rate coefficients for H + H2(v,j)↦ 3H processes: Application to the global dissociation rate under thermal conditions. Chem. Phys. Lett. 1999, 303, 636–640. [Google Scholar] [CrossRef]
- Esposito, F.; Capitelli, M. Dynamical calculations of state to state and dissociation cross-sections for atom-molecule collision processes in hydrogen. At. Plasma-Mater. Interact. Data Fusion 2001, 9, 65–73. [Google Scholar]
- Esposito, F.; Capitelli, M. Quasiclassical trajectory calculations of vibrationally specific dissociation cross-sections and rate constants for the reaction O+O2(v)↦ 3O. Chem. Phys. Lett. 2002, 364, 180–187. [Google Scholar] [CrossRef]
- Esposito, F.; Capitelli, M. QCT calculations for the process N2(v) + N ↦ N2(v′) + N in the whole vibrational range. Chem. Phys. Lett. 2006, 418, 581–585. [Google Scholar] [CrossRef]
- Esposito, F.; Capitelli, M. Selective Vibrational Pumping of Molecular Hydrogen via Gas Phase Atomic Recombination. J. Phys. Chem. A 2009, 113, 15307–15314. [Google Scholar] [CrossRef]
- Muchnick, P.; Russek, A. The HeH2 energy surface. J. Chem. Phys. 1994, 100, 4336–4346. [Google Scholar] [CrossRef]
- Boothroyd, A.I.; Martin, P.G.; Peterson, M.R. Accurate analytic He-H2 potential energy surface from a greatly expanded set of ab initio energies. J. Chem. Phys. 2003, 119, 3187–3192. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Kwon, O.J.; Park, C. Master Equation Study and Nonequilibrium Chemical Reactions for H + H2 and He + H2. J. Therm. Heat Transfer 2009, 23, 443–453. [Google Scholar] [CrossRef]
- Lee, T.-G.; Rochow, C.; Martin, R.; Clark, T.K.; Forrey, R.C.; Balakrishnan, N.; Stancil, P.C.; Schultz, D.R.; Dalgarno, A.; Ferland, G.J. Close-coupling calculations of low-energy inelastic and elastic processes in 4He collisions with H2: A comparative study of two potential energy surfaces. J. Chem. Phys. 2005, 122, 024307. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Vieira, M.; Babb, J.; Dalgarno, A.; Forrey, R.; Lepp, S. Rate Coefficients for Ro-vibrational Transitions in H2 Due to Collisions with He. Astrophys. J. 1999, 524, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Orlikowski, T. Close-coupling calculations of the cross sections and relaxation rates for ro-vibrational transitions in H2 colliding with He. Chem. Phys. 1981, 61, 405–413. [Google Scholar] [CrossRef]
- Bruno, D.; Catalfamo, C.; Capitelli, M.; Colonna, G.; Pascale, O.D.; Diomede, P.; Gorse, C.; Laricchiuta, A.; Longo, S.; Giordano, D.; et al. Transport properties of high-temperature Jupiter atmosphere components. Phys. Plasmas 2010, 17, 112315. [Google Scholar] [CrossRef]
- Evans, D.J.; Morriss, G. Statistical Mechanics of Nonequilibrium Liquids; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- McGaughey, A.J.H.; Kaviany, M. Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Phys. Rev. B 2004, 69, 094303. [Google Scholar] [CrossRef] [Green Version]
- Boon, J.P.; Yip, S. Hydrodynamic Fluctuations. In Molecular Hydrodynamics; Dover: New York, NY, USA, 1991; pp. 237–278. [Google Scholar]
- Kubo, R.; Toda, M.; Hashitsume, N. Fluctuation and Dissipation Theorem. In Statistical Physics II; Springer: Berlin/Heidelberg, Germany, 1978; pp. 167–170. [Google Scholar]
- Berne, B.J.; Pecora, R. Light Scattering From Hydrodynamic Modes. In Dynamic Light Scattering; Dover: New York, NY, USA, 2000; pp. 223–246. [Google Scholar]
- Einstein, A. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Physik 1910, 33, 1275–1298. [Google Scholar] [CrossRef]
- Mountain, R.D. Spectral Distribution of Scattered Light in a Simple Fluid. Rev. Mod. Phys. 1966, 38, 205–214. [Google Scholar] [CrossRef]
- Jaeger, F.; Matar, O.K.; Müller, E.A. Bulk viscosity of molecular fluids. J. Chem. Phys. 2018, 148, 174504. [Google Scholar] [CrossRef]
- Sharma, B.; Kumar, R. Estimation of bulk viscosity of dilute gases using a nonequilibrium molecular dynamics approach. Phys. Rev. E 2019, 100, 013309. [Google Scholar] [CrossRef]
- Sharma, B.; Kumar, R.; Gupta, P.; Pareek, S.; Singh, A. On the estimation of bulk viscosity of dilute nitrogen gas using equilibrium molecular dynamics approach. Phys. Fluids 2022, 34, 057104. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Pitaevskii, L.P. Fluctuations of the Distribution Function in an Equilibrium Gas. In Physical Kinetics; Butterworth-Heinemann: Oxford, UK, 1995; pp. 79–84. [Google Scholar]
- Koura, K.; Matsumoto, H. Variable Soft Sphere Molecular Model for Inverse-Power-Law or Lennard-Jones Potential. Phys. Fluids A 1991, 3, 2459–2465. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Spatial Correlation of Density Fluctuations. In Statistical Physics; Part 1; Butterworth-Heinemann: Oxford, UK, 1980; pp. 350–353. [Google Scholar]
- Tysanner, M.W.; Garcia, A.L. Non-equilibrium behaviour of equilibrium reservoirs in molecular simulations. Int. J. Numer. Meth. Fluids 2005, 48, 1337–1349. [Google Scholar] [CrossRef]
- Pan, X.; Shneider, M.N.; Miles, R.B. Coherent Rayleigh-Brillouin scattering in molecular gases. Phys. Rev. A 2004, 69, 033814. [Google Scholar] [CrossRef]
- Karim, S.M.; Rosenhead, L. The second coefficient of viscosity of Liquids and gases. Rev. Mod. Phys. 1952, 24, 108–116. [Google Scholar] [CrossRef]
- Emanuel, G. Bulk viscosity of a dilute polyatomic gas. Phys. Fluids A 1990, 2, 2252–2254. [Google Scholar] [CrossRef]
- Emanuel, G. Effect of bulk viscosity on a hypersonic boundary layer. Phys. Fluids A 1992, 4, 491–495. [Google Scholar] [CrossRef]
- Graves, R.E.; Argrow, B. Bulk viscosity: Past to present. J. Thermophys. Heat Transf. 1999, 13, 337–342. [Google Scholar] [CrossRef]
- Billet, G.; Giovangigli, V.; de Gassowski, G. Impact of volume viscosity on a shock/hydrogen bubble interaction. Comb. Theory Model. 2008, 12, 221–248. [Google Scholar] [CrossRef]
- Fru, G.; Janiga, G.; Thevenin, D. Impact of Volume Viscosity on the Structure of Turbulent Premixed Flames in the Thin Reaction Zone Regime. Flow Turb. Combust. 2012, 88, 451–478. [Google Scholar] [CrossRef]
- Boukharfane, R.; Ferrer, P.J.M.; Mura, A.; Giovangigli, V. On the role of bulk viscosity in compressible reactive shear layer developments. Eur. J. Mech. B/Fluids 2019, 77, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Battiato, M.; Myong, R.S. Impact of bulk viscosity on flow morphology of shock-accelerated cylindrical light bubble in diatomic and polyatomic gases. Phys. Fluids 2021, 33, 066103. [Google Scholar] [CrossRef]
- Godunov, S. An interesting class of quasilinear systems. Sov. Math. Dokl. 1961, 2, 947–949. [Google Scholar]
- Friedrichs, K.O.; Lax, P.D. Systems of conservation laws with a convex extension. Proc. Nat. Acad. Sci. USA 1971, 68, 1686–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vol’pert, A.I.; Hudjaev, S.I. On the Cauchy problem for composite systems of nonlinear differential equations. Math USSR Sb. 1972, 16, 517–544. [Google Scholar] [CrossRef]
- Kawashima, S. Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics. Doctoral Thesis, Kyoto University, Kyoto, Japan, 1984. [Google Scholar]
- Liu, T.P. Hyperbolic Conservation Laws with Relaxation. Comm. Math. Phys. 1987, 108, 153–175. [Google Scholar] [CrossRef]
- Kawashima, S.; Shizuta, Y. On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tôhoku Math. J. 1988, 40, 449–464. [Google Scholar] [CrossRef]
- Chen, G.Q.; Levermore, C.D.; Liu, T.-P. Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 1994, 47, 787–830. [Google Scholar] [CrossRef]
- Serre, D. Systèmes de Lois de Conservation I et II; Diderot Editeur, Art et Science: Paris, France, 1996. [Google Scholar]
- Giovangigli, V.; Massot, M. Asymptotic stability of equilibrium states for multicomponent reactive flows. Math. Mod. Meth. App. Sci. 1998, 8, 251–297. [Google Scholar] [CrossRef] [Green Version]
- Dafermos, C. Hyperbolic Conservation Laws in Continuum Physics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Yong, W.-A.; Zumbrun, K. Existence of relaxation shock profiles for hyperbolic conservation laws. Siam J. Appl. Math. 2000, 60, 1665–1675. [Google Scholar]
- Feireisl, E. Dynamics of Viscous Compressible Fluids; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Yong, W.-A. Entropy and global existence for hyperbolic balance laws. Arch. Rat. Mech. Anal. 2004, 172, 247–266. [Google Scholar] [CrossRef]
- Kawashima, S.; Yong, W.-A. Dissipative structure and entropy for hyperbolic systems of conservation laws. Arch. Rat. Mech. Anal. 2004, 174, 345–364. [Google Scholar] [CrossRef]
- Bresch, D.; Desjardins, B. On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pure Appl. 2007, 87, 57–90. [Google Scholar] [CrossRef] [Green Version]
- Serre, D. The Structure of Dissipative Viscous System of Conservation laws. Phys. D 2010, 239, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Giovangigli, V.; Yong, W.-A. Volume Viscosity and Internal Energy Relaxation: Symmetrization and Chapman-Enskog Expansion. Kin. Rel. Model. 2015, 8, 79–116. [Google Scholar] [CrossRef]
- Giovangigli, V.; Yong, W.-A. Erratum: Volume Viscosity and Internal Energy Relaxation: Symmetrization and Chapman-Enskog Expansion. Kin. Rel. Model. 2016, 9, 813. [Google Scholar] [CrossRef] [Green Version]
- Giovangigli, V.; Yong, W.-A. Volume Viscosity and Internal Energy Relaxation: Error Estimates. Nonlinear Anal. Real World Appl. 2018, 43, 213–244. [Google Scholar] [CrossRef] [Green Version]
- Giovangigli, V.; Yang, Z.B.; Yong, W.-A. Relaxation Limit and Initial-Layer for a Class of Hyperbolic-Parabolic Systems. SIAM J. Math. Anal. 2018, 50, 4655–4697. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, X.; Wang, J.; Wan, M.; Li, H.; Chen, S. Effect of bulk viscosity on compressible homogeneous turbulence. Phys. Fluids 2019, 31, 085115. [Google Scholar]
- Hughes, T.J.R.; Franca, L.P.; Mallet, M. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comp. Meth. Appl. Mech. Eng. 1986, 54, 223–234. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, D.; Giovangigli, V. Internal Energy Relaxation Processes and Bulk Viscosities in Fluids. Fluids 2022, 7, 356. https://doi.org/10.3390/fluids7110356
Bruno D, Giovangigli V. Internal Energy Relaxation Processes and Bulk Viscosities in Fluids. Fluids. 2022; 7(11):356. https://doi.org/10.3390/fluids7110356
Chicago/Turabian StyleBruno, Domenico, and Vincent Giovangigli. 2022. "Internal Energy Relaxation Processes and Bulk Viscosities in Fluids" Fluids 7, no. 11: 356. https://doi.org/10.3390/fluids7110356
APA StyleBruno, D., & Giovangigli, V. (2022). Internal Energy Relaxation Processes and Bulk Viscosities in Fluids. Fluids, 7(11), 356. https://doi.org/10.3390/fluids7110356