Sound Propagation in Cigar-Shaped Bose Liquids in the Thomas-Fermi Approximation: A Comparative Study between Gross-Pitaevskii and Logarithmic Models
Abstract
:1. Introduction
2. The Models
3. Thermodynamics and Fluid Analogy
4. Sound in Cigar-Shaped Condensates
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 1995, 269, 198–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, C.C.; Sackett, C.A.; Tollett, J.J.; Hulet, R.G. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 1995, 75, 1687–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, M.R.; Kurn, D.M.; Miesner, H.-J.; Durfee, D.S.; Townsend, C.G.; Inouye, S.; Ketterle, W. Propagation of Sound in a Bose-Einstein Condensate. Phys. Rev. Lett. 1997, 79, 553–556, Erratum in Phys. Rev. Lett. 1998, 80, 2967. [Google Scholar] [CrossRef]
- London, F. The λ-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy. Nature 1938, 141, 643–644. [Google Scholar] [CrossRef]
- Snoke, D.W.; Wolfe, J.P.; Mysyrowicz, A. Evidence for Bose-Einstein Condensation of Excitons in Cu2O. Phys. Rev. B 1990, 41, 11171–11184. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a Quantized Vortex in Boson Systems. Nuov. Cim. 1961, 20, 454. [Google Scholar] [CrossRef] [Green Version]
- Pitaevskii, L.P. Vortex Lines in an Imperfect Bose Gas. Sov. Phys. JETP 1961, 13, 451. [Google Scholar]
- Pethick, C.J.; Smith, H. Bose-Einstein Condensation in Dilute Gases; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Van Gorder, R.A. Perturbation Theory for Bose–Einstein Condensates on Bounded Space Domains. Proc. R. Soc. A 2020, 476, 20200674. [Google Scholar] [CrossRef]
- Efimov, V. Weakly-bound States of Three Resonantly-interacting Particles. Sov. J. Nucl. Phys. 1971, 12, 589. [Google Scholar]
- Efimov, V. Energy Levels of Three Resonantly Interacting Particles. Nucl. Phys. A 1973, 210, 157. [Google Scholar] [CrossRef]
- Kolganova, E.A.; Motovilov, A.K.; Sandhas, W. The 4He Trimer as an Efimov System. Few-Body Syst. 2011, 51, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Kolomeisky, E.B.; Straley, J.P. Low-Dimensional Bose Liquids: Beyond the Gross-Pitaevskii Approximation. Phys. Rev. B 1992, 46, 11749. [Google Scholar] [CrossRef]
- Chui, S.T.; Ryzhov, V.N. Collapse Transition in Mixtures of Bosons and Fermions. Phys. Rev. A 2004, 69, 043607. [Google Scholar] [CrossRef] [Green Version]
- Chui, S.T.; Ryzhov, V.N.; Tareyeva, E.E. Stability of Bose system in Bose-Fermi Mixture with Attraction Between Bosons and Fermions. JETP Lett. 2004, 80, 274–279. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Spontaneous Symmetry Breaking and Mass Generation as Built-in Phenomena in Logarithmic Nonlinear Quantum Theory. Acta Phys. Polon. 2011, 42, 261–292. [Google Scholar] [CrossRef]
- Rylov, Y.A. Spin and Wave Function as Attributes of Ideal Fluid. J. Math. Phys. 1999, 40, 256–278. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. On the Dynamical Nature of Nonlinear Coupling of Logarithmic Quantum Wave Equation, Everett-Hirschman Entropy and Temperature. Z. Naturforsch. A 2018, 73, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Brasher, J.D. Nonlinear Wave Mechanics, Information Theory, and Thermodynamics. Int. J. Theor. Phys. 1991, 30, 979–984. [Google Scholar] [CrossRef]
- Avdeenkov, A.V.; Zloshchastiev, K.G. Quantum Bose Liquids with Logarithmic Nonlinearity: Self-sustainability and Emergence of Spatial Extent. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 195303. [Google Scholar] [CrossRef] [Green Version]
- Zloshchastiev, K.G. Volume Element Structure and Roton-maxon-phonon Excitations in Superfluid Helium Beyond the Gross-Pitaevskii Approximation. Eur. Phys. J. B 2012, 85, 273. [Google Scholar] [CrossRef]
- De Martino, S.; Falanga, M.; Godano, C.; Lauro, G. Logarithmic Schrödinger-like Equation in Magma. Europhys. Lett. (EPL) 2003, 63, 472–475. [Google Scholar] [CrossRef]
- Bottiglieri, M.; Godano, C.; Lauro, G. Volcanic Eruptions: Initial State of Magma Melt Pulse Unloading. Europhys. Lett. (EPL) 2012, 97, 29001. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Nonlinear Wave-mechanical Effects in Korteweg Fluid Magma Transport. Europhys. Lett. (EPL) 2018, 122, 39001. [Google Scholar] [CrossRef] [Green Version]
- Carles, R.; Carrapatoso, K.; Hillairet, M. Rigidity Results in Generalized Isothermal Fluids. Ann. H. Lebesgue 2018, 1, 47–85. [Google Scholar] [CrossRef] [Green Version]
- Zloshchastiev, K.G. Temperature-driven Dynamics of Quantum Liquids: Logarithmic Nonlinearity, Phase Structure and Rising Force. Int. J. Mod. Phys. B 2019, 33, 1950184. [Google Scholar] [CrossRef] [Green Version]
- Scott, T.C.; Zloshchastiev, K.G. Resolving the Puzzle of Sound Propagation in Liquid Helium at Low Temperatures. Low Temp. Phys. 2019, 45, 1231. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. An Alternative to Dark Matter and Dark Energy: Scale-dependent Gravity in Superfluid Vacuum Theory. Universe 2020, 6, 180. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Superfluid Stars and Q-balls in Curved Spacetime. Low Temp. Phys. 2021, 47, 89. [Google Scholar] [CrossRef]
- Lasich, M.; Zloshchastiev, K.G. Particle Size and Phase Equilibria in Classical Logarithmic Fluid. J. Phys. Conf. Ser. 2021, 1740, 012042. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Resolving the Puzzle of Sound Propagation in a Dilute Bose-Einstein Condensate. Int. J. Mod. Phys. B 2022, 36, 2250121. [Google Scholar] [CrossRef]
- Zueva, T.I.; Sokolov, S.S. Self-localized Electron State in a Dense Helium Gas: Variational and Self-consistent Approaches. Low Temp. Phys. 2022, 48, 674–683. [Google Scholar] [CrossRef]
- Carles, R.; Ferriere, G. Logarithmic Schrödinger Equation with Quadratic Potential. Nonlinearity 2021, 34, 8283–8310. [Google Scholar] [CrossRef]
- Fan, H.; Feng, Z.; Yan, X. Positive Solutions for the Fractional Schrödinger Equations with Logarithmic and Critical Non-linearities. Trans. Lond. Math. Soc. 2021, 8, 206–242. [Google Scholar] [CrossRef]
- Ji, C.; Xue, Y. Existence and Concentration of Positive Solution for a Fractional Logarithmic Schrödinger equation. Differ. Integral Equ. 2022, 35, 677–704. [Google Scholar]
- Lima, F.C.E.; Petrov, A.Y.; Almeida, C.A.S. Vortex Solutions in Nonpolynomial Scalar QED. Phys. Rev. D 2021, 103, 096019. [Google Scholar] [CrossRef]
- Lima, F.C.E.; Almeida, C.A.S. Differential Configurational Complexity and Phase Transitions of the BPS Solutions in the O(3)-sigma Model. Ann. Phys. 2022, 442, 168904. [Google Scholar] [CrossRef]
- Kai, Y.; Yin, Z. On the Gaussian Traveling Wave Solution to a Special Kind of Schrödinger Equation with logarithmic nonlinearity. Mod. Phys. Lett. B 2022, 36, 2150543. [Google Scholar] [CrossRef]
- Read, L.; Zegarliński, B.; Zhang, M. Logarithmic Schrödinger Equations in Infinite Dimensions. J. Math. Phys. 2022, 63, 111502. [Google Scholar] [CrossRef]
- Carles, R.; Su, C. Numerical Study of the Logarithmic Schrödinger Equation with Repulsive Harmonic Potential. Discrete Contin. Dyn. Syst. B 2022. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, D.; Feng, B. Optimal Bilinear Control of the Logarithmic Schrödinger Equation. Math. Meth. Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Stability and Metastability of Trapless Bose-Einstein Condensates and Quantum Liquids. Z. Naturforsch. A 2017, 72, 677–678. [Google Scholar] [CrossRef] [Green Version]
- De Broglie, L. Sur la Possibilité de Relier les Phénomènes d’Interférence et de Diffraction à la Théorie des Quanta de Lumière. Comptes Rendus 1926, 183, 447–448. [Google Scholar]
- Madelung, E. Quantentheorie in Hydrodynamischer Form. Z. Phys. 1927, 40, 322–326. [Google Scholar] [CrossRef]
- Halbwachs, F. Théorie Relativiste des Fluides à Spin; Gauthier-Villars: Paris, France, 1960. [Google Scholar]
- Fröhlich, H. Macroscopic Wave Functions in Superconductors. Proc. Phys. Soc. 1966, 87, 330–332. [Google Scholar] [CrossRef]
- Spiegel, E.A. Fluid Dynamical Form of the Linear and Nonlinear Schrödinger Equations. Phys. D Nonlinear Phenom. 1980, 1, 236–240. [Google Scholar] [CrossRef]
- Rylov, Y.A. The Equations for Isentropic Motion of Inviscid Fluid in Terms of Wave Function. J. Math. Phys. 1989, 30, 2516–2520. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Matrix Logarithmic Wave Equation and Multi-channel Systems in Fluid Mechanics. J. Theor. Appl. Mech. 2019, 57, 843–852. [Google Scholar] [CrossRef]
- Kavoulakis, G.M.; Pethick, C.J. Quasi-one-dimensional Character of Sound Propagation in Elongated Bose-Einstein Condensed Clouds. Phys. Rev. A 1997, 58, 1563–1566. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zloshchastiev, K.G. Sound Propagation in Cigar-Shaped Bose Liquids in the Thomas-Fermi Approximation: A Comparative Study between Gross-Pitaevskii and Logarithmic Models. Fluids 2022, 7, 358. https://doi.org/10.3390/fluids7110358
Zloshchastiev KG. Sound Propagation in Cigar-Shaped Bose Liquids in the Thomas-Fermi Approximation: A Comparative Study between Gross-Pitaevskii and Logarithmic Models. Fluids. 2022; 7(11):358. https://doi.org/10.3390/fluids7110358
Chicago/Turabian StyleZloshchastiev, Konstantin G. 2022. "Sound Propagation in Cigar-Shaped Bose Liquids in the Thomas-Fermi Approximation: A Comparative Study between Gross-Pitaevskii and Logarithmic Models" Fluids 7, no. 11: 358. https://doi.org/10.3390/fluids7110358
APA StyleZloshchastiev, K. G. (2022). Sound Propagation in Cigar-Shaped Bose Liquids in the Thomas-Fermi Approximation: A Comparative Study between Gross-Pitaevskii and Logarithmic Models. Fluids, 7(11), 358. https://doi.org/10.3390/fluids7110358