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Abstract: Internal energy relaxation processes in fluid models derived from the kinetic theory are
revisited, as are related bulk viscosity coefficients. The apparition of bulk viscosity coefficients in
relaxation regimes and the links with equilibrium one-temperature bulk viscosity coefficients are
discussed. First, a two-temperature model with a single internal energy mode is investigated, then
a two-temperature model with two internal energy modes and finally a state-to-state model for
mixtures of gases. All these models lead to a unique physical interpretation of the apparition of
bulk viscosity effects when relaxation characteristic times are smaller than fluid times. Monte Carlo
numerical simulations of internal energy relaxation processes in model gases are then performed,
and power spectrums of density fluctuations are computed. When the energy relaxation time is
smaller than the fluid time, both the two temperature and the single-temperature model including
bulk viscosity yield a satisfactory description. When the energy relaxation time is larger than the
fluid time, however, only the two-temperature model is in agreement with Boltzmann equation. The
quantum population of a He-H2 mixture is also simulated with detailed He-H2 cross sections, and the
resulting bulk viscosity evaluated from the Green–Kubo formula is in agreement with the theory. The
impact of bulk viscosity in fluid mechanics is also addressed, as well as various mathematical aspects
of internal energy relaxation and Chapman–Enskog asymptotic expansion for a two-temperature
fluid model.

Keywords: bulk viscosity; relaxation of internal energy; kinetic theory; nonequilibrium

1. Introduction

The relaxation of internal energy is of fundamental importance in reentry problems
and laboratory plasmas [1–15]. Internal energy exchanges notably lead to the apparition of
bulk viscosity coefficients in fluid models in relaxation regimes [16–28]. Theoretical results
and experimental measurements have further shown that bulk viscosity coefficients of
polyatomic gases are of the order of shear viscosity coefficients [29–35]. These are strong
motivations for investigating internal energy relaxation processes and related bulk viscosity
coefficients in nonequilibrium models derived from the kinetic theory of gases.

A hierarchy of thermodynamic nonequilibrium fluid models may be derived from
the kinetic theory of polyatomic gas mixtures. The most general thermodynamic nonequi-
librium model is the state-to-state model, in which each internal state of a molecule is
independent and considered as a separate species [1–13]. When the internal states are
lumped into energy bins, coarse-grained models are obtained, with each bin considered
a separate species [14,15]. When there are partial equilibria between some of the bins or
between the internal states, species internal energy temperatures may be defined, and the
complexity of the model is reduced accordingly [9]. The next reduction step consists of
equating some of the species’ internal temperatures with the equilibrium one-temperature
model ultimately obtained [9]. Each relaxation step towards a simpler and more equili-
brated model then yields bulk viscosity contributions—provided the characteristic energy
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relaxation times are smaller than the flow times, the most complete bulk viscosity coefficient
being that obtained for the equilibrium one-temperature fluid [26–28].

A simplified kinetic model where elastic and resonant collisions are fast but collisions
exchanging translational and internal energy are slow is first considered [26]. In such a
framework, the translational and internal temperatures are macroscopic quantities associ-
ated with collisional invariants of the fast collision operator. In a relaxation regime, when
the characteristic time of internal energy relaxation is smaller than the flow characteristic
time, the difference between the translational temperature Ttr and the equilibrium temper-
ature T becomes proportional to the divergence of the velocity field v. This leads to the
apparition of a bulk viscosity coefficient κ, such that nkB(Ttr − T) = −κ∇·v where n is the
number density and kB the Boltzmann constant.

A more complex situation with two internal energy modes, one with a slow exchange
rate and the other one with a fast exchange rate, is then investigated [26]. The translational-
rapid mode temperature and the slow mode temperature are then collisional invariants
of the fast collision operator. For such a model, there is a bulk viscosity due to the fast
internal energy mode, as in classical one-temperature models, but part of the thermody-
namic equilibrium bulk viscosity is still hidden in the slow internal mode. A detailed
analysis yields that, in a relaxation regime, there are five contributions to the effective
bulk viscosity, namely the fast internal mode bulk viscosity, the slow internal mode bulk
viscosity, the reduced relaxation pressure and two perturbed relaxation source terms. In
the thermodynamic equilibrium limit, the sum of these five contributions coincide with the
one-temperature two-mode bulk viscosity. The physical interpretation of the origin of the
bulk viscosity coefficient is found to be similar to that of the simplified two-temperature
model [26]. This analysis may also be generalized to the situation of gas mixtures, as well
as to the case of nonindependent energy modes [27].

Next, the general situation of state-to-state mixture models in which each quantum
state of each species is independent is considered [28]. Relaxation equations in symmetric
form are derived for the quantum state population Gibbs functions and the translational
temperature. Approximate solutions of the population relaxation equations compatible
with the asymptotic equilibrium limit are then obtained. At zeroth order, using a relaxation
approximation, the differences between the pseudo species’ chemical potentials and their
equilibrium value are proportional to the divergence of the velocity field. The ‘internal
energy’ bulk viscosity κ[01] is then recovered with the relation nkB(Ttr − T) = −κ[01]∇·v.
At first order, the relaxation approximation yields a bulk viscosity that converges at ther-
modynamic equilibrium towards the traditional bulk viscosity.

Monte Carlo simulations of spontaneous fluctuations near thermodynamic equilibrium
are then performed in order to investigate a polyatomic model gas [36–38]. The density
fluctuation power spectrum of the model gas is evaluated by using the Boltzmann equation,
as well as linearized fluid equations [7,26,39–42]. The simplified one-temperature model,
including the bulk viscosity term, then well agrees with Boltzmann equation when the
internal energy relaxation time is smaller than the flow time [26,27]. When the relaxation
time is larger than the flow characteristic time, however, only the two-temperature model
is in agreement with Boltzmann equation.

Next, a state-to-state model for mixtures of Helium and Hydrogen is investigated
numerically. The required collision integrals are evaluated from a complete set of state-to-
state cross sections for the He + H2(v, j) collisional system. The latter have been obtained
using an implementation of the quasiclassical method [43–47] with the accurate Muchnik–
Russek potential energy surface [48–56]. The values of the bulk viscosity for the model gas,
obtained from the fluctuation–dissipation theory [57–69], are then in full agreement with
the theory [28].

The impact of bulk viscosity in fluid mechanics, which has scarcely been discussed in
the literature [70–77], is further addressed. The success of the erroneous Stokes approxima-
tion is mostly due to the gradient structure of the bulk viscosity term [74]. The mathematical
structure of relaxation systems of partial differential equations and their symmetry is also
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discussed [78–97]. Various mathematical aspects associated with the Chapman–Enskog
method for partial-differential equations are also addressed and applied to the simplified
two-temperature model, and found to agree with formal expansions [82,94–97].

The simplified two-temperature model is considered in Section 2, the two-temperature
two-mode nonequilibrium model in Section 3, and the state-to-state model in Section 4. The
Monte Carlo simulations of single gases are presented in Section 5 and that of state-to-state
mixture models in Section 6. The impact in fluid mechanics and the mathematical aspects
are finally addressed in Section 7.

2. A Simplified Two-Temperature Model
2.1. Kinetic Framework

A single polyatomic gas is considered with the Boltzmann equation written in the form

∂t f + c ·∇ f =
1
ε
J rap + J sl, (1)

where ∂t denotes the time derivative operator, c the particle velocity,∇ the space derivative
operator, f (t, x, c, I) the distribution function, x the spatial coordinate, I the index of the
quantum energy state, J rap the rapid collision operator, J sl the slow collision operator,
and ε the formal parameter associated with the Chapman–Enskog procedure. The complete
collision operator J = J rap + J sl is in the form

J ( f ) = ∑
J,I′ ,J′

∫(
f (c′, I′) f (c̃′, J′)

aIaJ

aI′ aJ′
− f (c, I) f (c̃, J)

)
gσIJI′ J′dc̃ de′, (2)

where in a direct collision I and J denote the indices of the quantum energy states before
collision, I′ and J′ the corresponding numbers after collision, c̃ the velocity of the colliding
partner, c′ and c̃′ the velocities after collision, aI the degeneracy of the Ith quantum energy
state, g the absolute value of the relative velocity c− c̃, e′ the unit vector in the direction of
the relative velocity c′ − c̃′, and σIJI′ J′ the collision cross sections [18,22]. The dependence
of f on (t, x) has been left implicit in (2) and the cross sections σIJI′ J′ satisfy the reciprocity
relations aIaJ gσIJI′ J′dc dc̃ de′ = aI′ aJ′g′σI′ J′ IJdc′dc̃′de.

Denoting by EI the internal energy in the Ith state, the rapid collisions are either elastic
without change of internal energy or resonant with ∆E = EI′ + EJ′ − EI − EJ = 0, EI′ 6= EI

and EJ′ 6= EJ, whereas the slow collisions are such that ∆E = EI′ + EJ′ − EI − EJ 6= 0.
Denoting by J tr−tr the operator associated with elastic collision, J int−int the operator
associated with resonant collisions, and J tr−int the operator associated with collisions,
such that ∆E 6= 0, the fast and slow collision operators are then

J rap = J tr−tr + J int−int, J sl = J tr−int. (3)

The collisional invariants of the fast collision operator J rap are associated with particle
number ψ1 = 1, momentum ψ1+ν = mcν, ν ∈ {1, 2, 3} with c = (c1, c2, c3)

t, kinetic energy
ψ5 = ψtr = 1

2 m|c− v|2 and internal energy ψ6 = ψint = EI where m denotes the particle
mass and v the fluid velocity.

The Enskog expansion is in the form f = f (0)
(
1 + εφ +O(ε2)

)
and the Maxwellian

distribution f (0) reads

f (0) =
( m

2πkBTtr

) 3
2 naI

Zint exp
(
−m|c− v|2

2kBTtr − EI

kBTint

)
, (4)

where n denotes the number density, kB the Boltzmann constant, Ttr the translational
temperature, Tint the internal temperature, and Zint = ∑I aI exp

(
−EI/kBTint) the partition

function. There are two different temperatures, Ttr and Tint, in f (0), since there are two



Fluids 2022, 7, 356 4 of 30

different energy collisional invariants: ψtr and ψint. The scalar product 〈〈ξ, ζ〉〉 between two
tensorial quantities ξ(t, x, c, I) and ζ(t, x, c, I) is naturally defined by

〈〈ξ, ζ〉〉 = ∑
I

∫
ξ·ζ dc.

where ξ·ζ is the contracted product.
The equations for conservation of mass, momentum and internal energies are then

obtained by taking the scalar product of the Boltzmann equation (1) with the collisional
invariants of the fast collision operator. The corresponding fluid variables are the particle
number density n = 〈〈ψ1, f 〉〉 = 〈〈ψ1, f (0)〉〉 or, equivalently, the mass density ρ = mn,
the mass averaged velocity v with ρv = 〈〈mc, f 〉〉 = 〈〈mc, f (0)〉〉, the internal energy per
unit volume of translational origin E tr = 〈〈 f , ψtr〉〉 = 〈〈 f (0), ψtr〉〉, and the internal energy
per unit volume of internal origin E int = 〈〈 f , ψint〉〉 = 〈〈 f (0), ψint〉〉, or, equivalently, the
translation and internal temperatures Ttr and Tint defined by E tr(Ttr, n) = 〈〈 f , ψtr〉〉 and
E int(Tint, n) = 〈〈 f , ψint〉〉. The pressure p and the internal energies E tr and E int are found in
the form

p = nkBTtr, E tr = n 3
2 kBTtr, E int = nE, (5)

where E = ∑I
aI EI

Zint exp
(
−EI/kBTint) is the average internal energy per particle. The corre-

sponding translational and internal entropies and Gibbs functions are presented in [26].
Following the Chapman–Enskog procedure, the equations for conservation of mass, mo-
mentum, and internal energies are obtained in the form [9]

∂tρ +∇·(ρv) = 0, (6)

∂t(ρv) +∇·(ρv⊗v + pI) +∇·Π = 0, (7)

∂tE tr +∇·(vE tr) +∇·Qtr = −p∇·v−Π:∇v−ωint
1 , (8)

∂tE int +∇·(vE int) +∇·Qint = ωint
1 , (9)

where ⊗ denotes the tensor vector product, I the unit tensor, Π the viscous tensor, Qtr the
translational energy heat flux, Qint the internal energy heat flux and ωint

1 the first-order
energy exchange term. The transport fluxes are given by

Π =− η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (10)

Qtr =− λtr,tr∇Ttr − λtr,int∇Tint, (11)

Qint =− λint,tr∇Ttr − λint,int∇Tint, (12)

where η denotes the shear viscosity, and λtr,tr, λtr,int, λint,tr, and λint,int the thermal con-
ductivities. The full source term ωint = 〈〈ψint,J sl〉〉 = 〈〈ψint,J 〉〉 may be expanded as
ωint = ωint

0 + εδωint
1 +O(ε2) where ωint

0 is evaluated from the Maxwellian distribution f (0)

and δωint
1 is the correction associated with the Navier–Stokes perturbation φ, so that the

first-order source term ωint
1 is given by

ωint
1 = ωint

0 + εδωint
1 . (13)

Finally, the pressure tensor P = pI + Π is given by

P = nkBTtr I − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (14)

and does not involve a bulk viscosity term, unlike one-temperature polyatomic gas models [16–25].
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2.2. Relaxation and Bulk Viscosity

From the energy Equations (8) and (9) it is obtained at zeroth order that

∂tTtr + v·∇Ttr = − p∇·v
nctr −

ωint
0

nctr , ∂tTint + v·∇Tint =
ωint

0
ncint , (15)

where the heat capacities are given by

ctr = 3
2 kB, cint = ∑

I

kBaI

Zint

(EI − E
kBTint

)2
exp

(
− EI

kBTint

)
, cvl = ctr + cint.

The zeroth-order source term ωint
0 is in the form ωint

0 = −2n2[[(∆E)
(
exp

( ∆E
kBTtr − ∆E

kBTint

)
− 1
)]]

where [[ ]] is the averaging operator [[α]] = 1
8n2 ∑I,J,I′ ,J′

∫
αIJI′ J′ f (0) f̃ (0)gσIJI′ J′dc dc̃ de′. Defining

the nonequilibrium correction factor by ζ =
∫ 1

0 exp
(
( ∆E

kBTtr − ∆E
kBTint )s

)
ds and the relaxation

time by τint = cintkBTtrTint/2n[[(∆E)2ζ]], the source term ωint
0 may be rewritten in the

relaxation form

ωint
0 =

ncint

τint (T
tr − Tint). (16)

Subtracting the Tint equation from that for Ttr and using (16), the resulting equation
for Ttr − Tint reads

∂t(Ttr − Tint) + v·∇(Ttr − Tint) = − p∇·v
nctr −

cvl

ctr
Ttr − Tint

τint . (17)

This is a typical relaxation equation, and when τint is smaller that the flow characteris-
tic time, the relaxation relation Ttr − Tint = −τint p∇·v/ncvl is obtained after some initial
layer. The equilibrium temperature is naturally defined as the unique scalar T, such that

E tr(T) + E int(T) = E tr(Ttr) + E int(Tint), (18)

and only this temperature T is available for the limiting one-temperature fluid model. Let-
ting c̃int =

∫ 1
0 cint(Tint + s(T − Tint)

)
ds, we then have E int(T)− E int(Tint) = c̃int(T − Tint)

and ctr(Ttr− T) = c̃int(T− Tint). The bulk viscosity is also defined by κ = pkB c̃intτint/cvl c̃vl

where c̃vl = ctr + c̃int so that

κ =
cint c̃int

cvl c̃vl
k3

B (Ttr)2Tint

2[[(∆E)2ζ]]
, (19)

and the equilibrium limit of this coefficient is
( cint

cvl

)2
(kBT)3/2[[(∆E)2]], which coincides with

the bulk viscosity coefficient obtained independently from the Chapman–Enskog method
for the equilibrium fluid [34,35]. Combining the relaxation relation with ctr(Ttr − T) =
c̃int(T − Tint) and the definition of κ, we obtain the fundamental relation

nkB(Ttr − T) = −κ∇·v. (20)

The pressure tensor P is then in the form

P = nkBTI − κ∇·vI − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (21)

and the bulk viscosity coefficient of the one-temperature equilibrium limit fluid that only involves
T has been recovered. Many authors have discussed the near thermodynamic equilibrium
situation, where the internal temperature Tint and the translational temperature Ttr are
a priori close; notably, Kohler [16], Hirschfelder Curtiss and Bird [17], Waldmann [18],
Chapman and Cowling [19], Ferziger and Kapper [20], McCourt et al. [21], de Groot and
Mazur [24], Keizer [25], Zhdanov [8], Nagnibeda and Kustova [9] and Brun [10].
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It is also possible to establish that first-order corrections to the bulk viscosity coefficient
are negligible for such a simplified two-temperature model. Discarding Burnett-type
terms, the corrections indeed involve the perturbed source term δωint

1 that is in the form
δωint

1 = 〈〈 f (0)φ,W int〉〉 = 〈〈 f (0)φω,W int〉〉ωint
0 where φω is the scalar perturbed distribution

function arising from the expansion [26]

φ = −φη :∇v− φλtr ·∇
( 1

kBTtr

)
− φλint ·∇

( 1
kBTint

)
+ φωωint

0 ,

with φη denoting a symmetric traceless tensor; φλtr
and φλint

are vectors [9,26]. However,
the standard scalar basis functions φ0010 = 3

2 −
1
2

m
kBT |c− v|2 and φ0001 = (E− EI)/kBTint

used for scalar linearized kinetic equations are both collisional invariants of the rapid
collision operator, and are therefore in the nullspace of the linearized fast collision operator
Irap. Therefore, the perturbed term vanishes φω ' 0 in a first approximation, so that
ωint

1 ' ωint
0 , and there are no first-order corrections to the bulk viscosity coefficient [26].

3. A Two-Mode Two-Temperature Model
3.1. Kinetic Framework

A single polyatomic gas with two independent internal energy modes that have
different exchange rates is now considered. The first mode is assumed to have a rapid
exchange rate with the translational degrees of freedom, whereas the other one is assumed
to have a slow exchange rate. The internal energy in the Ith quantum state is accordingly
split as

EI = Erap
Irap + Esl

Isl , (22)

where I denotes the composed index I = (Irap, Isl), Irap the index of the quantum energy
state of the rapid mode, Isl the index of the quantum energy state of the slow mode, Erap

Irap

the rapid mode internal energy, and Esl
Isl the slow mode internal energy. It is denoted for

short Erap
I for Erap

Irap and Esl
I for Esl

Isl , so that EI = Erap
I + Esl

I . The degeneracy of the Ith state
is also denoted by aI and may be decomposed as aI = arap

Irap asl
Isl where arap

Irap and asl
Isl are the

degeneracies of the fast and slow modes. The rapid collisions are all collisions, such that
∆Esl = Esl

I′ + Esl
J′ − Esl

I − Esl
J = 0, either only involving the translational and rapid mode

energy or resonant with respect to the slow internal mode. Denoting by J (tr+rap)−(tr+rap)

the collision operator involving solely the translational and fast internal degrees of freedom,
J sl−sl the operator for resonant collision with respect to Esl, and J (tr+rap)−sl the operator
for collisions, such that ∆Esl 6= 0, the Boltzmann equation governing the distribution
f (t, x, c, I) is in the form (1) with the fast and slow collision operators given by

J rap = J (tr+rap)−(tr+rap) + J sl−sl J sl = J (tr+rap)−sl. (23)

The collisional invariants of the fast collision operator are associated with particle
number ψ1 = 1, momentum ψ1+ν = mcν, ν ∈ {1, 2, 3}, translational and rapid mode energy
ψ5 = ψtr + ψrap and slow mode energy ψ6 = ψsl, where ψtr = 1

2 m|c− v|2, ψrap = Erap
I , and

ψsl = Esl
I .

The Enskog expansion is in the form f = f (0)
(
1 + εφ +O(ε2)

)
and the Maxwellian

f (0) is found to be

f (0) =
( m

2πkBT

) 3
2 naI

Zint exp
(
−m|c− v|2)

2kBT
− Erap

I

kBT
− Esl

I

kBTsl

)
, (24)

where T is the partial equilibrium temperature between the translational and fast internal
degrees of freedom, Tsl the temperature associated with the slow internal energy modes,

and Zint = ∑I aI exp
(
− Erap

I

kBT
− Esl

I

kBTsl

)
the internal partition function. There are two different

temperatures T and Tsl involved in f (0), since there are two different energy collisional
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invariants ψtr + ψrap and ψsl. The partition function may be decomposed as Zint = ZrapZsl

where Zrap = ∑Irap arap
Irap exp

(
−Erap

Irap /kBT
)

and Zsl = ∑Isl asl
Isl exp

(
−Esl

Isl /kBTsl) are the fast
and slow mode partition functions.

The equations for conservation of mass, momentum and internal energies are obtained
by taking scalar products of the Boltzmann equation with the collisional invariants of the
fast collision operator. The extra fluid variables to consider, in addition to the particle
number density n and the mass averaged velocity v, are now the energies E tr+rap =
〈〈 f , ψtr + ψrap〉〉 = 〈〈 f (0), ψtr + ψrap〉〉 and E sl = 〈〈 f , ψsl〉〉 = 〈〈 f (0), ψsl〉〉 or, equivalently,
the temperatures T and Tsl defined by E tr+rap(T, n) = 〈〈 f , ψtr + ψrap〉〉 and E sl(Tsl, n) =
〈〈 f , ψsl〉〉. The pressure p and the internal energies E tr+rap and E sl are obtained in the form

p = nkBT, E tr+rap = n( 3
2 kBT + Erap

), E sl = nEsl, (25)

where Erap
= ∑Irap

arap
Irap Erap

Irap
Zrap exp

(
−Erap

Irap /kBT
)

and Esl
= ∑Isl

asl
Isl Esl

Isl

Zsl exp
(
−Esl

Isl /kBTsl) are the
average fast and slow mode internal energy per particle. The corresponding entropies
and Gibbs functions are presented in [26]. The corresponding mass and momentum
conservation equations are similar to (6) and (7) and are not repeated. On the other hand,
the equations for conservation of internal energies are in the form

∂tE tr+rap +∇·(vE tr+rap) +∇·Qtr+rap = −p∇·v−Π:∇v−ωsl
1 , (26)

∂tE sl +∇·(vE sl) +∇·Qsl = ωsl
1 , (27)

where Qtr+rap denotes the translational and fast mode energy flux, Qsl the slow mode
energy flux, and ωsl

1 the first-order energy exchange term. The transport fluxes are given by

Π = prel I − κrap∇·vI − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (28)

Qtr+rap = −λtr+rap,tr+rap∇T − λtr+rap,sl∇Tsl, (29)

Qsl = −λsl,tr+rap∇T − λsl,sl∇Tsl, (30)

where prel denotes the relaxation pressure, κrap the fast internal energy mode bulk vis-
cosity, η the shear viscosity and λtr+rap,tr+rap, λtr+rap,sl, λsl,tr+rap, and λsl,sl the thermal
conductivities. The full source term ωsl = 〈〈ψsl,J sl〉〉 = 〈〈ψsl,J 〉〉 may be expanded as
ωsl = ωsl

0 + εδωsl
1 +O(ε2) where ωsl

0 is evaluated from the Maxwellian distribution f (0)

and δωsl
1 is the correction associated with the Navier–Stokes perturbation φ, so that ωsl

1 is
given by

ωsl
1 = ωsl

0 + εδωsl
1 . (31)

Finally, defining the pressure tensor as P = pI + Π, it is obtained that

P = nkBTI + prel I − κrap∇·v I − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (32)

with a pressure term nkBTI, a relaxation pressure term prel I, a bulk viscosity contribution
solely associated with the fast internal modes κrap∇·vI and a shear viscosity term. In
particular, the resulting bulk viscosity κrap differ from that obtained at equilibrium that involves
the two internal energy modes [34,35].

3.2. Relaxation and the Slow Mode Bulk Viscosity

From the energy Equations (26) and (27), it is deduced at zeroth order that

∂tT + v·∇T = − p∇·v
n(ctr + crap)

−
ωsl

0
n(ctr + crap)

, ∂tTsl + v·∇Tsl =
ωsl

0
ncsl , (33)
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where the heat capacities are given by

ctr = 3
2 kB, crap = ∑

Irap

kBarap
Irap

Zrap

(Erap
Irap − Erap

kBT

)2
exp

(
−

Erap
Irap

kBT

)
,

csl = ∑
Isl

kBasl
Isl

Zsl

(Esl
Isl − Esl

kBT

)2
exp

(
−

Esl
Isl

kBT

)
, cvl = ctr + crap + csl.

The source term ωsl
0 is in the form ωsl

0 = −2n2[[(∆Esl)
(
exp

(∆Esl

kBT
− ∆Esl

kBTsl

)
− 1
)]]

where[[ ]]
is the averaging operator. Defining the nonequilibrium correction factor as ζsl =∫ 1

0 exp
((∆Esl

kBT
− ∆Esl

kBTsl

)
s
)

ds and the relaxation time by τsl = cslkBTTsl/2n[[(∆Esl)2ζsl]], the

source term ωsl
0 may be recast in the relaxation form

ωsl
0 =

ncsl

τsl (T − Tsl). (34)

Subtracting the Tsl equation from that of T and using (34), the resulting equation for
T − Tsl is therefore

∂t(T − Tsl) + v·∇(T − Tsl) = − p∇·v
n(ctr + crap)

− cvl

(ctr + crap)

T − Tsl

τsl . (35)

This is a typical relaxation equation and, assuming that τsl is smaller than the flow
characteristic time, the relaxation relation at zeroth order T − Tsl = −τsl p∇·v/ncvl is
obtained after an initial layer. The equilibrium temperature T is naturally defined, such that

E tr+rap(T, n) + E sl(T, n) = E tr+rap(T, n) + E sl(Tsl, n). (36)

Letting c̃sl =
∫ 1

0 csl(Tsl + s(T − Tsl)
)

ds and c̃rap =
∫ 1

0 crap(T + s(T − T)
)

ds yields
E sl(T, n)−E sl(Tsl, n) = n c̃sl(T−Tsl) and E tr+rap(T, n)−E tr+rap(T, n) = n (ctr + c̃rap)(T−
T) and (ctr + c̃rap)(T − T) = c̃sl(T − Tsl). The slow mode bulk viscosity is defined by
κsl = pkB c̃slτsl/cvl c̃vl, where c̃vl = ctr + c̃rap + c̃sl and κsl may also be written

κsl =
csl c̃sl

cvl c̃vl
k3

B T2Tsl

2[[(∆Esl)2ζsl]]
. (37)

Combining the relaxation relation with the later definitions yields at zeroth order that

nkBT = nkBT − κsl∇·v. (38)

Using the state law (25) and the expression of the pressure tensor (32), yields an
effective bulk viscosity in the form κrap + κsl that differs from the one-temperature two-mode
bulk viscosity directly obtained at equilibrium [34,35] also presented in Appendix A. It is thus
necessary to investigate first-order effects in order to recover the full one-temperature,
two-mode equilibrium bulk viscosity.

3.3. The Effective Bulk Viscosity

First-order corrections to the relaxation relation need to be taken into account in order
to recover the proper one-temperature two-mode bulk viscosity at equilibrium. From the
governing Equations (26) and (27), it is deduced that at first order
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∂tT + v·∇T = − p∇·v

n(ctr + crap)
− ∇·Q

tr+rap

n(ctr + crap)
− Π:∇v

n(ctr + crap)
−

ωsl
1

n(ctr + crap)
,

∂tTsl + v·∇Tsl = −∇·Q
sl

ncsl +
ωsl

1
ncsl ,

(39)

so that the structure of the first-order source term ωsl
1 = ωsl

0 + δωsl
1 has to be investi-

gated. From the structure of the linearized Boltzmann equation, the perturbed distribution
function φ may be expanded as

φ = −φη :∇v− φλtr+rap ·∇
( 1

kBT

)
− φλsl ·∇

( 1
kBTsl

)
− 1

3 φκ∇·v + φωωsl
0 ,

where φη is a symmetric traceless tensor, φλtr+rap
and φλsl

are vectors φκ and φω are scalars.
The coefficients φµ, µ ∈ {η, λtr+rap, λsl, κ, sl}, satisfy linearized Boltzmann equations in
the form Irap(φµ) = ψµ with the constraints 〈〈 f (0)φµ, ψj〉〉 = 0, 1 6 j 6 6, where Irap

is the linearized fast collision operator and the right-hand sides ψµ are presented in [26].
DefiningWsl = ∑J,I′,J′(∆Esl)

∫
f̃ (0)gσIJI′ J′dc̃ de′ the perturbed source term is then in the form

δωsl
1 = 〈〈 f (0)φ,Wsl〉〉 and using the Curie principle then yields δωsl

1 = − 1
3 〈〈 f (0)φκ,Wsl〉〉∇·v

+ 〈〈 f (0)φω,Wsl〉〉ωsl
0 . Defining wκ

1 = − 1
3 〈〈 f (0)φκ ,Wsl〉〉 and wsl

1 = 〈〈 f (0)φω,Wsl〉〉 the per-
turbed term δωsl

1 is obtained in the form

δωsl
1 = wκ

1∇·v + wsl
1 ωsl

0 . (40)

In the relaxation approximation, at first order, one may also replace ωsl
0 with its zeroth-

order approximation ωsl
0 ≈ −csl p∇·v/cvl in the first-order term δωsl

1 . The perturbed
source terms wκ

1 and wsl
1 then yield corrections to the temperature difference T− Tsl in such

a way that [26]

nkB(T − T) = −
(
κsl + κsl cvlwκ

1
csl p

− κslwsl
1 )∇·v. (41)

In addition, the relaxation pressure prel is given by

prel = p̃relωsl
0 , p̃rel = 1

3 kBT〈〈 f (0)φω, ψκ〉〉 = 1
3 kBT〈〈 f (0)φκ , ψω〉〉, (42)

where p̃rel is the reduced relaxation pressure so that prel is also proportional to∇·v and
further yields a bulk viscosity contribution. Finally, using the general expression of the
pressure tensor (32), the definition of p̃rel, as well as (41), it is found that the effective bulk
viscosity in the Navier–Stokes regime is in the form [26]

κeff = κrap − p̃rel csl p
cvl + κsl + κsl cvlwκ

1
csl p

− κslwsl
1 . (43)

The detailed calculation of each term finally yields after lengthy algebra that [26]
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κeff =
( crap

ctr + crap

)2 (kBT)3

2[[(∆Erap)2]]
− csl

cvl

( crap

ctr + crap

)2 (kBT)3cslcrap

2[[(∆Erap)2]]

− crapcsl

(ctr + crap)cvl
(kBT)3[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2ζsl]][[(∆Esl)2ζsl]]
+

csl c̃sl

cvl c̃vl

kB
3(T)2Tsl

2[[∆Esl)2ζsl]]

− c̃sl

c̃vl

( crap

ctr + crap

)2 k3
B T2Tsl

2[[(∆Erap)2]]
− crap c̃sl

(ctr + crap)c̃vl

k3
B T2Tsl[[(∆Esl)(∆Erap)]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]

+
csl c̃sl

cvl c̃vl

( crap

ctr + crap

)2 k3
B T2Tsl

2[[(∆Erap)2]]
+ 2

crapcsl c̃sl

(ctr + crap)cvl c̃vl

k3
B T2Tsl[[(∆Esl)(∆Erap)]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]
. (44)

The effective bulk viscosity at thermodynamic equilibrium T = Tsl = T then coincides
with the one-temperature two-mode bulk viscosity derived from the Chapman–Enskog
method and presented in Appendix A.

Finally, it is possible to introduce a translational temperature Ttr from the relation
E tr(Ttr, n) = 〈〈 f , ψtr〉〉. This temperature is not a collisional invariant and must be expanded
in the form Ttr = Ttr

1 +O(ε2). It is then established that

nkB(Ttr
1 − T) = −

(
κrap − p̃rel csl p

cvl

)
∇·v. (45)

Combining (41) and (45), it is finally obtained that Ttr
1 and κeff, defined by (43) and

given by (44), are such that
nkB(Ttr

1 − T) = −κeff∇·v. (46)

Therefore, the physical interpretation gained with the previous simplified model (20)
is also valid in the more complex situation where there are two energy modes with different
dynamics [26]. All these results may further be extended to mixtures of gases, as well as to
the situation where the fast and slow energy modes are not independent [27].

4. A State-to-State Model for Gas Mixtures
4.1. Kinetic Framework

A state-to-state model for a mixture of polyatomic gases is considered [1–11,13].
We denote by iI the pseudo species index for the ith species in the Ith quantum state,
S = {1, . . . , Ns} the species indexing set, Ns the number of species, Qi the ith species quan-
tum state indexing set, Q = ∪i∈S{i}×Qi the pseudo species indexing set, and Nq the
number of pseudo species. The pseudo species Boltzmann equations are written as

∂t fiI + ciI ·∇ fiI =
1
ε
J rap

iI + J sl
iI , iI ∈ Q, (47)

where ciI denotes the velocity of the particle of the iI-th pseudo species, fiI(t, x, ciI) the
distribution function for the iIth pseudo species, J rap

iI the rapid collision operator, J sl
iI the

slow collision operator, and ε the formal parameter associated with the Chapman–Enskog
procedure. The internal energy of the iIth pseudo species is also denoted by EiI and the
corresponding degeneracy by aiI. Using similar notation as in previous sections, the fast
and slow collision operators are given by

J rap
iI = J tr−tr

iI , J sl
iI = J tr−int

iI + J int−int
iI . (48)

The collisional invariants of the fast collision operator J rap = (J rap
iI )iI∈Q are asso-

ciated with the pseudo species particle numbers ψkK = (δkiδIK)iI∈Q, kK ∈ Q, momentum
ψNq+ν = (miciIν)iI∈Q, ν ∈ {1, 2, 3}, where mi denotes the mass of the particles of the ith
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species and ciI = (ciI1,ciI2, ciI3)
t, and kinetic energy ψNq+4 = ψtr =

( 1
2 mi|ciI − v|2

)
iI∈Q

where v denotes the mass average mixture velocity.
The Enskog expansion reads fiI = f (0)iI

(
1 + εφiI +O(ε2)

)
with the Maxwellian distri-

bution of the iI-th pseudo species f (0)iI in the form

f (0)iI =
( mi

2πkBTtr

)3/2
niI exp

(
−mi|ciI − v|2

2kBTtr

)
, (49)

where Ttr is the translational temperature of the mixture. Assuming that there are sufficiently
inelastic collisions, the collision invariants of the slow collision operator J sl = (J sl

iI )iI∈Q,
are associated with the species particle numbers ψk = (δki)iI∈Q = ∑K∈Qk

ψkK, k ∈ S,
momentum ψNq+ν, ν ∈ {1, 2, 3}, and mixture total energy ψen = ψNq+4 =

( 1
2 mi|ciI − v|2 +

EiI

)
iI∈Q. The scalar product 〈〈ξ, ζ〉〉 between two tensorial quantities ξ = (ξiI)iI∈Q and

ζ = (ζiI)iI∈Q is naturally defined by

〈〈ξ, ζ〉〉 = ∑
iI∈Q

∫
ξiI ·ζiI dciI,

where ξiI ·ζiI is the contracted product.
The fluid equations are obtained by taking the scalar product of Boltzmann

Equation (47) with the collisional invariants of the fast collision operator. The fluid variables
are the pseudo species number densities nkK = 〈〈ψkK, f 〉〉 = 〈〈ψkK, f (0)〉〉 or, equivalently,
the mass densities ρkK = mknkK for kK ∈ Q, the mass averaged velocity v = (v1, v2, v3)

t

with ρvν = 〈〈ψNq+ν, f 〉〉 = 〈〈ψNq+ν, f (0)〉〉 for ν ∈ {1, 2, 3} and ρ = ∑kK∈Q ρkK, and the
translational temperature defined by 3

2 nkBTtr = 〈〈 f , ψtr〉〉 = 〈〈 f (0), ψtr〉〉with n = ∑kK∈Q nkK

denoting the total number density. The pressure p, the translational energy E tr and the
total internal energy E are found in the form

p = nkBTtr, E tr = n 3
2 kBTtr E = E tr + ∑

iI∈Q
niIEiI. (50)

Introducing the partition functions ZiI = Ztr
i Zint

iI with

Ztr
i =

(2πmikBTtr

h2
P

)3/2
, Zint

iI = aiI exp
(
− EiI

kBTtr

)
,

where hP is the Planck constant, one may then rewrite the Maxwellian distribution of
the iI-th pseudo-species in the form f (0)iI = 1

βiI

niI
ZiI

exp
(
−mi|ciI − v|2/2kBTtr − EiI/kBTtr)

where βiI = h3
P/(aiIm3

i ). The entropy per particle of the iIth pseudo species is given by
SiI = 5

2 kB − kB log niI

aiI Ztr
i

= 5
2 kB +

EiI
Ttr − kB log niI

ZiI
for iI ∈ Q and the mixture fluid entropy

by S = ∑iI∈Q niISiI. The Gibbs function GiI of the iIth pseudo particle is also given by
GiI = kBTtr log niI

ZiI
and the reduced chemical potential µiI and µtr by

µiI = log
niI

ZiI
, iI ∈ Q, µtr = −

1
Ttr

, (51)

and will be used as symmetrizing variables.
Following the Chapman–Enskog procedure, the conservation equations are found in

the form [9]

∂tnkK +∇·(nkKv) +∇·(nkKVkK) = ω
(1)
kK , kK ∈ Q, (52)

∂t(ρv) +∇·(ρv⊗v + pI) +∇·Π = 0, (53)

∂tE +∇·(vE) +∇·Q = −p∇·v−Π:∇v, (54)
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where VkK denotes the diffusion velocity of the kKth pseudo species, ω
(1)
kK the first-order

production term of the kKth pseudo species, Π the viscous tensor and Q the heat flux.
The inelastic collisions are written for convenience as chemical reactions

∑
iI∈Q

νf
iIrMiI � ∑

iI∈Q
νb

iIrMiI, r ∈ R, (55)

where MiI is the symbol of the iI pseudo species, r the reaction number, R the reaction in-
dexing set and νf

iIr and νb
iIr the forward and backward stoichiometric coefficients of pseudo

species iI in reaction r. The source term may be expanded as ω
(1)
kK = ω

(0)
kK + εδω

(1)
kK where

ω
(0)
kK is evaluated with Maxwellian distributions and δω

(1)
kK is the first-order perturbation.

The zeroth-order source terms are first obtained in the form ω
(0)
kK = ∑r∈R νkKr τ̄r, with the

stoichiometric coefficients defined by νkKr = νb
kKr − νf

kKr, and the rates of progress in the

form τ̄r = Cr
{

∏iI∈Q(niI/ZiI)
νf

iIr −∏iI∈Q(niI/ZiI)
νb

iIr
}

where Cr is an average quantity asso-

ciated with chemical transition probabilities of reaction r [9,22]. Letting ω(0) = (ω
(0)
iI )iI∈Q,

νf
r = (νf

iIr)iI∈Q, νb
r = (νb

iIr)iI∈Q, νr = (νiIr)iI∈Q the zeroth-order source term may then
be written as ω(0) = ∑r∈R νr τ̄r with τ̄r = Cr

(
exp〈µ, νf

r〉 − exp〈µ, νb
r 〉
)

and defining ζr =∫ 1
0 exp

(
〈µ, νr〉s

)
ds it is obtained that

ω(0) = −Λµ = −Λ(µ− µe), Λ = ∑
r∈R

Λr νr⊗νr, Λr = Crζr exp〈µ, νb
r 〉, (56)

where µe = (µe
iI)iIQ denotes the equilibrium value of µ and where the property 〈νr, µe〉 = 0,

r ∈ R, has been used. The perturbed source terms δω
(1)
kK may also be expressed in terms of

the perturbed distribution φ [22,26,27].
Denoting by Irap

iI the linearized fast collision operator for the iIth pseudo species and
by Irap = (Irap

iI )iI∈Q the linearized operator of the mixture, the perturbed distribution
function φ = (φiI)iI∈Q is such that Irap(φ) = ψ where ψ = (ψiI)iI∈Q has components

ψiI = −∂
(0)
t log f (0)iI − ciI ·∇ log f (0)iI + J sl,(0)

iI / f (0)iI ,

and φ must satisfy the Enskog constraints 〈〈 f (0)φ, ψj〉〉 = 0 for 1 ≤ j ≤ Nq + 4. Expanding
the perturbed distribution function in terms of the gradients of the macroscopic variables,
the dissipative fluxes are found in the classical form [9,22,26]. In particular, the viscous
tensor reads Π = −η

(
∇v + (∇v)t − 2

3 (∇·v)I
)

and there is neither a bulk viscosity term
nor a relaxation pressure, since all pseudo species have a single internal state [9,22].
Defining the pressure tensor as P = pI + Π, it is obtained that

P = nkBTtr I − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)

(57)

so that P does not contain a bulk viscosity term, unlike one-temperature polyatomic gas mix-
tures [16–25].

4.2. Equilibrium Population and Bulk Viscosities

The equilibrium limit of the state-to-state model is obtained by zeroing the chemistry
sources ω(0) while maintaining constant slow variables associated with the collision in-
variants of the full collision operator J rap + J sl, namely the species number densities
nk = ∑K∈Qk

nkK, k ∈ S, momentum ρv and the total internal energy n 3
2 kBTtr + ∑iI∈Q niIEiI.

Denoting by T the thermodynamic equilibrium temperature, the species equilibrium popu-
lation is given by the Boltzmann distribution

ne
iI =

aiIni

Zint
i

exp
(
− EiI

kBT
)
, iI ∈ Q, (58)
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where Zint
i = ∑I∈Qi

aiI exp
(
−EiI/kBT

)
is the equilibrium internal partition function of the

ith species and where ∑I∈Qi
niI = ∑I∈Qi

ne
iI = ni, for i ∈ S. The corresponding equilib-

rium species average energies are Ei = ∑I∈Qi
(aiIEiI/Zint

i ) exp(−EiI/kBT), the internal heat
capacities are given by

cint
i = ∂TEi = ∑

I∈Qi

aiI
(EiI − Ei)

2

kBT2Zint
i

exp
(
−EiI/kBT

)
,

and the equilibrium temperature is the unique scalar T, such that

n 3
2 kBT + ∑

i∈S
niEi = ∑

iI∈Q
niI(

3
2 kBTtr + EiI). (59)

With the chemistry analogy, one may further introduce ψk = (δik)iI∈Q = ∑K∈Qk
ψkK,

for k ∈ S, and νr = (νiIr)iI∈Q, for r ∈ R, and define

R = span{ νr, r ∈ R }, A = span{ ψk, k ∈ S }.

Using a chemistry vocabulary, one may then say that the species are the atoms of the
pseudo species. Assuming naturally that there are sufficiently energy exchanges then
yields R⊥ = A; that is, the reaction vectors νr, r ∈ R are sufficiently numerous in order
to span the maximum space A⊥, keeping in mind that there is no dissociation or recom-
bination. The equilibrium pseudo species number densities µe = (µe

iI)iI∈Q are then the
unique solution of the equilibrium conditions µe ∈ R⊥ or equivalently µe ∈ A under the
constraints that nk for k ∈ S and E are invariants. The reduced chemical potentials at
equilibrium are indeed such that µe

iI = log(ne
iI/Ze

iI) = log(ni/Zint
i ) where Ze

iI = ZiI(T) so
that µe = ∑i∈S log(ni/Zint

i )ψi and 〈µe, νr〉 = 0, r ∈ R.
The usual scalar species basis functions at equilibrium are given by φ0001k =

(
(Ei −

EiI)δik/kBT
)

iI∈Q and φ0010k =
(
(3

2 −
1
2

mi
kBT |c− v|2)δki

)
iI∈Q for the kth species. The basis func-

tion φ0010k is defined for any k ∈ S, while φ0001k are defined for any k ∈ Sp where Sp de-
notes the set of polyatomic species. The projected basis functions φ̂0001k = φ0001k − ψencint

k /cvl,
k ∈ Sp, are also considered where the terms proportional to ψen ensure that the functions
φ̂0001k are orthogonal to the collisional invariant ψen of the complete collision operator in the
equilibrium kinetic framework. Two bulk viscosities at equilibrium may then be defined;
namely the ‘internal energy’ bulk viscosity κ[01] as well as the ‘standard bulk viscosity’ κ.
The linear system associated with the evaluation of the ‘internal energy’ bulk viscosity κ[01]
at equilibrium is obtained by using the Galerkin variational approximation space spanned
by φ̂0001k, k ∈ Sp. The idea behind this basis function is that the most important part of
the dynamic is that associated with internal energy exchanges and not with kinetic en-
ergy [34,35]. The ‘internal energy’ bulk viscosity κ[01] is obtained by solving the transport
linear system K[01]γ = β[01] of size Np, where Np is the number of polyatomic species,

where K[01]kl = [φ0001k, φ0001l ]/np, β[01]i = −xicint
i /cvl, and [, ] is the classical bracket prod-

uct [34,35]. The matrix K[01] is symmetric positive definite and letting γ = (γi)i∈S, the

‘internal energy’ bulk viscosity is given by κ[01] = −∑i∈S pγixicint
i /cvl and has been found

to be accurate [34,35]. On the other hand, the standard bulk viscosity is obtained with the
Galerkin variational approximation space spanned by φ0001k and φ0010k, k ∈ S.

4.3. Symmetric Zeroth-Order Relaxation Equations

The system of partial differential equations governing the pseudo species Gibbs
functions and the translational temperature at zeroth order is written in symmetric form.
Symmetrized forms are convenient for analyzing systems of partial differential equations
modeling fluids, and are generally obtained by using entropic-type variable−(∂uS)t where
u denotes the vector of conservative variables. Since we are interested in the relaxation of
thermodynamic variables, for convenience, we use the variables (δµ, δµtr)t = (µ− µe, µtr−
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µe
tr)

t where µ = (µiI)iI∈Q, µe = (µe
iI)iI∈Q, µtr = −1/(kBTtr), and µe

tr = −1/(kBT). Denoting
for short dt = ∂t + v·∇ the convective derivative, the governing equations at zeroth order
are found in the form

niIdtδµiI + niI(
3
2 kBTtr + EiI)dtδµtr = ω

(0)
iI +

ne
iI(EiI − Ei)

Tcvl ∇·v, iI ∈ Q, (60)

∑
iI∈Q

niI(
3
2 kBTtr + EiI)dtδµiI + atrdtδµtr = 0, (61)

where atr = ∑iI∈Q niI(
3
2 kBTtr + EiI)

2 + 3
2 pkBTtr. Denoting by N the diagonal matrix N =

diag
(
(niI)iI∈Q

)
and a the vector with components aiI = niI(

3
2 kBTtr + EiI), iI ∈ Q, these

equations involve the symmetric positive definite matrix Ã =
(N a
at atr

)
.

The Equations (60) and (61) imply that δµ = µ− µe satisfies the vector partial differ-
ential Equation

Ñ dtδµ = −Λδµ + b∇·v, (62)

where Ñ = N − a⊗a/atr is symmetric positive definite, Λ symmetric positive semi-
definite, and b = (biI)iI∈Q is given by biI = ne

iI(EiI − Ei)/Tcvl, iI ∈ Q. Since Ñ is positive
definite and Λ is positive semidefinite, (62) is a typical vector relaxation equation and the
corresponding vector relaxation relation is then in the form

Λeδµ = b∇·v, (63)

where Λe is the matrix Λ at equilibrium Λe = ∑r∈R Λe
r νr⊗νr with Λe

r = Ce
r exp〈µe, νf

r〉 =
Ce

r exp〈µe, νb
r 〉 and ζe

r = 1. Since the nullspace of Λe is A, one also needs constraints to
determine uniquely δµ, using ∑I∈Qi

(niI − ne
iI) = 0, i ∈ S. In the relaxation approximation,

one may linearize the constraints around equilibrium, and after some algebra, it is obtained
that 〈N eδµ, ψi〉 = ∑I∈Qi

ne
iI(µiI − µe

iI) = −ni(
3
2 kBTtr + Ei)(Ttr − T)/kBT2 for i ∈ S.

4.4. Bulk Viscosity at Zeroth Order

Taking into account the relaxation relation (63) and the mass constraints, one is lead to
decompose δµ in the vector form

δµ = δµR∇·v + δµA, δµR ∈ (N e)−1A⊥, δµA ∈ N(Λe) = A. (64)

The term δµR is such that ΛeδµR = b and b is in the range R(Λe) since ∑I∈Qi
ne

iI(EiI −
Ei) = 0. An approximate solution of the constrained relaxation equations that is compatible
with the equilibrium limit mixture is now sought, so that δµR = ∑i∈S γ′iφ

0001i and δµA =

∑i∈S γ′′i ψi. Using that δµR ∈ (N e)−1A⊥, one first obtains from the mass constraints that
〈N eδµA, ψi〉 = −ne

i (
3
2 kBTtr + Ei)(Ttr − T)/kBT2 for i ∈ S so that γ′′i = −( 3

2 kBT + Ei)
Ttr−T
kBT2 ,

for i ∈ S. In order to determine the coefficients vector γ′ = (γ′i)i∈S, a least square approx-
imation of the relaxation equations is used upon writing that ∑l∈S〈φ0001i, Λeφ0001l〉γ′l =
〈φ0001i, b〉 for i ∈ S.

The matrix K =
(
〈φ0001i, Λeφ0001j〉

)
i,j∈S is found to be positive definite, and a direct

comparison yields that the coefficients of the both matrices K[01] and Λe are proportional
〈Λeφ0001i, φ0001j〉 = npK[01]ij and 〈φ0001i, b〉 = −nxicint

i /cvl, so that 〈φ0001i, b〉 = nβ[01]i and
γ = pγ′[01]. It has thus been established that the least square solution to the relaxation
equations under the linearized constraints is given by

µiI − µe
iI = γi

Ei − EiI

kBT
∇·v− ( 3

2 kBT + Ei)
Ttr − T

kBT2 , iI ∈ Q, (65)

where γ = (γi)i∈S is the solution of the transport linear system K[01]γ = nβ[01]i associated
with the internal mode bulk viscosity κ[01].
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By definition of the equilibrium temperature T, one has ctr(Ttr − T) + ∑iI∈Q niI(EiI −
Ei) = 0, and linearizing the expression of the reduced potential (65) yields

niI − ne
iI

ne
iI

= γi
Ei − EiI

kBT
∇·v + (EiI − Ei)

Ttr − T
kBT2 . (66)

Multiplying by ne
iI(EiI − Ei) and summing over I ∈ Qi yields ∑I∈Qi

niI(EiI − Ei) =

−nTγixicint
i ∇·v + nxicint

i (Ttr − T) and summing over i ∈ S, it is finally obtained that [28]

kBn(Ttr − T) = −κ[01]∇·v. (67)

The ‘internal energy mode’ equilibrium bulk viscosity κ[01] has thus been recovered
with the relaxation relation (67) [28]. Although the kinetic framework for state-to-state
mixtures of gases is much more complex than that of previous two-temperature models, a
similar physical interpretation of the bulk viscosity coefficient has been obtained with (20),
(46), and (67).

4.5. Bulk Viscosity at First Order

A similar analysis may be conducted for first-order equations, but this is much more
intricate analytically. The first-order relaxation equations for the pseudo species are in the
form ω

(0)
iI + δω

(1)
iI = −biI∇·v, for iI ∈ Q, and require us to evaluate the perturbed source

term δω(1) in the neighborhood of equilibrium. The resulting analytical expressions and
the resulting relaxation approximation have been obtained, as well as identification of the
equilibrium limit with the traditional bulk viscosity, notably using the basis vectors φ0010k,
k ∈ S, and φ0001k, k ∈ Sp, the blocks K[01] = K0101 K0110, K1010 and K1001 of the K matrix,
as well as the Schur complement K̂[01] = K0101 − K0110(K1010)−1K1001.

5. Numerical Experiments for the Simplified Two-Temperature Model

The results derived in Section 2 are assessed against numerical experiments for a
model gas. Results are obtained by solving the appropriate Boltzmann transport equation
via Monte Carlo methods [7,26,37,39–42]. The transport properties of the model system are
investigated by looking at the spontaneous fluctuations at thermal equilibrium [37,57–59].
Interestingly, the dynamics of spontaneous fluctuations can actually be probed by light
scattering experiments [59–61] and molecular simulations used in order to estimate bulk
viscosity coefficients [62–64].

5.1. Kinetic Theory of Spontaneous Fluctuations

A fluctuating gas is considered near equilibrium, and the dynamics of the fluctuations
of a variable A(r, t) is investigated by using the space–time correlation function

δA2(r, t; r′, t′) =< δA(r, t)δA(r′, t′) >, (68)

where < ... > means ensemble average and δA(r, t) = A(r, t)− < A(r, t) > is the fluctua-
tion of the dynamic variable. For an isotropic system in thermodynamic equilibrium, the
correlation function depends only on the space–time distance

δA2(r, t; r′, t′) = δA2(|r− r′|, t− t′). (69)

In particular, the quantity actually measured in light (or neutron) scattering experi-
ments is the Laplace–Fourier transform of the correlation function of density fluctuations,
the spectral density (or power spectrum) of these fluctuations [59]

δn2(k, ω) =
∫

ei(k·r−ωt)δn2(r, t)drdt. (70)
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Since the equilibrium fluctuations of the fluid variables are small compared to the
average values, their dynamics are governed by the same equations that govern the dy-
namics of the system, but linearized around the equilibrium solution. These linearized
equations are then doubly Laplace–Fourier transformed to the (k, ω) space and are solved
for δ̃ρk(s = ε + iω). The latter is used to construct the space–time correlation function
< δρ∗k (0)δ̃ρk(s) >.

Finally, this correlation function may be connected with the density fluctuation power
spectrum S(k, ω), a quantity that is experimentally measurable in light-scattering experiments

S(k, ω)

S(k)
= 2Re lim

ε→0

< δρ∗k (0)δ̃ρk(s) >
< δρ∗k (0)δρk(0) >

. (71)

For thermal fluctuations in gases, the ratio of the fluctuation wavelength to the
mean free path defines the flow regime (from high to low ratios: hydrodynamic, ki-
netic, collisionless). Different regimes are described by different values of the parameter
y = (8/3

√
2π)ρ0

√
kBT/m/ηk, where ρ0 is the equilibrium density, η is the shear viscosity

and k is the fluctuation wavenumber. The collisionless limit corresponds to y→ 0, whereas
the hydrodynamic limit (k→ 0) is approached for y > 5. The thermal fluctuation power
spectra in the hydrodynamic regime is derived as follows from the one-temperature model,
as well as the two-temperature model fluid equations.

5.2. Simulation of Spontaneous Fluctuations in a Dilute Gas

The fluctuation power spectrum for a one-temperature fluid described Navier–Stokes
equation is reported in the book by J.P. Boon and S. Yip [57], whereas for the simplified
two-temperature model, it is reported in [26]. The general method used to derive such
fluctuation in a power spectrum is to start from the fluid equation, to linearize near
equilibrium, to take the Fourier transform in space and then the Laplace transform in time,
and the results are typically in the form

< δρ∗k (0)δ̃ρk(s) >=
N(k, s)
M(k, s)

< δρ∗k (0)δρk(0) > . (72)

where M(k, s) and N(k, s) are polynomials in s.
On the other hand, at the molecular level, thermodynamic fluctuations in gases—

provided the density is low enough that only bimolecular collisions are effective—are
described by the Boltzmann equation. In the case of the Boltzmann equation, the system is
described in terms of the one-particle distribution function. By linearizing the equation
around the equilibrium distribution, an integro-differential equation for the space–time
correlation of the fluctuations of the distribution function is obtained [65]. The density
fluctuations are then readily obtained via integration over the velocity space.

For the simulation of the spontaneous fluctuations in a gas in thermodynamic equi-
librium, the Direct Simulation Monte Carlo method [36–38] is used. DSMC is a particle
simulation method that solves the nonlinear Boltzmann equation. As such, it can simulate
flows in the rarefied and/or hypersonic regime that cannot be dealt with in the framework
of a fluid-dynamic treatment. It can also handle situations of strong thermal nonequilib-
rium, where a clear hierarchy of relaxation times cannot be established and rate equation
methods fail [7]. The principle of the method is the decoupling, over a small time-step,
of the processes of free flight and of collisional relaxation. A number of simulated particles
are moved in the simulation domain according to their velocities and prescribed boundary
conditions. In the collision step, particles are made to collide inside spatially homogeneous
cells. A Monte Carlo method is used to realize collision events with the appropriate fre-
quency. The details of the molecular processes occurring in the gas system are specified
by assigning the appropriate set of collision cross sections. The viscosity and diffusion
coefficients of the gas can be modeled by the Variable Soft Sphere model of Koura [66].
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The power spectrum of the fluctuations of the dynamic variable n(r, t) is evaluated
as follows. The variable fluctuations at all sampled space-time points, δnij = nij − n0, are
recorded during the simulation, n0 being the equilibrium value. This discrete set is then
Fourier transformed and squared to get the discrete power spectrum. For an isotropic
medium, it is sufficient to simulate a one-dimensional spatial domain.

Concerning the simulation parameters, the typical requirements of DSMC simulations
are met:

• Cell width to mean free path ratio: 0.3
• Timestep to mean collision time ratio: 0.05
• Average number of simulated particles per cell: 20

As for boundary conditions, the simulation domain is kept in contact with an infinite
reservoir of the gas at the specified equilibrium conditions. Care must be taken to accurately
sample the statistics of the incoming particles [68].

Additionally, for obvious reasons, the number of simulated particles is much less
than the number of real particles present in the physical volume. The ratio of real to
simulated particle number is called the weight w of the simulated particle, and it is a
constant throughout the simulation. Now, since the density fluctuations are proportional
to the gas density [67], i.e., given the volume, to the number of particles, the simulated
fluctuations are equal to the real fluctuations to within a factor w. Therefore, the spectrum
sampled by the simulation is exactly equivalent, to within normalization factors, to the
spectrum measured in light-scattering experiments. In order to reduce the statistical
scatter inherent in the particle simulation method, ensemble averaging of the results is
performed by averaging the results of many independent runs. This procedure also allows
us to estimate the variance of the results with respect to the statistical scatter. It is worth
mentioning that this procedure is amenable to implementation on a computational grid.
A number of wavelengths must thus be simulated in order to increase the signal-to-noise
ratio. For each spectrum, we sample 4096 time points and 64 wavelengths (corresponding
to 2048 spatial points). With these parameters, we obtain a signal-to-noise ratio of 10−3,
i.e., the high-frequency background noise lies 3 orders of magnitude below the maximum
value. The GRID infrastructure allows hundreds of runs to be performed simultaneously,
thus drastically reducing the global computational time. The simulations of this work,
in particular, have been performed under the Compchem Virtual Organization, and more
details on the computational procedures may be found in [26].

5.3. Simulations for a Model Gas

A single gas of Hard Spheres is considered with mass = 28.9641 amu, σ = 7.2 ·
10−19 m2. The gas has two internal energy levels with degeneracies and energies given by

a0 = 1, E0 = 0 J, (73)

a1 = 9, E1 = kB · 1000 J. (74)

Molecules exchange internal energy in collision according to the simplest single-quantum,
line-of-centers model

p(0← 1) = p0, (75)

p(1← 0) =

{
0, εk < E1,

a1 p0(1− E1
εk
), εk ≥ E1,

(76)

where εk =
1
2 µg2 is the kinetic energy in collision. The temperature and density are chosen

to be T = 285.71 K and n = 2.4 · 1021 m−3. The fluctuation spectra are sampled at the
wavelength 2π/k = 0.02 m that gives y = 5.97, so that the probed fluctuations fall into the
hydrodynamic regime.
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Two situations are analyzed. In the first case, the value p0 = 0.01 has been chosen
and gives for the relaxation time τ0 ≈ 7.0 · 10−5 s (Z ≡ τ0/τc = 49). Figure 1 shows the
fluctuation power spectra for this case. The spectra are normalized to unit maximum value.
In this case, the relaxation is slow enough that a relaxation approximation does not hold,
and the one-temperature model fails to describe the transport properties of the system
correctly. The two-temperature model, instead, gives an adequate description of the system
behavior and the agreement with the DSMC simulations is satisfactory. For comparison, we
also reported the spectrum predicted for the same gas when the internal energy relaxation
is forbidden (frozen relaxation).

Figure 1. Fluctuation power spectra for the slow relaxation case (p0 = 0.01). The spectra are
normalized to the unit maximum value. Full line: 1T model; dotted line: frozen; dashed line: 2T
model; symbols: DSMC.

Next, a situation where relaxation of internal energy is fast enough compared to the
flow characteristic time (as determined by the speed of sound) is analyzed. In these condi-
tions, we expect the one-temperature model to be accurate and that the two-temperature
model will reduce to the former. The value p0 = 0.1 has been chosen and gives for the relax-
ation time τ0 = 7.0 · 10−6 s (Z ≡ τ0/τc = 4.9). Figure 2 shows the fluctuation power spectra
as obtained from DSMC simulations and from the one-temperature and two-temperature
models, respectively. For comparison, we also show the spectra predicted for the same gas
when the bulk viscosity contribution is neglected (i.e., κ = 0). In this case, it can be seen
that both models describe the DSMC results accurately. Comparison with the κ = 0 case
also shows that this agreement is not trivial, since there is an important contribution of the
bulk viscosity to the spectrum with κ

η ≈ 1. Note, however, that the one-temperature model
cannot describe the (small) change in the speed of sound that is a consequence of the finite
relaxation time for internal energy.

The statistical error in the simulation results is around 4% for the slow relaxation and
12% for the fast relaxation case, respectively. Therefore, multi-temperature hydrodynamic
equations, as derived from the Boltzmann transport equation, provide an adequate descrip-
tion of internal energy relaxation for all values of the relaxation time. Therefore, there is
no need to invoke frequency-dependent transport coefficients that introduce unnecessary
complications. Further, the results support the conclusion, obtained by kinetic theoretical
arguments in the previous sections, that the multi-temperature model reduces to the one-
temperature model when the relaxation time is small enough and that in this case, a bulk
viscosity formalism is adequate.
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Figure 2. Fluctuation power spectra for the fast relaxation case (p0 = 0.1). The spectra are normalized
to unit maximum value. Full line: 1T model; dotted line: 1T model without bulk viscosity; dashed
line: 2T model; symbols: DSMC.

These results are also relevant in view of the renewed interest in Rayleigh–Brillouin
scattering in gases made possible by the use of nonlinear optical techniques [69]. Coherent
Rayleigh–Brillouin scattering is a technique capable of making localized and high signal-to-
noise ratio measurements of gases from the collisionless limit to the hydrodynamic regime.
CRBS data are therefore expected to become a valuable source for the study of kinetic
processes in molecular gases.

6. Numerical Experiments for a Quantum State Population
6.1. Internal Energy Spectrum and Energy-Exchange Collisions

The kinetic model that has been developed for arbitrary gas mixtures S is specialized
to S = {He, H2} for the application. The required detailed cross sections used in this
work has been calculated by the quasiclassical method, with an in-house developed code,
which has been tested repeatedly against accurate results from the literature [43–47]. The
set is complete, since all the H2 rovibrational states of the electronic ground state are
considered initial and final states. Quasibound states and dissociation processes have also
been considered in the trajectory calculations, even though they have not been used in
the present study. Cross sections for the processes He + H2(v, j) → He + H2(w, k) with
v/w initial/final vibrational states, j/k initial/final rotational states, have been calculated
including both reactive (i.e., exchange) and nonreactive processes. Particular care has been
taken in terms of the accuracy of trajectory calculation, with a strict checking at each step
of each trajectory, in order to accurately determine the optimal time step and improve
the overall computational efficiency [46]. The potential energy surface (PES) adopted in
this study is the well known Muchnik–Russek [48], instead of the more recent BMP [49],
used, for example, in a similar work by Kim et al. [50]. This choice is motivated by the
important discrepancies found with respect to experimental data in Lee et al. [51]. Six
billion trajectories, using 9.5 years of CPU, have been calculated in this way on the Muchnik–
Russek potential energy surface [48], using a constant density of 50,000 trajectories per
eV of collisional energy (uniformly distributed) and per Å of impact parameter, in the
range 1 meV–10 eV, with stratified sampling applied. Comparisons with available accurate
quantum-mechanical theoretical data [52] put in evidence a very good reliability starting
from 0.1–0.5 eV, depending on the initial states, corresponding to a minimal temperature
of about 2000 K for rate coefficients [53]. For lower values of translational energies, cross
sections tend to be less reliable, due to problems typical of nonreactive low-energy processes
treated with QCT. A specific paper on this topic is in preparation. Finally, elastic collision
integrals have been taken from Ref. [54].
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The theoretical results of the previous sections are here specialized to the He-H2
mixture in thermal equilibrium conditions. The various contributions of the quantum state
population as a function of temperature have been evaluated numerically. The procedure
is analogous to that used in a previous study on the H-H2 mixture [27], to which the reader
is referred for further details. Since a complete set of inelastic cross sections is available
for the atom–diatom collisional system only, only a simulated gas is investigated, where
H2-H2 collisions are elastic. Since the resulting theoretical predictions are not amenable to
experimental measurements, we resort to DSMC simulation and use Green–Kubo formulas
for estimating the transport coefficients of the simulated gas.

A He-H2 mixture in thermal equilibrium conditions has been simulated with a stan-
dard DSMC code using a majorant frequency scheme [7]. For this application, a spatially
homogeneous simulation is sufficient, so the code is run neglecting the particle movement,
and no spatial mesh or boundary conditions need be specified. The VSS model has
been used for the elastic collision cross sections, with parameters chosen to reproduce the
transport coefficients in Ref. [54]. The number of simulated particles is 2000 for all cases
discussed. Results have been averaged over a number of independent runs in order to
reduce the statistical scatter r (typically ≈ 100). The latter is reported in the results as the
simulation’s error bar.

6.2. Green–Kubo Bulk Viscosity in DSMC Simulations

Linear response theory is a powerful tool for the description of the relaxation towards
thermodynamic equilibrium of any system subject to small perturbations. The fluctuation–
dissipation theorem, in particular, connects the time correlation functions of mechanical
quantities with the system transport properties. These relations are known as the Green–
Kubo expressions for the transport coefficients [58]. This theory is independent of the
mechanical model describing the system. It has been primarily applied to the evaluation of
transport properties in Equilibrium Molecular Dynamics simulations of liquids [55] and
solids (see, e.g., [56] and references therein). The Green–Kubo formulas have been applied
to the evaluation of transport coefficients in DSMC simulations of dilute (i.e., ideal) gases.

For a system of volume V in equilibrium at temperature T and pressure p, the Green–
Kubo formula for the bulk viscosity reads [57]:

4
3

η + κ =
1
V

1
kBT

∫ +∞

0
< (Jp

xx(0)− pV)(Jp
xx(τ)− pV) > dτ, (77)

where < · · · > denotes ensemble average, whereas that of the shear viscosity reads

η =
1
V

1
kBT

∫ +∞

0
< Jp

xy(0)Jp
xy(τ) > dτ. (78)

The quantities Jp
xx or Jp

xy, the currents, are, respectively, any of the diagonal or off-
diagonal components of the spatially averaged, time dependent, rank-two pressure tensor:

Jp = ∑
i

miCi ⊗ Ci − pV I, (79)

where the sum runs over simulated particles and C = ci − v.
The equilibrium condition allows us (via the ergodic hypothesis and stationarity) to

express the integral in Equation (77) as the zero-frequency limit of the current power spectrum:

2
∫ +∞

0
dτ < (Jp

xx(0)− pV)(Jp
xx(τ)− pV) >= lim

T→+∞

1
T
|Ap

xx(0)|2, (80)

Ap
xx(ω) being the current Fourier transform.



Fluids 2022, 7, 356 21 of 30

In DSMC simulation, the current Jp is sampled at discrete time points, then Fourier
transformed with standard FFT algorithms and squared. Let Pηv be the resulting zero-
frequency value:

4
3

η + κ =
1
V

1
kBT

1
2tsim

Pηv w∆2
t . (81)

tsim being the simulation duration, ∆t the sampling time interval and w the weight of
simulated particles (each particle representing w real particles). The factor w arises because
the fluctuation amplitude is proportional to the square root of the number of simulated
particles; the factor ∆2

t comes from the discrete Fourier transform.

6.3. Results

The DSMC simulations have been performed for an equimolar mixture of helium
and hydrogen with n = 1020 m−3. The resulting bulk viscosity obtained from DSMC is
presented in Figure 3, together with the equilibrium viscosity as a function of temperature.
The equilibrium bulk viscosity has been evaluated by using the expression

κ =
( cint

cvl

)2 (kBT)3

2[[(∆E)2]]
,

where [[ ]] is the usual averaging operator and ∆E the energy jump during a collision of
the simulated gas [9,26,27]. The DSMC calculations have been performed at temperatures
T = 6000 K, T = 9000 K, and T = 10,000 K.

Figure 3. Bulk viscosities. Solid line: κe; symbols: DSMC.

This figure reveals the very good agreement between the bulk viscosity of the fluctuat-
ing quantum population and the equilibrium limit, illustrating the accuracy of the least
square formulation with a variational space ‘compatible with the equilibrium mixture’.

7. Fluid and Mathematical Aspects
7.1. Impact in Fluid Mechanics

The impact of the viscosity has scarcely been addressed in the past literature [70–73].
Karim [70] pointed out the importance of bulk viscosity coefficients and underlined that
Stokes relation is only justified for monatomic gases. The impact of bulk viscosity on hyper-
sonic boundary layers has been investigated in depth by Emmanuel [71,72]. A review of
the concept of bulk viscosity and its implications for fluids over the twentieth century has
been given by Graves and Argrow [73].
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More recently, Billet et al. have investigated the interaction of a shock wave with
a hydrogen bubble [74]. The bulk viscosity coefficient has been found to have a major
influence on both the fluid and thermal aspects. This impact originates in particular from the
thickening of pressure waves by bulk viscosity and from vorticity production when pressure
and density gradients are not aligned. The artificial success of the Stokes approximation
has also been related to the gradient structure of the term of∇·(κ∇·v I) = ∇(κ∇·v). This
term is indeed absent in boundary layers at second order, and only has a Ma2 influence
over fluid variables. As a typical example, in a steady hydrogen-air flame, κ/η is not
small;∇·v is not small either, but the gradient structure essentially leads to replacement
of the hydrodynamic perturbed pressure p̃ by p̃− κ∇·v, as discussed in Billet et al. [74].
Fru et al. have further investigated the small Mach situation and established that for a
long-time integration the bulk viscosity regains its major influence [75]. The impact of bulk
viscosity on compressible homogeneous turbulence has been studied by Chen et al., and the
compressibility of the flow found significantly reduces when bulk viscosity is involved [98].
Two- and three-dimensional simulations of the interaction of a shock wave with a shear
layer have further been investigated by Boukharfane et al. [76]. Finally, the interaction of a
shock wave with a droplet has recently been studied by Singh et al., and bulk viscosity has
again been found to play a major role [77].

Recent investigations have also shown that large values of bulk viscosity coefficients
in dilute carbon dioxide mixtures result from erroneous applications of relaxation relations
out of their domain of validity [11,13].

7.2. Chapman–Enskog Method for the Simplified Two-Temperature Model

The system of partial differential Equations (6)–(9) modeling two-temperature fluids
derived in Section 2 may be written in the convenient vector form

∂tuε + ∑
i∈D

Ai(u)∂iuε − ε ∑
i,j∈D

∂i
(
Bij(uε)∂juε

)
− 1

ε
Ω(uε) = 0, (82)

where ∂i is the partial derivation in the ith spatial direction, D the indexing set of spatial
directions, and uε the conservative variable given by

uε =
(
ρ, ρv, Etr + Eint +

1
2 ρ|v|2, Eint

)t. (83)

In these Equation (82), the matrix Ai is the Jacobian Ai = ∂uFi of the convective flux in
the ith spatial direction Fi, whereas the dissipative matrices Bij are related to the dissipative
fluxes εFdiss

i with εFdiss
i = −ε ∑j∈D Bij(uε)∂juε. The convective flux Fi and dissipative flux

εFdiss
i in the ith spatial direction and source term Ω are given by

Fi =
(
ρvi, ρvvi + pei, (E tr + E int + 1

2 ρ|v|2 + p)vi, E intvi
)t, (84)

εFdiss
i =

(
0, Πi, Qtr

i + Qint
i + Πi ·v, Qint

i
)t, (85)

1
ε

Ω =
(
0, 0, 0, ωint)t

=
1
ε

(
0, 0, 0,

ρcint(Ttr − Tint)

τ̄int

)t, (86)

where Πi = (Π1i, Π2i, Π3i)
t, Qint = (Qint

1 , Qint
2 , Qint

3 )t, and Qtr = (Qtr
1 , Qtr

2 , Qtr
3 )

t. The
convective matrices Ai and i ∈ D, and the the dissipation matrices Bij, which contain all the
transport coefficients, are investigated in [94–96]. Both the diffusion terms and the internal
energy relaxation time have naturally been rescaled in the form εBij and τint = ετ̄int where
ε is a typical Knudsen number. Two different small parameters could more generally be
introduced with εd in front of the dissipation terms and ε for the relaxation of internal
energy in (82), and an independent limit with εd and ε may also be investigated [94–96].
However, it is also legitimate and convenient to investigate the simpler situation where
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εd = ε [94–97]. The dependence of the solution on the parameter ε has been emphasized
by denoting the conservative variable in the form uε.

Symmetrized forms have been shown to be of fundamental importance for analyz-
ing the mathematical structure of hyperbolic–parabolic systems of partial differential
equations modeling fluids [22,78–93]. They are useful for a priori estimates, existence
theorems [22,78–93] as well as finite element formulations [99]. The existence of a sym-
metrized form is related to the existence of a mathematical entropy compatible with convec-
tive terms, dissipative terms and relaxation of energy. Symmetrized forms for the system
of partial differential equations modeling two-temperature fluid (82) have been compre-
hensively investigated under natural mathematical assumptions on thermodynamics and
transport in [94–96]. Entropic as well as normal symmetrized forms have been obtained
with an entropy compatible with convective, diffusive as well as source terms [94–96].

The concept of Chapman–Enskog expansion has also been extended to hyperbolic sys-
tems of partial differential equations by Liu [82] and Liu, Chen, Levermore [84] and later to
hyperbolic–parabolic systems by Giovangigli and Yong [94–97]. The natural structural con-
ditions are that there exists a mathematical entropy, taken for convenience as σ = −S/R,
that is compatible with convection, diffusion as well as source terms [82,84,94–97]. It is also
required that there exists an equilibrium manifold or slow manifold E , characterized by the rela-
tion Ttr = Tint for the two-temperature problem, and the slow variable corresponding to (83)
reads ueq =

(
ρ, ρv, E + 1

2 ρ|v|2
)t. For each slow variable ueq, there exists a unique ueq, such

that Πt
equeq = ueq where Πeq is the projector operator on the slow manifold with matrix

Πeq = [e1, . . . , e4] with ei, 1 ≤ i ≤ 5, denoting the canonical basis vectors of R5, and for
later use, we also introduce the projector with matrix Πrap = [e5]. The slow manifold is thus
parameterized by ueq, and a careful analysis shows that the equilibrium one-temperature
fluid model exactly corresponds to a second-order Chapman–Enskog [94–96] of the partial
differential Equation (82). The schematic diagram of Figure 4 is thus obtained

One temperature fluid

Two temperature fluidKinetic model
Chapman-Enskog

Chapman-Enskog Chapman-Enskog from the PDE

-

?

��
���

���
�����

Figure 4. Schematic diagram of the double Chapman–Enskog procedure.

The Chapman–Enskog expansion for the solution uε to the system of partial differential
Equation (82) is notably in the form

uε = ∑
i≥0

εiui = u0 + εu1 +O(ε2) (87)

where the zeroth-order term u0 coincides with uε on the slow manifold Πt
equε = Πt

equ0 =

ueq, where the Enskog constraints are in the form Πt
equi = 0 for i ≥ 1 and where ui only

depends on ∂αueq for |α| ≤ i. Combining (82) with (87), the equations for ui, i ≥ 0, are
given by

∂t(u0 + εu1 + · · · ) + ∑
i∈D

∂i
(
Fi(u0) + ε∂uFi(u0)u1 + · · ·

)
− ε ∑

i,j∈D
∂i
(
Bij(u0)∂ju0 + · · ·

)
=

1
ε

(
Ω(u0) + ε∂uΩ(u0)u1 + · · ·

)
.
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At the order −1, it is found that Ω(u0) = 0, so that u0 is an equilibrium point
u0 = ueq(ueq) and the slow variable equations are given by

∂tueq + ∑
i∈D

∂i
(
Πt

eqFi(u0) + εΠt
eq∂uFi(u0)u1 + · · ·

)
− ε ∑

i,j∈D
∂i
(
Πt

eqBij(u0)∂ju0 + · · ·
)
= 0.

The equation at zeroth-order governing u0 are found to be a symmetrizable hyperbolic
system; indeed, Euler equations for the one-temperature fluid. The perturbed term u1 is
the next solution of linearized equations with the Enskog constraints in the form{

∂uΩ(u0)u1 = ∂tu0 + ∑i∈D ∂i
(
Fi(u0)

)
,

Πt
equ1 = 0,

(88)

and using the Euler equation in order to express ∂tu0, the first-order perturbation u1 is
found in the form

u1 = − ∑
j∈D

Mj∂jueq,

where Mj and j ∈ D are 5x4 matrices. The reader is referred to [94–97] for more details. The
first-order Navier–Stokes-type equations are then obtained as

∂tueq + ∑
i∈D

A
eq
i (ueq)∂iueq − ε ∑

i,j∈D
∂i
(
B

eq
ij (ueq)∂jueq

)
(89)

with the diffusion coefficients in the form

B
eq
ij (ueq) = Πt

eqBij ∂uequeq + Πt
eqA

eq
i Mj. (90)

The resulting first-order accurate governing equations for the slow variable thus
involves dissipative coefficients arising from perturbed convective terms Πt

eqA
eq
i Mj, as well

as inherited directly from the system out of equilibrium Πt
eqBij. Both the bulk viscosity

term arising from the perturbed convective fluxes and the shear viscosity term inherited
from the out-of-equilibrium viscous tensor are finally involved in the equilibrium viscous
tensor. For the two-temperature model, it is indeed found that

ε ∑
i∈D

∂i
(
Πt

eq∂uFiu1
)
= −

(
0,∇·(κ∇·vI),∇·(κ∇·v v)

)t, (91)

so that the bulk viscosity coefficients are exactly obtained from the perturbed out-of-
equilibrium convective terms in the Chapman–Enskog method, whereas the shear viscosity
and thermal conductivity contributions are directly inherited from the out-of-equilibrium
model [94–97].

7.3. Multiple Time Expansions for the Simplified Two-Temperature Model

Exact mathematical convergence results have further been obtained for the simpli-
fied two-temperature system of equations in the form (82) over the full space Rd for
1 ≤ d ≤ 3 [96,97]. The results and the method of proof differ depending on whether the
initial data are well prepared with Ttr

data = Tint
data or ill prepared with Ttr

data 6= Tint
data, where

(ρdata, vdata, Ttr
data, Tint

data)
t denotes the variable at initial time t = 0. Both the well-prepared

situation [96] and the ill-prepared situations [97] have been investigated, and only the
ill-prepared situation results are summarized in this section.

The existence of solutions to the Cauchy problem with ill-prepared initial data has
been established, as well as the validity of asymptotic composite expansions including
initial-layer correctors. The results may be conveniently presented using the variable

wε =
(

ρ, ρv, Etr + Eint +
1
2 ρ|v|2,

1
Ttr −

1
Tint

)t
= (uε, qε)

t, (92)



Fluids 2022, 7, 356 25 of 30

with the slow uε and fast qε components given by

uε = Πt
eqwε = Πt

equε =
(

ρ, ρv, Etr + Eint +
1
2 ρ|v|2

)t

qε = Πt
rapwε

1
Ttr −

1
Tint .

Multiple time expansions have been introduced in the form

wε = w0(t, x) + εw1(t, x) + w il
0 (t/ε, x) + εw il

1 (t/ε, x) +O(ε2), (93)

with an outer expansion involving the standard time t

w0(t, x) + εw1(t, x) +O(ε2), (94)

as well as initial layer correctors involving the fast time τ = t/ε in the form

w il
0 (τ, x) + εw il

1 (τ, x) +O(ε2), (95)

and such that w il
0 and w il

1 are exponentially decreasing with respect to the fast time τ = t/ε.
The equations governing each of the asymptotic expansion coefficients u0, u1, q0, q1 and q2,
where w0 = (u0, q0)

t, w1 = (u1, q1)
t, w ′2 = (0, q2)

t may be obtained. The proper initial and
boundary conditions may also be written by first expanding the initial conditions

wdata = wdata0 + εwdata1 +O(ε2),

where wdata = (udata, qdata)
t and then identifying w0(·, 0) + w il

0 (·, 0) = wdata0 and w1(·, 0) +
w il

1 (·, 0) = wdata1, so that in particular, u0(·, 0) = udata0, q0(·, 0) = 0, uil
0 (·, 0) = 0, and

qil
0 (·, 0) = qdata0. The mathematical structure of the hyperbolic-type equations govern-

ing u0 and u1 then guarantee the existence of solutions over a finite time interval [0, t̄ ]
under natural regularity assumptions [94–97]. Notably, an important role is played by
the mathematical entropy σ that allows symmetrization of the corresponding systems of
partial differential equations, and that is taken in the form σ = −S/R for convenience. In
addition, the initial layer correctors are shown to satisfy systems of differential equations
with respect to the fast time. The existence of an exponentially decreasing global solution is
then obtained by using the entropy as a Lyapunov function [97]. An important tool has
also been the use of an improved truncated approximation in the form

wa
ε = w0 + εw1 + ε2w ′2 + w il

0 + εw il
1 , (96)

including a fast component of the second-order term w ′2 = (0, q2)
t

It is then established that the out-of-equilibrium solution exists over a finite time inter-
val [0, t̄ ], and the truncated approximation is second-order accurate with supt∈[0,t̄ ] |wε(t)−
wa

ε (t)|L∞ ≤ Cε2 where C is a finite constant and |f|L∞ = supx∈Rd |f(x)| denotes the L∞

norm of a function f over Rd.
It may also be established that the Hilbert-type expansion u0 + εu1 and the Chapman–

Enskog solution at equilibrium ueq are O(ε2) close, so that

sup
t∈[0,t̄ ]

∣∣ueq(t)−
(
u0(t) + εu1(t)

)∣∣
L∞ ≤ Cε2.

Combining these results, it is then obtained that if uε = Πt
eqwε = Πt

equε then for ε
small enough

sup
t∈[0,t̄ ]

∣∣uε(·, t)− (ueq(·, t) + εuil
1 (·, t/ε))

∣∣
L∞ ≤ Cε2.
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In other words, the out-of-equilibrium slow variable uε isO(ε2) close to the Chapman–
Enskog solution at equilibrium ueq, up to a first-order term εuil

1 (·, t/ε)) that is expo-
nentially decreasing with respect to the fast time τ = t/ε [97]. The zeroth-order ini-
tial layer corrector is also governed by the ordinary differential equation in the form
∂τ(Ttr − Tint) = − cvl

ctrτint (Ttr − Tint) so that assuming for the sake of illustration that cint

and τint constant yields that

Ttr(τ) = T +
(
Ttr(0)− T(0)

)
exp

(
− cvl

ctr

τ

τint

)
,

and q1 = Tintτint

ctr(Ttr)2+cint(Tint)2 ∇·v that yields the bulk viscosity contributions of (91).
The mathematical theoretical results obtained concerning the Chapman–Enskog so-

lution are thus in full agreement with the physical framework. Drawing a parallel with
the traditional Chapman–Enskog, one may say that the slow or fluid variable is the one-
temperature fluid variable ueq, the Mawellian distribution is the corresponding equilibrium
two-temperature fluid variable ueq, the linearized Boltzmann equations are replaced by (88)
and the resulting dissipative coefficients have two different sources with (90).

8. Conclusions

The relaxation of internal energy and the concept of bulk viscosity have been inves-
tigated in nonequilibrium gas models derived from the kinetic theory. Two-temperature
models of single fluids and state-to-state models for mixtures of gases have been considered.
When the rates for internal energy exchanges are smaller than the fluid time, a common
interpretation of the apparition of the bulk viscosity coefficient has been obtained with (20),
(46), and (67). The Monte Carlo simulations of spontaneous fluctuations near thermal
equilibrium obtained by solving the Boltzmann equation have been shown to be in full
agreement with the fluid models, provided the internal energy relaxation times are smaller
than the fluid time. Numerical simulation of He-H2 quantum populations also yields
bulk viscosity coefficients in agreement with the equilibrium. Mathematical aspects of
internal energy relaxation have also been discussed for the two-temperature fluid model
and were found to agree with the formal expansions. In particular, Chapman–Enskog
expansions from systems of partial differential equations have been discussed, as well
as rigorous results in the situation of ill-prepared initial data in full agreement with the
formal expansions. A practical consequence of these results is that bulk viscosity should be
systematically included in the numerical simulation of compressible fluids. Future work
should also consider bulk viscosity coefficients arising in coarse-grained models, as well as
numerical simulations with multiple internal energy modes and, more generally, states far
from thermodynamic equilibrium.
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Appendix A. The One-Temperature Two-Mode Bulk Viscosity

In this section, we investigate the bulk viscosity associated with a one-temperature two-
mode polyatomic gas. The standard linear system associated with the evaluation of the two-
mode bulk viscosity is obtained with the Galerkin variational approximation space spanned
by the orthogonal polynomials φ0010 = 3

2 −
1
2

m
kBT |c− v|2, φ0001rap = (Erap− Erap

I )/kBT, and

φ0001sl = (Esl − Esl
I )/kBT. The general solution of the Transport Linear Systems, as well as

their mathematical structure, has been investigated [34,35]. The modes are termed ‘rapid’
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and ‘slow’ for notational consistency with the nonequilibrium framework of Section 3, but
in the thermodynamic equilibrium framework, they are all fast. The corresponding linear
system of size 3 is in the form [35] {

Kα = β,
〈K, α〉 = 0,

(A1)

where K denotes the system matrix, K the constraint vector, α = (α10, α01rap, α01sl)t the
unknown vector, β = (β10, β01rap, β01sl)t the right-hand side vector and the bulk viscosity
is finally given by κ = α10β10 + α01rapβ01rap + α01slβ01sl. The matrix K is positive semi-
definite with nullspace N(K) = RV , where V = (1, 1, 1)t, the constraint vector is given by
K = (ctr, crap, csl)t, and the right-hand side vector by β = (crap + csl,−crap,−csl)t/cvl.

We deduce from the constraint 〈K, α〉 = 0 that ctrα10 + crapα01rap + cslα01sl = 0 and
κ = −(crapα01rap + cslα01sl)/ctr. We may thus recast the singular linear system of size
3 into a regular linear system of size 2 involving only the unknowns α01rap and α01sl.
Thanks to the vector relation KV = 0, the coefficients of this linear system may also be
expressed solely in terms of Krap,rap, Krap,sl, and Ksl,sl. We also have the relations Krap,rap =
2[[(∆Erap)2]]/(kBT)3, Krap,sl = 2[[(∆Erap)(∆Esl)]]/(kBT)3, and Ksl,sl = 2[[(∆Esl)2]]/(kBT)3,
where ∆Erap = Erap

I′ + Erap
J′ − Erap

I − Erap
J and ∆Esl = Esl

I′ + Esl
J′ − Esl

I − Esl
J .

After some lengthy algebra, using the reduced linear system of size 2, it is obtained that

κ =
1

(cvl)2
(crap)2Ksl,sl − 2crapcslKrap,sl + (csl)2Krap,rap

Krap,rapKsl,sl − Krap,slKrap,sl . (A2)

Since we have to investigate the equilibrium limit of a two-temperature model in which
one mode is fast and another one slow, we deduce that the coefficient Krap,rap is large, and
that the cross terms Krap,sl = Ksl,rap are also small. We therefore neglect the square term
Ksl,rapKrap,sl in the previous expression, and the limiting value of the effective nonequilib-
rium bulk viscosity should thus be

κ =
( crap

cvl

)2 (kBT)3

2[[(∆Erap)2]]
− crapcsl

(cvl)2
(kBT)3[[(∆Erap)(∆Esl)]]

[[(∆Erap)2]][[(∆Esl)2]]
+
( csl

cvl

)2 (kBT)3

2[[(∆Esl)2]]
. (A3)
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