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Abstract: Polyatomic gases may be characterized by internal molecular degrees of freedom. As a
consequence, at a macroscopic level, dynamic pressure appears, which may be related to the bulk
viscosity of the gas. Inspired by the models of a single polyatomic gas with six fields, developed
within rational extended thermodynamics (RET) and the kinetic theory of gases, this paper presents
a six-field theory for the mixture of polyatomic gases. First, the macroscopic mixture model is
developed within the framework of RET. Second, the mixture of gases with six fields is analyzed
in the context of the kinetic theory of gases, and corresponding moment equations are derived.
Finally, complete closure of the RET model, i.e., computation of the phenomenological coefficients, is
achieved by means of a combined macroscopic/kinetic closure procedure.

Keywords: mixture; polyatomic gases; dynamic pressure; six-field model; extended thermodynamics;
kinetic theory

1. Introduction

Mixtures are media that consist of several identifiable constituents. Vast amounts of
materials occurring in nature, engineering, and technological processes may be regarded as
mixtures. Therefore, mixture modeling is an important and demanding task.

The modeling of gaseous mixtures may follow different paths. The macroscopic or
continuum approach is based upon the balance laws of continuum mechanics and may be
different depending on the choice of field variables used to describe the state of the mixture.
A coherent macroscopic description of mixtures compatible with fundamental physical
principles is presented in [1]. It is a classical model which relies on generalized Fick’s law
of diffusion. A comprehensive account of multicomponent mixtures may be found in [2,3].
However, within the framework of rational extended thermodynamics (RET), [4] a model
is developed which goes beyond the classical approach and aims to remove the paradox
of infinite speed of wave propagation. On one hand, it resonates with the principles of
rational thermodynamics [5], while on the other hand, extends the list of field variables by
introducing the velocities of constituents. This model was further extended to a so-called
multi-temperature mixture [6,7]. It was then analyzed for its comparison with the classical
approach [8–10] and applied to non-equilibrium processes in mixtures [11–13].

Mixtures of gases can be studied equally well starting from the kinetic theory of
gases. In this (mesoscopic) approach, one firstly relies on the system of Boltzmann equa-
tions for mixture and the choice of the model of interaction between the particles. In the
next step, corresponding macroscopic equations for the chosen set of field variables are
derived as moment equations using the standard moment method [14]. This procedure
requires the approximation of a distribution function that is compatible with the choice
of field variables, which can be done in several ways—classical Grad’s method [15] and
the maximum entropy principle [16–18] are examples of this procedure. It is remarkable
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that under certain assumptions about the interaction of the species one may derive the
moment equations of the multi-temperature model, which are compatible with the model
of extended thermodynamics [19].

Although macroscopic and kinetic approaches to gaseous mixtures seem to converge
in a certain way, there are some open problems that are the subject of analysis in either
context. First, the modeling of polyatomic gases became a topic of intensive research in RET
and kinetic theory in the last decade. Major achievements of extended thermodynamics in
this problem were summarized in [20,21], whereas certain results about kinetic modeling
of polyatomic gases may be found in [22,23]. On the other hand, the description of dissi-
pation in polyatomic gases is a delicate problem, both in RET and in kinetic theory, and
strongly depends on the level of approximation. Apart from the 14-moment description
of polyatomic gases [24–28] and recently 17-moment [29,30], there appeared a simplified
6-moment model, the simplest model which captures the non-equilibrium effects through a
single field variable—dynamic pressure [31]. This model is particularly interesting because
it allows an exact closure, both in macroscopic and kinetic framework [27,32–34]. Moreover,
it is relevant in applications for describing non-equilibrium gas flows with large bulk
viscosity. For instance, it is observed that CO2 has a relaxation time for dynamical pressure
much larger than relaxation times for stress tensor and heat flux [35–37]. The aim of this
study is to use this model as a starting point and build up a model of gaseous mixtures in
which each constituent is described by the six fields.

In this paper, we shall develop a six-field theory for polyatomic gases, both in macro-
scopic and kinetic contexts. In the macroscopic description, we shall rely on the methods
of RET, postulate the structure of field equations, use the objectivity principle to give an
insight into the basic ingredients of equations, and apply the entropy principle to choose the
admissible set of constitutive relations. In the kinetic description, we shall apply the maxi-
mum entropy principle to derive the approximate form of distribution function compatible
with macroscopic field variables, and derive the field equations as moment equations for
the system of Boltzmann equations for a polyatomic gas mixture. In particular, for the
computation of source terms, the collision kernel satisfying assumptions from the rigorous
mathematical analysis established in [38,39] is used. These two approaches do not match
completely since the source terms do not have the same form. Moreover, RET source terms
are not entirely determined since they comprise phenomenological coefficients whose form
is not prescribed. To that end, we shall apply the recently introduced macroscopic/kinetic
closure procedure [40,41] to determine the phenomenological coefficients of RET by match-
ing the macroscopic and the kinetic source terms in the neighborhood of local equilibrium
manifold, i.e., in their linearized version.

The rest of the paper is organized as follows. In Section 2, we present the macroscopic
approach to mixture modeling within the framework of RET. In Section 3, the kinetic model
of mixtures is presented and corresponding moment equations are derived. Section 4
contains a combined macroscopic/kinetic closure of governing equations and provides the
structure of phenomenological coefficients of RET. The paper is concluded with a review of
results and further outlook.

2. Macroscopic Model of the Mixture with Dynamic Pressure

In this section, we shall first give a brief recap of the single-component polyatomic
gas model with dynamic pressure, usually denoted as the ET6 model [20,21]. After that, an
analysis of macroscopic equations for the mixture of polyatomic gases will be provided.
Finally, an analysis of constitutive relations through the application of objectivity and
entropy principles will be given.

2.1. Macroscopic Model of a Single-Component Polyatomic Gas

Let us first emphasize that Latin indices denote Cartesian components of vectors
and tensors and the summation convention is assumed, that is, when exactly two Latin



Fluids 2022, 7, 381 3 of 38

indices are repeated in the expression, it means that we take the sum over that index. The
governing equations of the ET6 model for polyatomic gases read:

∂ρ

∂t
+

∂

∂xk
(ρvk) = 0,

∂

∂t
(ρvi) +

∂

∂xk
(ρvivk − tik) = 0, (i = 1, 2, 3)

∂

∂t

(
1
2

ρ|v|2 + ρε

)
, (1)

+
∂

∂xk

{(
1
2

ρ|v|2 + ρε

)
vk − tkivi + qk

}
= 0,

∂

∂t

{
ρ|v|2 + 3(p + Π)

}
+

∂

∂xk
Fllk = P,

where ρ is the mass density, vk is the velocity, ε is the specific internal energy, tik is the stress
tensor, qk is the heat flux, and the flux Fllk is determined by:

Fllk =
[
ρ|v|2 + 5(p + Π)

]
vk, (2)

while the following constitutive assumptions are taken for the non-convective fluxes:

tik = −(p + Π)δik, qk = 0, (3)

where p(ρ, ε) is the hydrostatic pressure, and Π is the dynamic pressure. In (1)4 P is the
source term of relaxation type.

The entropy density of the gas described with six fields has the form:

h = ρs + ρk, (4)

where s = s(ρ, ε) is the equilibrium-specific entropy, while k = k(ρ, ε, Π) is the non-
equilibrium specific entropy, which satisfies the equilibrium condition k(ρ, ε, 0) = 0. Appli-
cation of the entropy principle yields the residual inequality

Σ =
1
3

ρ
∂k
∂Π

P > 0, (5)

which is satisfied, for example, when the source term is expressed in terms of non-
equilibrium specific entropy as follows

P = α
∂k
∂Π

, (6)

where α ≥ 0 is the function of objective quantities. Additionally, k must satisfy the following
PDE:

ρ2 ∂k
∂ρ

+ (p + Π)
∂k
∂ε

+ ρ

{
−ρ

∂p
∂ρ

+ (p + Π)

(
5
3
− 1

ρ

∂p
∂ε

)}
∂k
∂Π

+
Π
T

= 0. (7)

It was shown that there exists a general solution of this equation that satisfies the
equilibrium condition, and that in the case of polytropic gases it is expressed in terms of a
single variable, Π/p,

k =
kB

m
log
{

X3/2 Ya+1
}

; X = 1 +
Π
p

, Y = 1− 3
2(a + 1)

Π
p

, (8)

where kB is the Boltzmann constant and m the molecular mass. Parameter a > −1 can be
related to the number of molecular degrees of freedom D, a = (D− 5)/2.

These results were confirmed for a single-component polyatomic gas starting from
the kinetic theory and the Boltzmann equation. Namely, on one side, the non-equilibrium
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specific entropy k is constructed as a moment of the distribution function and is shown
that PDE (7) is satisfied [33]. Moreover, the dynamic pressure source term P is explicitly
calculated and the residual inequality (5) is recovered [27].

2.2. Governing Equations for the Mixture of Polyatomic Gases

A macroscopic approach to mixture modeling is based on Truesdell’s metaphysical
principles. In the framework of RET, their application has to be adapted to the mixture
of polyatomic gases, in which only the dynamic pressures are taken as non-equilibrium
variables. Therefore, the behavior of the constituents is governed by the same equations
as for the single fluid, taking into account the mutual interaction with other constituents
through the source terms:

∂ρα

∂t
+

∂

∂xk
(ραvαk) = τα,

∂

∂t
(ραvαi) +

∂

∂xk
(ραvαivαk − tαik) = mαi, (i = 1, 2, 3)

∂

∂t

(
1
2

ρα|vα|2 + ραεα

)
, (9)

+
∂

∂xk

{(
1
2

ρα|vα|2 + ραεα

)
vαk − tαkivαi + qαk

}
= eα,

∂

∂t

{
ρα|vα|2 + 3(pα + Πα)

}
+

∂

∂xk

{[
ρα|vα|2 + 5(pα + Πα)

]
vαk

}
= Pα + Mα.

In Equation (9), Greek index α = 1, . . . , n stands for the constituent; τα, mαi, eα, and
Mα are the interaction source terms, whereas Pα is the internal dissipative source term for
dynamic pressure of the constituent α. Let us highlight that the summation convention
does not apply to Greek letters. For instance,

tαkivαi stands for
3

∑
i=1

tαkivαi, (10)

i.e., the summation is assumed only over exactly two repeated Latin indices i and not over α.
In this model, field variables that describe the state of the mixture are:

ũ = (ρα, vα, εα, Πα). (11)

Following the principles of RET, all the constitutive functions have to be locally
expressed in terms of variables ũ, i.e., they should depend on their local values in point,
but not on the values of their derivatives.

Truesdell’s principles also state that governing equations for the whole mixture have
the same form as equations for the single fluid, where macroscopic densities and fluxes for
the mixture have to be properly defined in terms of densities and fluxes of the constituents.
To that end, the interaction source terms must satisfy the conservation axioms:

n

∑
α=1

τα = 0;
n

∑
α=1

mαi = 0;
n

∑
α=1

eα = 0;
n

∑
α=1

Mα = 0. (12)

However, the sum of internal dissipative source terms Pα does not disappear but
represents the dissipative source term for the dynamic pressure of the mixture:

n

∑
α=1

Pα =: P. (13)
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Summation of the corresponding balance laws (9) for the constituents lead to the
governing equations for the mixture in the form (1), where the mixture densities and fluxes
are defined as:

ρ =
n

∑
α=1

ρα; ρvi =
n

∑
α=1

ραvαi; uαi = vαi − vi;

ρε =
n

∑
α=1

{
ραεα +

1
2

ρα|uα|2
}

;

p =
n

∑
α=1

pα; Π =
n

∑
α=1

(
Πα +

1
3

ρα|uα|2
)

; (14)

tij =
n

∑
α=1

{
tαij − ραuαiuαj

}
;

qi =
n

∑
α=1

{
qαi − tαijuαj +

(
1
2

ρα|uα|2 + ραεα

)
uαi

}
;

Fllk = ρ|v|2vk + 5(p + Π)vk + 2vlÛ〈lk〉 + F̂llk,

where:

Û〈lk〉 =
n

∑
α=1

{
ρα

(
uαluαk −

1
3
|uα|2δlk

)}
; (15)

F̂llk =
n

∑
α=1

{
ρα|uα|2uαk + 5(pα + Πα)uαk

}
.

In (14), uαi is the diffusion velocity, and the following identity holds, ∑n
α=1 ραuαi = 0.

Since our analysis is restricted to the polyatomic gases with dynamic pressure, we introduce
the following constitutive assumptions for partial stress tensors and partial heat fluxes:

tαij = −(pα + Πα)δij; qαi = 0, (16)

where pα(ρα, εα) are the partial thermodynamic pressures, and Πα are the partial dynamic
pressures. As a consequence, the stress tensor tij and the internal energy flux qi of the
mixture reduce to:

tij = −
n

∑
α=1

{
(pα + Πα)δij + ραuαiuαj

}
; (17)

qi =
n

∑
α=1

{
(pα + Πα)uαi +

(
1
2

ρα|uα|2 + ραεα

)
uαi

}
.

In the mixture theory, it is usual to construct the system of governing equations by
replacing the balance laws for one constituent, say α = n, with the governing equations for
the whole mixture. Therefore, we list the system of governing equations that will be used
in the sequel, which consists of a mixture governing of equations:

∂ρ

∂t
+

∂

∂xk
(ρvk) = 0,

∂

∂t
(ρvi) +

∂

∂xk
(ρvivk − tik) = 0, (i = 1, 2, 3)

∂

∂t

(
1
2

ρ|v|2 + ρε

)
+

∂

∂xk

{(
1
2

ρ|v|2 + ρε

)
vk − tkivi + qk

}
= 0, (18)

∂

∂t

{
ρ|v|2 + 3(p + Π)

}
+

∂

∂xk
Fllk = P,
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and the balance laws for n− 1 constituents:

∂ρb
∂t

+
∂

∂xk
(ρb(vk + ubk)) = τb,

∂

∂t
(ρb(vi + ubi)) +

∂

∂xk
(ρb(vi + ubi)(vk + ubk)− tbik) = mbi, (i = 1, 2, 3)

∂

∂t

(
1
2

ρb|v + ub|2 + ρbεb

)
, (19)

+
∂

∂xk

{(
1
2

ρb|v + ub|2 + ρbεb

)
(vk + ubk)− tbki(vk + ubk) + qbk

}
= eb,

∂

∂t

{
ρb|v + ub|2 + 3(pb + Πb)

}
+

∂

∂xk

{[
ρb|v + ub|2 + 5(pb + Πb)

]
(vk + ubk)

}
= Pb + Mb,

for b = 1, . . . , n− 1. With this choice of governing equations, the vector of field variables becomes:

u = (ρ, v, ε, Π, ρb, ub, εb, Πb). (20)

2.3. Galilean Invariance

Rational extended thermodynamics postulates that the governing equations of the
thermodynamic process have to be invariant with respect to Galilean transformation [42].
This condition is usually called the objectivity principle. To that end, we shall write the
governing equations in a generic form:

∂

∂t
F(u) +

∂

∂xk
Fk(u) = f(u); Fk(u) = F(u)vk + Φk(u), (21)

where F(u) is the vector of densities, Φk(u) is the vector of non-convective fluxes, and
f(u) is the vector of source (production) terms. If we represent the vector of field variables
as u = (v, w), where w is the vector of objective field variables, then Galilean invariance
restricts the velocity dependence of densities, fluxes, and sources through the matrix X(v):

F(v, w) = X(v)F̂(w); Φk(v, w) = X(v)Φ̂k(w); f(v, w) = X(v)f̂(w), (22)

where the hat denotes velocity-independent functions determined in the following way:

F̂(w) = F(0, w); Φ̂k(w) = Φk(0, w); f̂(w) = f(0, w),
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and X(0) = I. From the governing Equations (18) and (19) one may deduce:

F(v, w) =



ρ
ρvi

1
2 ρ|v|2 + ρε

ρ|v|2 + 3(p + Π)
ρb

ρb(vi + ubi)
1
2 ρb|v + ub|2 + ρbεb

ρb|v + ub|2 + 3(pb + Πb)


;

Φk(v, w) =



0
−tik

−tkivi + qk
2(p + Π)vk + 2vlÛ〈lk〉 + F̂llk

ρbubk
ρb(vi + ubi)ubk + (pb + Πb)δik(

1
2 ρb|v + ub|2 + ρbεb

)
ubk + (pb + Πb)(vk + ubk)[

ρb|v + ub|2 + 3(pb + Πb)
]
ubk + 2(pb + Πb)(vk + ubk)


; (23)

f(v, w) =



0
0i
0
P
τb

mbi
eb
Pb


.

The velocity transformation matrix then reads:

X(v) =



1 0k 0 0 0 0k 0 0
vi δik 0i 0i 0i 0ik 0i 0i

1
2 |v|2 vk 1 0 0 0k 0 0
|v|2 2vk 0 1 0 0k 0 0

0 0k 0 0 1 0k 0 0
0i 0ik 0i 0i vi δik 0i 0i
0 0k 0 0 1

2 |v|2 vk 1 0
0 0k 0 0 |v|2 2vk 0 1


. (24)

Equation (22)1,2 is identically satisfied by (23)1,2 and (24), but (22)3 restricts the velocity
dependence of the source terms:

P = P̂;

τb = τ̂b;

mbi = τ̂bvi + m̂bi; (25)

eb =
1
2

τ̂b|v|2 + m̂bivi + êb;

Pb + Mb = P̂b + τ̂b|v|2 + 2m̂bivi + M̂b.

2.4. Entropy Principle

The entropy inequality is a supplementary balance law in the form:

∂h
∂t

+
∂hk
∂xk

= Σ ≥ 0, (26)
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where h, hk, and Σ are the entropy density, the entropy flux, and the entropy produc-
tion rate, respectively. These quantities may be expressed either in terms of ũ = (v, w̃)
(Equation (11)), or in terms of u = (v, w) (Equation (20)). In either case, (26) must be
invariant with respect to Galilean transformations, which yields:

h = h(w̃), hk = hk(w̃), Σ = Σ(w̃) ⇔ h = h(w), hk = hk(w), Σ = Σ(w).

Although both representations will be used in the sequel, we shall express the general
results in terms of variables without a tilde, assuming that they are equally valid for the
ones with a tilde.

The entropy principle, as formulated by Liu [43] and exploited in that way in ET,
states that the entropy balance law (26) must be satisfied for any thermodynamic process
governed by the balance laws (21). In this formulation governing equations are treated
as constraints. Since governing equations and entropy balance law are both quasi-linear
first-order partial differential equations, there exists a privileged (main) field u′(u) that acts
as a vector of Lagrange multipliers, and secures compatibility between the master (entropy)
equation and the constraints:

∂h
∂t

+
∂hk
∂xk
− Σ = u′ ·

(
∂F
∂t

+
∂Fk
∂xk
− f
)

.

As a consequence, the following relations hold:

dh = u′ · dF, dhk = u′ · dFk, Σ = u′ · f ≥ 0. (27)

The systems of Equation (27)1,2 serve to determine the main field and the entropy flux,
which is a constitutive quantity. On the other hand, the residual inequality (27)3 imposes
restrictions on the structure of source terms.

The role of the main field is not exhausted with compatibility relations (27). In fact, if
the entropy density h is a convex function of F, then by means of Legendre transformation
one may introduce the four potentials:

h′ := u′ · F− h, h′k := u′ · Fk − hk, (28)

and transform the original system of balance laws (21) into symmetric hyperbolic form:

∂

∂t

(
∂h′

∂u′

)
+

∂

∂xk

(
∂h′k
∂u′

)
= f ⇔ ∂2h′

∂u′∂u′
∂u′

∂t
+

∂2h′k
∂u′∂u′

∂u′

∂xk
= f. (29)

Our aim is to apply these presented steps and apply the entropy principle to the
mixture of polyatomic gases with dynamic pressure.

In particular, the entropy density of the mixture is defined as a sum of the entropy
densities of the constituents:

h =
n

∑
α=1

(ραsα + ραkα), (30)

where sα(ρα, εα) is the partial equilibrium specific entropy, and kα(ρα, εα, Πα) is the partial
non-equilibrium specific entropy. This assumption restricts our study to the so-called
simple mixtures. Denoting the main field components as:

ũ′ =
(
λ̃α, Λ̃αi, µ̃α, ζ̃α

)
, (31)
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the compatibility condition (27)1 may be expanded:

dh =
n

∑
α=1

d(ραsα + ραkα) =
n

∑
α=1

{
λ̃αdρα + Λ̃αid(ραvαi) (32)

+µ̃αd
(

1
2

ρα|vα|2 + ραεα

)
+ ζ̃αd

(
ρα|vα|2 + 3(pα + Πα)

)}
.

In the case of simple mixtures, (32) can be split into equations for the constituents, and
straightforward calculation leads to the following main field:

λ̃α = − 1
Tα

(
gα −

1
2
|v + uα|2

)
−
(

εα −
1
2
|v + uα|2

)(
∂kα

∂εα
− ∂kα

∂Πα

∂pα

∂εα

)
− ρα

∂kα

∂Πα

(
∂pα

∂ρα
− 1

3
|v + uα|2

)
+ kα + ρα

∂kα

∂ρα
,

Λ̃αi = −
vi + uαi

Tα
−
(

∂kα

∂εα
− ∂kα

∂Πα

∂pα

∂εα
+

2
3

ρα
∂kα

∂Πα

)
(vi + uαi), (33)

µ̃α =
1
Tα

+
∂kα

∂εα
− ∂kα

∂Πα

∂pα

∂εα
,

ζ̃α =
1
3

ρα
∂kα

∂Πα
.

Furthermore, it may be shown that dual entropy density has the form:

h′ = −
n

∑
α=1

(
ˆ̃µα + 2 ˆ̃ζα

)
(pα + Πα) = ĥ′. (34)

Finally, using (28)1 in the form ĥ = ˆ̃u · ˆ̃F− ĥ′, partial differential equations for non-
equilibrium specific entropies are obtained:

ρ2
α

∂kα

∂ρα
+ (pα + Πα)

∂kα

∂εα
(35)

+ ρα

{
−ρα

∂pα

∂ρα
+ (pα + Πα)

(
5
3
− 1

ρα

∂pα

∂εα

)}
∂kα

∂Πα
+

Πα

Tα
= 0.

It is obvious that Equation (35) for partial non-equilibrium specific entropies are not
coupled, and have the same form (7) as the one in a single-component gas. Therefore, we
may use the solution obtained in the ET6 case, and adapt it to the multi-component case:

kα =
kB

mα
log
{

X3/2
α Yaα+1

α

}
, (36)

where mα are the molecular masses of the constituents and

Xα = 1 +
Πα

pα
, Yα = 1− 3

2(aα + 1)
Πα

pα
. (37)

The parameter aα > −1 can be related to the number of molecular degrees of freedom
Dα of the constituent [20], aα = (Dα − 5)/2, or to the specific heat [28].

Once the main field (33) and the non-equilibrium specific entropy are determined,
the residual inequality may be exploited to determine the restrictions on the source terms.
To that end, one has first to calculate the main field components with respect to u field
variables (20). Denoting the main field components as:

u′ = (λ, Λi, µ, ζ, λb, Λbi, µb, ζb), (38)



Fluids 2022, 7, 381 10 of 38

and using the density vector (23)1, the compatibility condition (27)1 becomes:

dh = λ dρ + Λi d(ρv) + µ d
(

1
2

ρ|v|2 + ρε

)
+ ζ d

(
ρ|v|2 + 3(p + Π)

)
+

n−1

∑
b=1
{λbdρb + Λbid(ρbvbi) (39)

+µbd
(

1
2

ρb|vb|2 + ρbεb

)
+ ζbd

(
ρb|vb|2 + 3(pb + Πb)

)}
.

Since dh must have the same form in (32) and (39), the following relations must hold:

λ = λ̃n, λb = λ̃b − λ̃n,

Λi = Λ̃ni, Λbi = Λ̃bi − Λ̃ni, (40)

µ = µ̃n, µb = µ̃b − µ̃n,

ζ = ζ̃n, ζb = ζ̃b − ζ̃n.

The explicit form of the main field is provided in Appendix A.
The residual inequality (27)3 may be reduced to a velocity independent form:

Σ = u′ · f = û′ · f̂ ≥ 0,

which can be expanded to:

Σ = ζ̂ P̂ +
n−1

∑
b=1

{
λ̂bτ̂b + Λ̂bim̂bi + µ̂b êb + ζ̂b

(
P̂b + M̂b

)}
≥ 0. (41)

Taking into account identities ζ̂ = ζ̃n and ζ̂b + ζ̃n = ζ̃b, as well as definition (13) of the
source term in dynamic pressure balance laws for the mixture, (41) can be transformed into
a linear combination of the source terms:

Σ =
n

∑
α=1

ζ̃α P̂α +
n−1

∑
b=1

{
λ̂bτ̂b + Λ̂bim̂bi + µ̂b êb + ζ̂b M̂b

}
≥ 0. (42)

This equation imposes restrictions on the structure of source terms since the residual
inequality (42) must be satisfied for any thermodynamic process.

The simplest possible way to secure the non-negativity of the entropy production rate (42) is
to choose the source terms such that they become a positive semi-definite quadratic form. First,
note that the internal dissipation terms P̂α are separated from the interaction terms. Taking into
account that they are mutually independent functions of partial (constituent-related) objective
quantities, one may choose them in the following form:

P̂α = ωα(wα)ζ̃α, α = 1, . . . , n, (43)
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where ωα(wα) ≥ 0, and wα denote the partial objective quantities. The remaining source
terms may be constructed in the following way:

τ̂b =
n−1

∑
c=1

(
ϕτ

bc(w)λ̂c + ϕe
bc(w)µ̂c + ϕM

bc (w)ζ̂c

)
,

m̂bi =
n−1

∑
c=1

ψbc(w)Λ̂ci,

êb =
n−1

∑
c=1

(
θτ

bc(w)λ̂c + θe
bc(w)µ̂c + θM

bc (w)ζ̂c

)
,

M̂b =
n−1

∑
c=1

(
χτ

bc(w)λ̂c + χe
bc(w)µ̂c + χM

bc (w)ζ̂c

)
.

(44)

Note that we took into account the cross-effects by expressing the source terms of the
same tensorial order, here τ̂b, êb, and M̂b, in terms of the main field components of the same
order, i.e., λ̂b, µ̂b, and ζ̂b. This will be crucial for further matching of the macroscopic and
the kinetic source terms, and explicit computation of the phenomenological coefficients,
i.e., ϕs, ψs, θs, and χs. Furthermore, the phenomenological coefficients are matrix functions
whose form must be such that quadratic form (42) is positive semi-definite.

In the sequel, we shall restrict the attention to chemically inert, i.e., non-reacting
mixtures, which means that τα = 0 by assumption. As a consequence, ϕτ

bc = ϕe
bc = ϕM

bc = 0,
and θτ

bc = χτ
bc = 0.

2.5. Principal Subsystems of Non-Reacting Mixtures

The construction and properties of principal subsystems are exposed in detail in [44].
For their proper recognition, one has to analyze the system described by the main field
u′. Assume that the main field is split into two parts, u′ = (v′, w′). Then, balance laws in
symmetric form (29) may be written as:

∂

∂t

(
∂h′(v′, w′)

∂v′

)
+

∂

∂xk

(
∂h′k(v

′, w′)
∂v′

)
= p(v′, w′),

∂

∂t

(
∂h′(v′, w′)

∂w′

)
+

∂

∂xk

(
∂h′k(v

′, w′)
∂w′

)
= r(v′, w′).

The principal subsystem is the system obtained from the complete one when constant
value w′∗ is assigned to w′:

∂

∂t

(
∂h′(v′, w′∗)

∂v′

)
+

∂

∂xk

(
∂h′k(v

′, w′∗)
∂v′

)
= p(v′, w′∗).

Such a subsystem is accompanied by a sub-entropy law for a properly defined sub-
entropy, and its characteristic speeds satisfy the sub-characteristic condition—they are
bounded by the characteristic speeds of the complete system restricted to the state space of
the subsystem.

Restriction to the subsystem in terms of the main field amounts to discarding the
balance laws in the original system to which w′ corresponds. In most physically interesting
cases, w′∗ = 0, since this part of the main field is usually related to non-equilibrium
variables. In the sequel, we shall present the most important subsystems in the mixture of
non-reacting polyatomic gases.

Case 1: Multi-temperature mixture of Euler fluids. First, the subsystem is obtained if
we assume ζb = ζ̃b − ζ̃n = 0, which immediately implies ζ̃1 = . . . = ζ̃n, or explicitly:

ρ1
∂k1

∂Π1
= . . . = ρn

∂kn

∂Πn
= C = const. (45)
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Constant C is common for all main fields since every kα depends on the state variables
of α constituent only. Although (45) indicates that every kα is linear in Πα, it is clear
from (36) that conditions (45) cannot be satisfied unless Πα/pα = 0, i.e., Πα = 0 for all
α = 1, . . . , n. In such a way C = 0 and kα is independent of Πα, which implies that kα(ρα, εα)
becomes redundant and can be absorbed into sα(ρα, εα). Therefore, we may take kα = 0, for
all α = 1, . . . , n, without the loss of generality.

A consequence of the result obtained under the assumption ζb = 0 is that partial
dynamic pressures vanish, and ζ̃α = 0 and ζ = 0. Therefore, in this subsystem, we may
discard the balance laws (19)4 for the dynamic pressure of the constituents, and the balance
law (18)4 for dynamic pressure of the mixture. Thus, we end up with the system (18)1−3
and (19)1−3, that is with the multi-temperature model for the mixture of Euler fluids, whose
primal field variable vector is u = (ρ, v, ε, ρb, ub, εb).

Case 2: Single-temperature mixture of Euler fluids. Next, a subsystem is obtained
if, along with ζb = 0, we assume µb = 0. From the analysis of Case 1 we have kα = 0,
so that condition µb = µ̃b − µ̃n = 0 reduces to T1 = . . . = Tn = T. Therefore, we may
discard the balance laws (19)3 for the energy of the constituents, and we end up with a
single-temperature model for the mixture of Euler fluids (18)1−3 and (19)1−2, whose primal
field variable vector is u = (ρ, v, ε, ρb, ub).

Case 3: Equilibrium subsystem. Among all principal subsystems, the equilibrium
subsystem has a special status. It is the system for which the entropy production rate
vanishes for all thermodynamic processes, ΣE = 0. In the case of a non-reacting mixture,
this condition will be satisfied if and only if:

ζ̂b = 0, ζ̃α = 0, µ̂b = 0, Λ̂bi = 0.

In Case 1 we saw that the first condition implies the second one; they imply Πα = 0 and
kα = 0. Case 2, which corresponds to the third condition, imposed further restriction Tα = T
for all the constituents. The last condition introduces the final restriction ubi = vbi − vi = 0,
i.e., vαi = vi, which means that motion of all the constituents is described by the common
velocity field. In that case, we may discard the balance laws (19)2 for the momenta of
constituents. The governing equations consist solely of balance laws (18)1−3 and (19)1,
and the primal field variable vector is u = (ρ, v, ε, ρb). To avoid ambiguity, we note that
“equilibrium” does not mean that field variables are constant and uniform. The equilibrium
subsystem rather defines an equilibrium manifold of the complete system on which the
entropy production rate vanishes.

2.6. Linearized Source Terms in Non-Reacting Mixtures

Source terms (43) and (44) are expressed in terms of main field components and
phenomenological coefficients. The macroscopic theory does not have means for the
complete determination of the coefficients. However, they may be evaluated if the source
terms obtained using the entropy principle are matched with the source terms obtained by
the methods of kinetic theory. This matching cannot be performed in a general case, i.e., far
from equilibrium, but only in the small neighborhood of the equilibrium manifold. To that
end, we shall derive the linearized form of the source terms and use it in the sequel.

The equilibrium manifold, as determined in Case 3 of the previous Section, reads
uE = (ρ, v, ε, 0, ρb, 0, T, 0). The linearized form of the source terms (43) and (44) should be
linear in u− uE. For P̂α we obtain from (36) and (43):

P̂lin
α = −1

2
kB

mα

(
1 +

3
2(aα + 1)

)
ωα(wαE)

ρα

p2
αE

Πα, (46)
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where wαE are partial objective quantities evaluated on the equilibrium manifold. For m̂bi,
êb and M̂b, from (36), (44), and (A3) we obtain:

m̂lin
bi = −

n−1

∑
c=1

ψbc(wE)
uci − uni

T
, (47)

êlin
b =

n−1

∑
c=1

θe
bc(wE)

{
−Θc −Θn

T2 (48)

+
3
2

kB

mc

(
1 +

3
2(ac + 1)

)
Πc

pcEεcE
− 3

2
kB

mn

(
1 +

3
2(an + 1)

)
Πn

pnEεnE

}
+

n−1

∑
c=1

θM
bc (wE)

{
−1

2
kB

mc

(
1 +

3
2(ac + 1)

)
ρc

p2
cE

Πc

+
1
2

kB

mn

(
1 +

3
2(an + 1)

)
ρn

p2
nE

Πn

}
,

M̂lin
b =

n−1

∑
c=1

χe
bc(wE)

{
−Θc −Θn

T2 (49)

+
3
2

kB

mc

(
1 +

3
2(ac + 1)

)
Πc

pcEεcE
− 3

2
kB

mn

(
1 +

3
2(an + 1)

)
Πn

pnEεnE

}
+

n−1

∑
c=1

χM
bc (wE)

{
−1

2
kB

mc

(
1 +

3
2(ac + 1)

)
ρc

p2
cE

Πc

+
1
2

kB

mn

(
1 +

3
2(an + 1)

)
ρn

p2
nE

Πn

}
,

where uαi = vαi − vi and Θα = Tα − T. All the quantities with subscript E are evaluated on
the equilibrium manifold. Although the coefficients are restricted to their values on the
equilibrium manifold, it will turn out in the matching procedure that this is sufficient for
the complete closure of the source terms and governing equations.

3. Kinetic Approach to the Mixture with Dynamic Pressure

A kinetic approach to the modeling of a polyatomic gas mixture will be based on the
system of Boltzmann-like equations for a polyatomic gas mixture written in the so-called
continuous internal energy setting. The model is introduced in [22,23] and assumes that
the constituent α is described by a distribution function fα = fα(t, x, ξ, I), which depends
on macroscopic variables time t ≥ 0 and space position x, and on variables of microscopic
nature, namely molecular velocity ξ ∈ R3 and molecular continuous internal energy
I ∈ [0, ∞). If the distribution function changes due to transport and collisions between
molecules, then its evolution can be modeled by the Boltzmann-like equation

∂t fα + ξ · ∇x fα =
n

∑
β=1

Qαβ( fα, fβ)(ξ, I). (50)

The collision operator Qαβ( fα, fβ) encodes the influence of the constituent α on the
constituent β due to molecular collisions, here assumed to be binary,

Qαβ( fα, fβ)(ξ, I)

=
∫

∆×K

(
f ′α f ′β∗

Iaα I
aβ
∗

I′aα I
′aβ
∗
− fα fβ∗

)
Bαβ ψαβ(r, R)dR dr dσ dI∗ dξ∗, (51)
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for any aα, aβ > −1, with the region of integration

∆ := R3 × [0,+∞), K := [0, 1]2 × S2,

and standard abbreviations for a distribution function g,

g := g(t, x, ξ, I), g∗ := g(t, x, ξ∗, I∗), g′ := g(t, x, ξ′, I′), g′∗ := g(t, x, ξ′∗, I′∗).

The primed quantities corresponding to post-collisional velocity–internal energy pairs
(ξ′, I′) and (ξ′∗, I′∗) are obtained from the pre-collisional ones using transformations

ξ′ = G +
mβ

mα + mβ

√
2RE
µαβ

σ, ξ′∗ = G− mα

mα + mβ

√
2RE
µαβ

σ,

I′ = r(1− R)E, I′∗ = (1− r)(1− R)E,

(52)

where the center-of-mass reference frame is introduced with the reduced mass µαβ, velocity
of the center of mass G, and molecular relative velocity g,

µαβ =
mαmβ

mα + mβ
, G =

mαξ + mβξ∗
mα + mβ

, g = ξ − ξ∗, (53)

and the total energy of the molecular pair is

µαβ

2
|g|2 + I + I∗ =

µαβ

2

∣∣g′∣∣2 + I′ + I′∗ =: E. (54)

Note that Equation (52) is a parametrization of the conservation laws at the collisional
level

mαξ + mβξ∗ = mαξ′ + mβξ′∗
mα

2
|ξ|2 +

mβ

2
|ξ∗|

2 + I + I∗ =
mα

2

∣∣ξ′∣∣2 + mβ

2

∣∣ξ′∗∣∣2 + I′ + I′∗,
(55)

with the angular parameter σ ∈ S2 (unit sphere in R3) and parameters of the Borgnakke–
Larsen procedure r, R ∈ [0, 1].

The collision kernels Bαβ := Bαβ(ξ, ξ∗, I, I∗, R, r, σ) ≥ 0 are assumed to be invariant
with respect to collision transformations corresponding to the interchange of pre-post
variables and the interchange of molecules, namely are assumed to satisfy the following
two micro-reversibility assumptions

Bαβ := Bαβ(ξ, ξ∗, I, I∗, R, r, σ) = Bαβ(ξ
′, ξ′∗, I′, I′∗, R′, r′, σ′)

= Bβα(ξ∗, ξ, I∗, I, R, 1− r,−σ).

The function ψαβ is defined by

ψαβ(r, R) = raα(1− r)aβ(1− R)aα+aβ+1R1/2. (56)

It incorporates the Jacobian of the pre-post collision transformation [23,39] and its
shape is a consequence of the choice of the gain term weight factor, both securing the
well-defined collision operator weak form,

∫
∆

Qαβ( fα, fβ)(ξ, I)χ(ξ, I)dI dξ

=
∫

∆2×K

(
χ′ − χ

)
fα fβ∗ Bαβ ψαβ dR dr dσ dI∗ dξ∗ dI dξ, (57)
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for any suitable test function χ(ξ, I). Note immediately that for the choice χ(ξ, I) = mα,
the conservation property holds,∫

∆
mα Qαβ( fα, fβ)(ξ, I)dI dξ = 0. (58)

Another form can be obtained by taking test function φ(ξ, I) and considering operators
Qαβ and Qβα simultaneously,

∫
∆

(
Qαβ( fα, fβ)(ξ, I) χ(ξ, I) + Qβα( fβ, fα)(ξ, I) φ(ξ, I)

)
dI dξ

=
∫

∆2×K

(
χ′ + φ′∗ − χ− φ∗

)
fα fβ∗ Bαβ ψαβ dR dr dσ dI∗ dξ∗ dI dξ.

It allows us to conclude that the conservation property for the test function corre-
sponding to the molecule’s momentum and energy is valid only for the same-species
operator, ∫

∆

(
mαξ

mα
2 |ξ|

2 + I

)
Qαα( fα, fα)(ξ, I)dI dξ = 0.

Otherwise, interactions with different constituents induce non-vanishing collision op-
erators and production terms for the right-hand side of (50) when appropriately integrated.
Conservation property holds only for the whole mixture, i.e.,

n

∑
α=1

n

∑
β=1
β 6=α

∫
∆

(
mαξ

mα
2 |ξ|

2 + I

)
Qαβ( fα, fβ)(ξ, I)dI dξ = 0.

Furthermore, for models (50) and (51), the H-theorem is proved in [22,23] with the
entropy production D defined as

D =
n

∑
α,β=1

∫
∆

Qαβ( fα, fβ)(ξ, I) log
(

fα(ξ, I)I−aα
)

dI dξ, (59)

and the equilibrium distribution function

fα(ξ, I) =
ρα

mα

Iaα

(kBT)aα+1Γ(aα + 1)

(
mα

2πkBT

) 3
2

e−
1

kBT (
mα
2 |ξ−v|2+I), (60)

with ρα, T > 0 and v ∈ R3, where Γ represents the Gamma function.

3.1. Macroscopic Densities as Moments of the Distribution Function

The six-moment macroscopic model (9) can be obtained starting from the Boltzmann
Equation (50) by integration against the suitable test functions over the space of microscopic
variables (ξ, I) ∈ ∆ = R3× [0, ∞). Test functions that correspond to the six-moment models
are

mα, mαξ,
mα

2
|ξ|2 + I, mα|ξ|2. (61)

In order to define each macroscopic density appearing in (9) as the moment of the
distribution function fα we first introduce the peculiar velocity cα as the relative velocity of
the molecule with respect to the macroscopic velocity vα of the constituent α,

cα = ξ − vα. (62)
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Then, the macroscopic densities are defined as follows
ρα

ραvα

ραεα

3(pα + Πα)

 =
∫

∆


mα

mαξ
mα
2 |cα|2 + I
mα|cα|2

 fα(t, x, ξ, I)dI dξ, (63)

corresponding to the mass, momentum, and total energy density and the trace of the mo-
mentum flux for α-th component of the gas. Moreover, entropy densities of the constituents (30)
can be defined as the moment of the distribution function as well,

hα = −kB

∫
∆

fα log( fα I−aα)dI dξ. (64)

Since in this paper we restrict attention to polyatomic ideal gases with constant specific
heats, we use the following relations throughout the paper,

pα =
ρα

mα
kBTα, εα =

(
aα +

5
2
) pα

ρα
, (65)

for any constituent α = 1, . . . , n.

3.2. Macroscopic Equations as Moments of the Boltzmann Equation

The governing equations for densities (63) can be derived from the kinetic theory by
means of the integration of the Boltzmann equation (50) against the six test functions (61).
These evolution equations correspond to the ones from extended thermodynamics (9) after
we define the non-convective fluxes, tαik

qαk
Fα``k

 =
∫

∆

 −mαcαicαk(
mα
2 |cα|2 + I

)
cαk

mα|cα|2 cαk

 fα(t, x, ξ, I)dI dξ, (66)

as much as the production terms corresponding to the momentum and energy density and
trace of the momentum flux equation, respectively, mα

eα

Pα

 = ∑
β

∫
∆

 mαξ
mα
2 |ξ|

2 + I
mα|ξ|2

Qαβ( fα, fβ)(ξ, I)dI dξ. (67)

We immediately realize

eα =
1
2
Pα + ẽα, where ẽα = ∑

β

∫
∆

I Qαβ( fα, fβ)(ξ, I)dI dξ. (68)

Note that for the production term τα from (9) it holds τα = 0 in this model, because of
the weak form conservative property (58).

3.3. Maximum Entropy Principle for the Six-Field Mixture Model

The aim of this section is to formulate the maximum entropy principle (MEP) with
the constraints corresponding to the macroscopic densities (63). The outcome of this
principle is the distribution function whose dependence on the variables t, x is through the
densities (63). We will show in the upcoming Section 3.4 that such a distribution function
yields the closure of fluxes (66) since it enables expressing these fluxes in terms of densities,
as much as the computation of the production terms (67), for the specific choice of the
collision kernel.
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Lemma 1 (Six-field distribution function). Solution of the maximum entropy principle

max( f1,..., fn) h = −kB

n

∑
α=1

∫
∆

fα log( fα I−aα)dI dξ

s.t.


ρα

0(
aα +

5
2
)

pα

3(pα + Πα)

 =
∫

∆


mα

mαcα
mα
2 |cα|2 + I
mα|cα|2

 fα dI dξ. (69)

for any α = 1, . . . , n is given with

f̂ 6
α = Iaα

ρα

mα

(
Uα

π

) 3
2 Vaα+1

α

Γ(aα + 1)
e−(Uα |ξ−vα |2+Vα I), (70)

Uα =
mα

2kTα
X−1

α , Vα =
1

kTα
Y−1

α , (71)

with Xα and Yα from (37), that provides convergent moments if Xα > 0 and Yα > 0.

We refer to (70) as the six-field distribution function.

Proof. The extended functional for this variational problem with constraints is

L = h− λ̃α

∫
∆

mα fα dI dξ + Λ̃αi

∫
∆

mαcαi fα dI dξ

+ µ̃α

∫
∆

(mα

2
|cα|2 + I

)
fα dI dξ + ζ̃α

∫
∆

mα|cα|2 fα dI dξ, (72)

where λ̃α, Λ̃αi, µ̃α, and ζ̃α are multipliers that coincide with the ones from (32), and we have
used the summation convention (10). The Euler–Lagrange equation reduces to δL/δ fα = 0,
whose solution is

f̂α = Iaα e−1−mα
kB

λ̃α−mα
kB

Λ̃αicαi− 1
kB

µ̃α(mα
2 |cα |2+I)−mα

kB
ζ̃α |cα |2 .

We plug this distribution function into constraints of the problem (69), which allows
expressing multipliers in terms of macroscopic densities, which yields the final expression
f̂ 6
α as in (70).

The six-field distribution function (70) yields the closure of the six-field model for a
polyatomic gas mixture (9), as shown in the upcoming Section 3.4.

3.4. Closure of the 6-Moment Mixture Model

In this section, we start with the six-field distribution function (70) and plug it into the
definition of the unknown non-convective fluxes (66) and the production terms (67) for a
specific choice of the collision kernel, that will allow the closure of the system (9).

Taking f = f̂ 6
α in (66), by exploiting parity arguments we obtain the following expres-

sions for the non-convective fluxes,

tαik = (pα + Πα)δik, qαk = 0, Fα``k = 0.

Therefore, we conclude that the approach from the kinetic theory yields the same left-hand
side expressions as the model issuing from the extended thermodynamics described in (9).

Next, our aim is to compute production termsmα, eα andPα that correspond to the balance
law of momentum and energy density and momentum flux for each species α, α = 1, . . . , n, as
defined in (67). Production terms can be determined only for a specific choice of the collision
kernel. In this manuscript, we take the collision kernel model recently proposed in the study
of the well-posedness of the space homogeneous system of Boltzmann equations describing a
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mixture of monatomic and polyatomic gases [39]. The same form in the case of single polyatomic
gas with frozen collisions was already shown to be consistent with the experimental data and
DSMC method in the series of papers [28–30]. Moreover, in the case of the six-moment model
for a single polyatomic gas in [27], it is shown that such a collision kernel model provides
complete agreement with extended thermodynamics models of six fields [32], as it satisfies the
entropy residual inequality on the whole range of model validity.

Thus, we take the following collision kernel model

Bαβ(ξ, ξ∗, I, I∗, R, r, σ)

= Kαβ kαβ

(R|ξ − ξ∗|2
) γαβ

2
+ η

(
r(1− R)I

∑α mα

) γαβ
2

+ η

(
(1− r)(1− R)I∗

∑α mα

) γαβ
2

, (73)

where Kαβ = Kβα > 0 is the dimensional constant, the constant kαβ serves to achieve
consistency with the monatomic case [29],

kαβ =
2√
π

Γ(aα + aβ +
7
2 )

Γ(aα + 1)Γ(aβ + 1)
, (74)

γαβ = γβα ≥ 0 is the potential rate and η > 0 controls the influence of the internal energy.
Production terms are computed in the Appendix C, here we only summarize the final

result. Let us introduce constants

Kαβ = Kαβ
1

mαmβ
8
√

π
Γ(aα + aβ +

7
2 )

Γ(aα + aβ +
γαβ+9

2 )
,

Cι =
Γ
(

aι + 1 +
γαβ

2

)2

Γ(aι + 1)2

√
π

2

(
∑
α

mα

)−γαβ/2
, for ι = α, β,

(75)

and terms involving regularized hypergeometric functions defined in (A6),

F 1
y = e−aαβ|vα−vβ|2 a−y/2

αβ Γ
(

y+3
2

)
1 F̃1

(
y+3

2 , 3
2 , aαβ

∣∣vα − vβ

∣∣2),

F 2
y = e−aαβ|vα−vβ|2 a−y/2

αβ Γ
(

y+5
2

)
1 F̃1

(
y+5

2 , 5
2 , aαβ

∣∣vα − vβ

∣∣2),
(76)

for some y ≥ 0, with

aαβ =
UαUβ

Uα + Uβ
, (77)

for Uα and Uβ defined in (71), and the term

Dαβ = −
mβ

mα + mβ

(
aα + aβ + 2

)
+ 2

µαβ

(Uα + Uβ)

(
Uα

mα
−

Uβ

mβ

)(
aα + aβ +

γαβ+7
2

)
.

The source term corresponding to the momentum of the constituent α is
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mα =
n

∑
β=1
β 6=α

ραρβ Kαβ mαβ

= −
n

∑
β=1
β 6=α

ραρβ Kαβ

(
vα − vβ

)
µαβ

(
aα + aβ +

γαβ+7
2

)
(78)

×

Γ(
3+γαβ

2 )F 2
γαβ

+ η

 Cα

V
γαβ/2
α

+
Cβ

V
γαβ/2
β

,

with Vα and Vβ defined in (71).
The source term Pα in the equation for dynamical pressure of the constituent α has a

part related to the source term mα and the internal part P̃α,

Pα = P̃α + 2
n

∑
β=1

Uαvα + Uβvβ

Uα + Uβ
·
(
ραρβKαβmαβ

)
=

n

∑
β=1

ραρβKαβ

(
P̃αβ + 2

Uαvα + Uβvβ

Uα + Uβ
·mαβ

)
(79)

=
n

∑
β=1

ραρβKαβPαβ,

where the internal part P̃αβ reads

P̃αβ = µαβDαβΓ
(

γαβ+3
2

)
F 1

2+γαβ

+
2 mβ

mα + mβ
Γ
(

γαβ+5
2

)( aα + 1
Vα

+
aβ + 1

Vβ

)
F 1

γαβ

+ η µαβ

(
Dαβ −

mβ

mα + mβ

γαβ

2

) Cα

N
γαβ/2
α

+
Cβ

N
γαβ/2
β

F 1
2 (80)

+ 3η
mβ

mα + mβ

((
aα + 1 +

γαβ

2
Vα

+
aβ + 1

Vβ

)
Cα

V
γαβ/2
α

+

(
aβ + 1 +

γαβ

2
Vβ

+
aα + 1

Vα

)
Cβ

V
γαβ/2
β

.

Note that the part containing mαβ vanishes when summed over α because it changes
the sign when α is interchanged with β, i.e., mαβ = −mβα, implying

2
n

∑
α=1

n

∑
β=1
β 6=α

ραρβ Kαβ

(
Uαvα + Uβvβ

Uα + Uβ

)
·mαβ = 0,

Thus, this part can be included in the interaction source term Mα from (9) obtained
within extended thermodynamics modeling.
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Finally, the production term in the balance law for the total energy of the constituent α
is determined by (68)

eα =
1
2
Pα + ẽα =

n

∑
β=1
β 6=α

ραρβ Kαβ

(
Pαβ

2
+ ẽαβ

)
,

with ẽαβ given by

ẽαβ = (aα + 1)Γ
(

γαβ+3
2

)
×
{µαβ

2
F 1

2+γαβ
+

(
(aβ + 1)

(
1

Vβ
− 1

Vα

)
−

γαβ

2 + 3
2

Vα

)
F 1

γαβ

}

+ η
µαβ

2

 aα + 1 +
γαβ

2

V
γαβ/2
α

Cα +
aα + 1

V
γαβ/2
β

Cβ

F 1
2

+ η
(

aα + 1 +
γαβ

2

) Cα

V
γαβ/2
α

(
aβ + 1

Vβ
−

aβ +
5
2

Vα

)

+ η(aα + 1)
Cβ

V
γαβ/2
β

(
aβ + 1 +

γαβ

2
Vβ

−
aβ +

5
2 +

γαβ

2
Vα

)
.

(81)

3.5. Linearized Source Terms in the Kinetic Approach

We introduce the following shorthand notation,

w =
(
vα, vβ, Tα, Tβ, Πα, Πβ

)
, w0 = (v, v, T, T, 0, 0).

For a production term A = A(w), which in general depends on the vector of variables
w, the linearization is obtained via

A(w) ≈ A(w0) +∇A(w0) ·
(

w− w0
)
=: Alin.

In the present paper, we consider production terms mα, Pα and eα corresponding to
the momentum, non-equilibrium pressure, and internal energy production terms that are
computed in (78), (80) with (79), and (81) with (68), respectively. First, we observe that all
of them vanish at the equilibrium state,

mα(w0) = 0, Pα(w0) = 0 and eα(w0) = 0.

Then it is needed to compute gradients. Computations are performed in Appendix D,
here we only list the final results.

The production term mα is approximated as follows

mlin
α = −

n

∑
β=1
β 6=α

ραρβMαβ T
γαβ

2 (vα − vβ), (82)

where the constantMαβ ≥ 0 is symmetric in (α, β), whose form is detailed in (A23).
The production term Pα given in (79) is linearized as follows

Plin
α = 2 v ·mlin

α

−
n

∑
β=1

ραρβ

(
PT

αβ T
γαβ

2
(
Tα − Tβ

)
+ PΠ

αβ T
γαβ

2
Πα

kB nα
− P̃Π

αβ T
γαβ

2
Πβ

kB nβ

)
, (83)
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where PT
αβ > 0, PΠ

αβ > 0 and P̃Π
αβ are constants listed in (A25) that do not experience any

symmetry in (α, β).
The production term eα is linearized as follows

elin
α = v ·mlin

α

−
n

∑
β=1
β 6=α

ραρβ

(
ET

αβ T
γαβ

2
(
Tα − Tβ

)
− EΠ

αβ T
γαβ

2
Πα

kB nα
+ EΠ

βα T
γαβ

2
Πβ

kB nβ

)
, (84)

where the term mlin
α is from (82), ET

αβ > 0 and EΠ
αβ are explicitly given in (A31). Let us

emphasize that ET
αβ is positive and symmetric in (α, β).

4. Macroscopic/Kinetic Closure

It is shown in previous sections that the macroscopic approach of extended thermo-
dynamics and kinetic approach based upon moment equations lead to almost equivalent
models of gaseous mixtures with dynamic pressure. In fact, the differential part of RET gov-
erning Equation (9) is the same as the differential part of the moment equations derived in
the kinetic approach (see Section 3.2). The difference lies in the functional form of the source
terms. Although the RET source terms have a form that nicely reflects their interaction
character, they have one shortcoming—phenomenological coefficients cannot be completely
determined within this framework. On the other, within the chosen level of approximation
(determined by MEP), the kinetic source terms can be explicitly computed and expressed
in terms of macroscopic field variables and properties of the constituents. However, their
functional form is less appreciable than the one of extended thermodynamics.

To keep the advantages of both approaches we propose a combined
macroscopic/kinetic closure. It is based upon the fact that either source terms have the same
form of linear approximation in the neighborhood of the equilibrium manifold. Therefore,
we may use the kinetic source terms in the linearized form to determine the phenomeno-
logical coefficients of the macroscopic source terms. This method has already been applied
to a multi-temperature mixture of Euler fluids [40]. Although these coefficients will be
computed on an equilibrium manifold, they present a first approximation of the general
phenomenological coefficients. Thus, they can be plugged back into nonlinear source terms
of extended thermodynamics. In such a way, the nonlinear part of the source terms will
still bring the desired information about the non-equilibrium behavior of the system. This
was recently used in the analysis of shock structure in multi-component mixtures [13,41].

In the sequel, the phenomenological coefficients will be computed for each group of
balance laws.

4.1. Momentum Balance Laws

The source term m̂bi computed in (47) from an extended thermodynamics point of
view can be rewritten

m̂lin
bi = −

n−1

∑
c=1

ψbc(wE)
uci − uni

T

=
n−1

∑
c=1
c 6=b

(
−ψbc(wE)

T

)
(uci − ubi) +

(
n−1

∑
c=1

ψbc(wE)

T

)
(uni − ubi).
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Transforming (82) in a similar way, taking into account vα − vβ = uα − uβ, one obtains

mlin
α = −

n

∑
β=1
β 6=α

ραρβMαβ T
γαβ

2 (vα − vβ)

= −
n−1

∑
β=1
β 6=α

ραρβMαβ T
γαβ

2 (uα − uβ)− ραρnMαn T
γαn

2 (uα − un)

(85)

Using the equality m̂lin
bi = mlin

α , after straightforward computation the following form
of phenomenological coefficients is obtained

ψbc(wE) =


−ρbρcMbc T

γbc
2 +1, c 6= b,

n

∑
d=1
d 6=b

ρbρdMbdT
γbd

2 +1, c = b, (86)

for b, c ∈ {1, . . . , n− 1}, where the constantMbc > 0 is from (A23). It is symmetric with
respect to (b, c), which implies that matrix [ψbc]1≤b,c≤n−1 is symmetric as well.

4.2. Energy Balance Laws

First, we rewrite the linearized form of energy production term (48) of extended
thermodynamics, by exploiting the relation (65) between specific internal energy density
and pressure, i.e.,

kB

mc

ρc

p2
cE

=
mc

kB

1
ρcT2 ,

kB

mc

1
pcEεcE

=
2

2ac + 5
mc

kB

1
ρcT2

implying

êlin
b =

n−1

∑
c=1

θe
bc(wE)

T2

{
−Θc + Θn + Ãc

mc

kB

Πc

ρc
− Ãn

mn

kB

Πn

ρn

}

−
n−1

∑
c=1

θM
bc (wE)

T2

{
Ac

mc

kB

Πc

ρc
− An

mn

kB

Πn

ρn

}
,

with notation
Ac =

2ac + 5
4(ac + 1)

, Ãc =
3

2(ac + 1)
. (87)

Adding and subtracting suitable terms, êlin
b can be transformed to

êlin
b =

n−1

∑
c=1
c 6=b

θe
bc(wE)

T2

{
Θb − Ãb

mb
kB

Πb
ρb
−
(

Θc − Ãc
mc

kB

Πc

ρc

)}

+
n−1

∑
c=1
c 6=b

θM
bc (wE)

T2

{
Ab

mb
kB

Πb
ρb
− Ac

mc

kB

Πc

ρc

}

−
(

n−1

∑
c=1

θe
bc(wE)

T2

){
Θb − Ãb

mb
kB

Πb
ρb
−
(

Θn − Ãn
mn

kB

Πn

ρn

)}

−
(

n−1

∑
c=1

θM
bc (wE)

T2

){
Ab

mb
kB

Πb
ρb
− An

mn

kB

Πn

ρn

}
.

(88)
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On the other side, the linearized energy production term (84), computed by evaluating
the Boltzmann collision operator, can be presented as elin

α = v ·mlin
α + êlin

α and the velocity
independent part can be written as

êlin
α = −

n−1

∑
β=1
β 6=α

ραρβ T
γαβ

2 ET
αβ

{
Θα − Ãα

mα

kB

Πα

ρα
−
(

Θβ − Ãβ

mβ

kB

Πβ

ρβ

)}

−
n−1

∑
β=1
β 6=α

ραρβ T
γαβ

2

{(
ÃαET

αβ − EΠ
αβ

)mα

kB

Πα

ρα
−
(

ÃβET
αβ − EΠ

βα

)mβ

kB

Πβ

ρβ

}

− ραρn T
γαn

2 ET
αn

{
Θα − Ãα

mα

kB

Πα

ρα
−
(

Θn − Ãn
mn

kB

Πn

ρn

)}
− ραρn T

γαn
2

{(
ÃαET

αn − EΠ
αn

)mα

kB

Πα

ρα
−
(

ÃnET
αn − EΠ

nα

)mn

kB

Πn

ρn

}
.

(89)

From (88) and (89), equality êlin
b = êlin

b yields explicit form of phenomenological
coefficients. Firstly the expression for off-diagonal terms of θe

bc,

θe
bc(wE) = −ρbρc ET

bc T
γbc

2 +2, for b, c ∈ {1, . . . , n− 1} and b 6= c. (90)

Off-diagonal terms of θM
bc are obtained from the system

ρbρcT
γbc

2

(
ÃbET

bc − E
Π
bc

)
= −

θM
bc (wE)

T2 Ab,

ρbρcT
γbc

2

(
ÃcET

bc − E
Π
cb

)
= −

θM
bc (wE)

T2 Ac,

Since these two equations have to be compatible, one obtains

θM
bc (wE)

T2 = ρbρcT
γbc

2
EΠ

bc Ãc − EΠ
cb Ãb

Ab Ãc − Ac Ãb
,

or explicitly

θM
bc (wE) = ρbρcT

γbc
2 +2 2(ab + 1)EΠ

bc − 2(ac + 1)EΠ
cb

ab − ac
, (91)

for b, c ∈ {1, . . . , n− 1} and b 6= c. Exploiting further comparison of (88) and (89), diagonal
terms are obtained, for any b ∈ {1, . . . , n− 1},

θe
bb(wE) = ρbρn ET

bn T
γbn

2 +2 −
n−1

∑
d=1
d 6=b

θe
bd(wE),

or explicitly

θe
bb(wE) = ρb

n

∑
d=1
d 6=b

ρd ET
bd T

γbd
2 +2, (92)

and similarly

θM
bb (wE) = −ρb

n

∑
d=1
d 6=b

ρd T
γbd

2 +2 2(ab + 1)EΠ
bd − 2(ad + 1)EΠ

db
ab − ad

. (93)
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4.3. Dynamic Pressure Balance Laws

In the same fashion as in the case of energy balance laws, the source term M̂lin
b from

(46) can be transformed into

M̂lin
b =

n−1

∑
c=1

χe
bc(wE)

T2

{
−Θc + Θn + Ãc

mc

kB

Πc

ρc
− Ãn

mn

kB

Πn

ρn

}

−
n−1

∑
c=1

χM
bc (wE)

T2

{
Ac

mc

kB

Πc

ρc
− An

mn

kB

Πn

ρn

}
,

(94)

with notation (87), while (46) becomes

P̂lin
α = −ωα(wαE)

T2 Aα
mα

kB

Πα

ρα
. (95)

Therefore, we may write

P̂lin
b + M̂lin

b =
n−1

∑
c=1
c 6=b

χe
bc(wE)

T2

{
Θb − Ãb

mb
kB

Πb
ρb
−
(

Θc − Ãc
mc

kB

Πc

ρc

)}

+
n−1

∑
c=1
c 6=b

χM
bc (wE)

T2

{
Ab

mb
kB

Πb
ρb
− Ac

mc

kB

Πc

ρc

}

−
(

n−1

∑
c=1

χe
bc(wE)

T2

){
Θb − Ãb

mb
kB

Πb
ρb
−
(

Θn − Ãn
mn

kB

Πn

ρn

)}

−
(

n−1

∑
c=1

χM
bc (wE)

T2

){
Ab

mb
kB

Πb
ρb
− An

mn

kB

Πn

ρn

}
− ωb(wbE)

T2 Ab
mb
kB

Πb
ρb

.

(96)

On the other side, (83) can be recast as Plin
α = 2v ·mlin

α + P̂lin
α where P̂lin

α reads

P̂lin
α = −

n−1

∑
β=1
β 6=α

ραρβ T
γαβ

2 PT
αβ

{
Θα − Ãα

mα

kB

Πα

ρα
−
(

Θβ − Ãβ

mβ

kB

Πβ

ρβ

)}

−
n−1

∑
β=1
β 6=α

ραρβ T
γαβ

2

{(
ÃαPT

αβ + PΠ
αβ

)mα

kB

Πα

ρα
−
(

ÃβPT
αβ + P̃Π

αβ

)mβ

kB

Πβ

ρβ

}

− ραρn T
γαn

2 PT
αn

{
Θα − Ãα

mα

kB

Πα

ρα
−
(

Θn − Ãn
mn

kB

Πn

ρn

)}
− ραρn T

γαn
2

{(
ÃαPT

αn + PΠ
αn

)mα

kB

Πα

ρα
−
(

ÃnPT
αn + P̃Π

αn

)mn

kB

Πn

ρn

}
.

(97)

From (96) and (97), and equality P̂lin
b + M̂lin

b = P̂lin
b we may compute the phenomeno-

logical coefficients. A straightforward application of the same procedure as in energy
balance laws yields the following form of the coefficients χe

bc(wE)

χe
bc(wE) =


−ρbρc PT

bc T
γbc

2 +2, c 6= b,
n

∑
d=1
d 6=b

ρbρd PT
bd T

γbd
2 +2, c = b, (98)
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for b, c ∈ {1, . . . , n− 1}. For computation the off-diagonal terms χM
bc (wE) we obtain

two equations:

−ρbρcT
γbc

2

(
ÃbPT

bc + P
Π
bc

)
=

χM
bc (wE)

T2 Ab,

−ρbρcT
γbc

2

(
ÃcPT

bc + P̃
Π
bc

)
=

χM
bc (wE)

T2 Ac.

As a consequence of their compatibility, we obtain

χM
bc (wE) = −ρbρcT

γbc
2 +2PΠ

bc Ãc − P̃Π
bc Ãb

Ab Ãc − Ac Ãb

= −2ρbρcT
γbc

2 +2
(
PT

bc +
2 mc(1 + ab)(1 + ac)

3(ab − ac)
Pχ

bc

)
,

(99)

where the last expression is obtained thanks to computation performed in (A26) with
Pχ

bc > 0 symmetric in (b, c) and given in (A27).
Further comparison leads us to the following system of equations

ρbρnT
γbn

2

(
ÃbPT

bn + P
Π
bn

)
=

{(
n−1

∑
c=1

χe
bc(wE)

T2

)
+

ωb(wbE)

T2

}
Ab,

ρbρnT
γbn

2

(
ÃnPT

bn + P̃
Π
bn

)
=

(
n−1

∑
c=1

χe
bc(wE)

T2

)
An.

By first eliminating χM
bc (wE) one obtains

ωb(wbE) =
ρbρn

Ab An
T

γbc
2 +2

[(
Ãb An − Ãn Ab

)
PT

bn + P
Π
bn An − P̃Π

bn Ab

]
= ρbρnT

γbn
2 +2mnPω

bn,
(100)

after involving (A28) with Pω
bn > 0 given in (A29). Note that coefficients ωb(wbE) given

in (100) formally depend on constituent-related objective quantities in equilibrium, since
the properties of component n do not enter into the description of the mixture and can be
treated as parameters.

With this result at hand, compatibility of the equations leads to diagonal phenomeno-
logical coefficients

χM
bb(wE) =

n

∑
d=1
d 6=b

ρbρdT
γbd

2 +2PΠ
bd Ãd − P̃Π

bd Ãb

Ab Ãd − Ad Ãb
−ωb(wbE)

Ab Ãn

Ab Ãn − An Ãb

= −2
n

∑
d=1
d 6=b

ρbρdT
γbd

2 +2
(
PT

bd +
2 md(1 + ab)(1 + ad)

3(ab − ad)
Pχ

bd

)

−
ab +

5
2

ab − an
ρbρnT

γbn
2 +2mnPω

bn,

(101)

with constants defined in (A25), (A27), and (A29).

5. Conclusions

In this paper, we studied the mixture of polyatomic gases with dynamic pressure. It
was assumed that a macroscopic set of field variables consists of mass densities, velocities,
temperatures, and dynamic pressures of the constituents. This enabled a complete compar-
ison of two different approaches to mixture modeling—a macroscopic approach within the
framework of extended thermodynamics, and a mesoscopic approach based on the kinetic
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theory of mixtures of polyatomic gases. First, the model was developed using the methods
of extended thermodynamics and closed using the entropy principle. Second, the kinetic
model is established starting from the maximum entropy principle, which facilitated the
construction of approximate distribution functions compatible with macroscopic field vari-
ables. After that, equivalent macroscopic equations were derived as moment equations of
the system of Boltzmann equations. Finally, a novel macroscopic/kinetic method, recently
established by the authors, was applied to achieve complete closure of the macroscopic
equations derived in extended thermodynamics.

The results of this study are new in several aspects. In the context of rational thermo-
dynamics, Truesdell’s metaphysical principles are for the first time extended to dissipative
systems of hyperbolic (relaxation) type. In the context of kinetic theory, the model of polyatomic
gases with a single scalar variable describing internal molecular energy was systematically
applied to mixtures and yielded the exact closure in the desired approximation. Promising
recent results in transport coefficient modeling based on the evaluation of the single polyatomic
Boltzmann collision operator are extended in this paper to the case of a polyatomic gas mixture.
Finally, the combination of these two approaches leads to a procedure for the complete closure
of macroscopic equations derived in the framework of extended thermodynamics. This is an
important result since one cannot rely on other approaches (e.g. experimental evidence) to
obtain an explicit form of the phenomenological coefficients.

It has to be noted that the computation of the phenomenological coefficients in this study is
of a formal kind. There remains to prove the positive semi-definiteness of the coefficient matrices,
which is a subject of ongoing study. Furthermore, the closed form of governing equations now
provides the possibility for numerical simulation of different processes in mixtures, which
take into account cross-diffusion, multi-temperature effects, and internal dissipation described
through the presence of dynamic pressure and bulk viscosity.
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Appendix A. Main Feld

From the structure of main field (33) and relations (40), the following form of the main
field of the system (18) and (19) is obtained:

λ = − 1
Tn

(
gn −

1
2
|v + un|2

)
−
(

εn −
1
2
|v + un|2

)(
∂kn

∂εn
− ∂kn

∂Πn

∂pn

∂εn

)
− ρn

∂kn

∂Πn

(
∂pn

∂ρn
− 1

3
|v + un|2

)
+ kn + ρn

∂kn

∂ρn
,

Λi = −
vi + uni

Tn
−
(

∂kn

∂εn
− ∂kn

∂Πn

∂pn

∂εn
+

2
3

ρn
∂kn

∂Πn

)
(vi + uni), (A1)

µ =
1

Tn
+

∂kn

∂εn
− ∂kn

∂Πn

∂pn

∂εn
,

ζ =
1
3

ρn
∂kn

∂Πn
,

and

λb = − 1
Tb

(
gb −

1
2
|v + ub|2

)
−
(

εb −
1
2
|v + ub|2

)(
∂kb
∂εb
− ∂kb

∂Πb

∂pb
∂εb

)
− ρb

∂kb
∂Πb

(
∂pb
∂ρb
− 1

3
|v + ub|2

)
+ kb + ρb

∂kb
∂ρb

+
1

Tn

(
gn −

1
2
|v + un|2

)
+

(
εn −

1
2
|v + un|2

)(
∂kn

∂εn
− ∂kn

∂Πn

∂pn

∂εn

)
+ ρn

∂kn

∂Πn

(
∂pn

∂ρn
− 1

3
|v + un|2

)
− kn − ρn

∂kn

∂ρn
,

Λbi = −
vi + ubi

Tb
−
(

∂kb
∂εb
− ∂kb

∂Πb

∂pb
∂εb

+
2
3

ρb
∂kb
∂Πb

)
(vi + ubi) (A2)

+
vi + uni

Tn
+

(
∂kn

∂εn
− ∂kn

∂Πn

∂pn

∂εn
+

2
3

ρn
∂kn

∂Πn

)
(vi + uni),

µb =
1
Tb

+
∂kb
∂εb
− ∂kb

∂Πb

∂pb
∂εb
− 1

Tn
− ∂kn

∂εn
+

∂kn

∂Πn

∂pn

∂εn
,

ζb =
1
3

ρb
∂kb
∂Πb

− 1
3

ρn
∂kn

∂Πn
.

In the derivation of linearized source terms for a non-reacting mixture, we need
the components of the main field linearized in the neighborhood of equilibrium state
uE = (ρ, v, ε, 0, ρb, 0, T, 0). Taking into account (A2) and (36), we obtain:

Λ̂bi ≈ −
ubi − uni

T
,

µ̂b ≈ −
Θb −Θn

T2 (A3)

+
3
2

kB

mb

(
1 +

3
2(ab + 1)

)
Πb

pbEεbE
− 3

2
kB

mn

(
1 +

3
2(an + 1)

)
Πn

pnEεnE
,

ζ̂b ≈ −
1
2

kB

mb

(
1 +

3
2(ab + 1)

)
ρb

p2
bE

Πb +
1
2

kB

mn

(
1 +

3
2(an + 1)

)
ρn

p2
nE

Πn,

where uαi = vαi − vi and Θα = Tα − T.



Fluids 2022, 7, 381 28 of 38

Appendix B. Hypergeometric Functions

Following [45], p. 505, relation 13.2.1, we define the Kummer confluent hypergeometric
function, denoted by 1F1(a, b, z), with its integral representation

Γ(b− a)Γ(a)
Γ(b) 1F1(a, b, z) =

∫ 1

0
eztta−1(1− t)b−a−1dt, (A4)

for b > a > 0. Next, we introduce the following function

0 F̃1(b, z) =
1

Γ[b]
e−2
√

z
1F1

(
b− 1

2 , 2b− 1, 4
√

z
)

. (A5)

The two hypergeometric functions are connected through the integral representation

1 F̃1(a, b, z) =
1

Γ[a]

∫ ∞

0
e−t ta−1

0 F̃1(b, zt)dt, (A6)

for a > 0.

Appendix C. Calculation of the Production Terms

For the sake of simplicity, we introduce the following positive constants

Uα =
mα

2kBTα

(
1 +

Πα

pα

)−1
, Vα =

1
kBTα

(
1− 3

2
Πα

(aα + 1)pα

)−1
,

Wα =
ρα

mα

U3/2
α

π3/2
Vaα+1

α

Γ(aα + 1)
,

(A7)

that allows to rewrite (70) as

f̂ 6
α = Wα Iaα e−Uα |ξ−vα |2−Vα I .

The aim of this section is to calculate the production terms (67) for the choice of this
distribution function and the collision kernel (73), namely to compute

 mα

Pα

ẽα

 = ∑
β

WαWβ

∫
∆2×K

 mα

(
ξ′ − ξ

)
mα

(∣∣ξ′∣∣2 − |ξ|2)
I′ − I


× e−Uα |ξ−vα |2−Uβ|ξ∗−vβ|2 Iaα I

aβ
∗ e−Vα I−Vβ I∗Bαβ ψαβdR dr dσ dI∗ dξ∗ dI dξ,

We will work in the center-of-mass reference frame. To that end, we introduce variables
g and G as in (53). We first rewrite the exponent of exponentials,

Uα|ξ − vα|2 + Uβ

∣∣ξ∗ − vβ

∣∣2 = aαβ

∣∣g + bαβ

∣∣2 + cαβ

∣∣G + dαβg + eαβ

∣∣2,

for the following choice of the coefficients

aαβ =

(
1

Uα
+

1
Uβ

)−1

, bαβ = vβ − vα, cαβ = Uα + Uβ,

dαβ = µαβ

(
Uα + Uβ

)−1
(

Uα

mα
−

Uβ

mβ

)
, eαβ = −

(
Uα + Uβ

)−1(Uαvα + Uβvβ

)
. (A8)
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Using the collisional rules (52), the test functions become

mα

(
ξ′ − ξ

)
= µαβ

(
−g +

√
2RE
µαβ

σ

)
,

mα

(∣∣ξ′∣∣2 − |ξ|2) = 2
√

2µαβRE G · σ − 2µαβG · g

+ 2
mβ

mα + mβ
R(I + I∗)− µαβ

mβ

mα + mβ
(1− R)|g|2,

I′ − I =
µαβ

2
r(1− R)|g|2 − (1− r(1− R))I + r(1− R)I∗.

(A9)

Since the collision kernel (73) can be expressed as

Bαβ(ξ, ξ∗, I, I∗, R, r, σ) = KαβkαβB̃αβ(|g|, I, I∗, R, r), (A10)

where

B̃αβ(|g|, I, I∗, R, r) = R
γαβ

2 |g|γαβ

+ η

(
r(1− R)

I
∑α mα

) γαβ
2

+ η

(
(1− r)(1− R)

I∗
∑α mα

) γαβ
2

,

it is possible to pass to the center-of-mass reference frame with the unit Jacobian

 mα

Pα

ẽα

 = ∑
β

WαWβKαβkαβ

∫
∆2×K

 mα

(
ξ′ − ξ

)
mα

(∣∣ξ′∣∣2 − |ξ|2)
I′ − I


× e−aαβ|g+bαβ|2 e−cαβ|G+dαβg+eαβ|2 Iaα I

aβ
∗ e−Vα I−Vβ I∗

× B̃αβ ψαβ dR dr dσ dI∗ dg dI dG,

where the test functions are expressed as in (A9). It is straightforward to perform the
integration with respect to the angular variable σ ∈ S2 by exploiting parity arguments.
Additionally, it is easy to compute integral with respect to the velocity of the center of mass
G, yielding mα

Pα

ẽα

 = ∑
β

WαWβKαβkαβ(4π)

(
π

cαβ

)3/2

∫
∆×[0,∞)×[0,1]2

e−aαβ|g+bαβ|2 Iaα I
aβ
∗ e−Vα I−Vβ I∗

−µαβg

µαβ

(
− mβ

mα+mβ
(1− R) + 2dαβ

)
|g|2 + 2

mβ

mα+mβ
R(I + I∗) + 2µαβeαβ · g

r(1− R)
(

µαβ

2 |g|
2 + I∗

)
− (1− r(1− R))I


× B̃αβ ψαβ dR dr dI∗ dg dI. (A11)

Denoting

mαβ = −µαβWαWβKαβkαβ(4π)

(
π

cαβ

)3/2

×
∫

∆×[0,∞)×[0,1]2
g e−aαβ|g+bαβ|2 Iaα I

aβ
∗ e−Vα I−Vβ I∗ B̃αβ ψαβdR dr dI∗ dg dI, (A12)



Fluids 2022, 7, 381 30 of 38

the following relations hold,

mα = ∑
β

mαβ, Pα = P̃α − 2 ∑
β

eαβ ·mαβ,

where P̃α will be introduced below. Therefore, instead of computing (A11), we calculate mα

P̃α

ẽα

 = ∑
β

WαWβKαβkαβ(4π)

(
π

cαβ

)3/2

×
∫

∆×[0,∞)×[0,1]2
e−aαβ|g+bαβ|2 Iaα I

aβ
∗ e−Vα I−Vβ I∗

×


−µαβg

µαβ

(
− mβ

mα+mβ
(1− R) + 2dαβ

)
|g|2 + 2

mβ

mα+mβ
R(I + I∗)

r(1− R)
(

µαβ

2 |g|
2 + I∗

)
− (1− r(1− R))I


× B̃αβ ψαβ(R)dR dr dI∗ dg dI. (A13)

It is then possible to pass to the spherical coordinates for the relative velocity g,
with zenith direction

vα−vβ

|vα−vβ| and azimuthal angle θ as the angle between g and vα − vβ.

Recalling the notation bαβ = vβ − vα and denoting Aαβ = 2aαβ

∣∣vα − vβ

∣∣, we firstly define
integrals I1(|g|) and I2(|g|),

I1(|g|) =
∫ π

0
eAαβ |g| cos θ sin θdθ =

2
Aαβ|g|

sinh
(

Aαβ|g|
)
,

I2(|g|) =
∫ π

0
cos θ eAαβ |g| cos θ sin θdθ

=
2

A2
αβ|g|

2

(
Aαβ|g| cosh

(
Aαβ|g|

)
− sinh

(
Aαβ|g|

))
=

Aαβ

√
π

2
|g| 0 F̃1

(
5
2

,
A2

αβ

4
|g|2

)
,

(A14)

where the regularized hypergeometric function 0 F̃1 defined in (A5) is used. This allows
us to pass to the spherical coordinates for g and rewrite integrals appearing in (A13) in a
suitable form involving the notation (76), for some y ≥ 0,

∫
R3

e−aαβ|g+bαβ|2 |g|ydg = 2πe−aαβ|vα−vβ|2
∫
[0,∞)

e−aαβ |g|2 |g|y+2I1(|g|)d|g|

= π3/2e−aαβ|vα−vβ|2 a−
y+3

2
αβ Γ

(
y+3

2

)
1 F̃1

(
y+3

2 , 3
2 , aαβ

∣∣vα − vβ

∣∣2) =:

(
π

aαβ

)3/2

F 1
y . (A15)

Note that for y = 2 and y = 0 this integral simplifies to

F 1
2 =

3
2

a−1
αβ +

∣∣vα − vβ

∣∣2, F 1
0 = 1. (A16)
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On the other side, for the term involving I2, parity arguments imply

∫
R3

g |g|ye−aαβ|g+bαβ|2dg

= 2πe−aαβ|vα−vβ|2 vα − vβ∣∣vα − vβ

∣∣ ∫[0,∞)
e−aαβ |g|2 |g|y+3I2(|g|)d|g|

= π3/2e−aαβ|vα−vβ|2(vα − vβ) a−
y+3

2
αβ Γ

(
y+5

2

)
1 F̃1

(
y+5

2 , 5
2 , aαβ

∣∣vα − vβ

∣∣2)
=: (vα − vβ)

(
π

aαβ

)3/2

F 2
y , (A17)

where the hypergeometric function 1 F̃1 is defined in (A6). Note F 2
0 = 1.

Therefore, using angular integrals (A14), production terms (A13) can be simplified to mα

P̃α

ẽα

 = ∑
β

WαWβKαβ(8π2)

(
π

cαβ

)3/2

e−aαβ|vα−vβ|2

∫
[0,∞)3×[0,1]2

|g|2e−aαβ |g|2 Iaα I
aβ
∗ e−Vα I−Vβ I∗

×


−µαβ|g|I2(|g|)

vα−vβ

|vα−vβ|(
µαβ

(
− mβ

mα+mβ
(1− R) + 2dαβ

)
|g|2 + 2

mβ

mα+mβ
R(I + I∗)

)
I1(|g|)(

r(1− R)
(

µαβ

2 |g|
2 + I∗

)
− (1− r(1− R))I

)
I1(|g|)


× B̃αβ ψαβ dR dr dI∗ dI d|g|. (A18)

Further computations can be done only by specifying B̃αβ from (A10) and expanding
all terms. Then, it will be possible to specify y in (76) from integration with respect to |g|
and perform integration with respect to I and I∗ using

B(a,b) =
Vaα+1

α

Γ(aα + 1)

V
aβ+1
β

Γ(aβ + 1)

∫
[0,∞)2

Iaα+a I
aβ+b
∗ e−Vα I−Vβ I∗dI∗ dI

= V−a
α V−b

β

Γ(aα + a + 1)Γ(aβ + b + 1)
Γ(aα + 1)Γ(aβ + 1)

,

(A19)

as much as the integration with respect to the variables r, R ∈ [0, 1] introducing

C(a,b,c,d) = kαβ

∫
[0,1]2

(1− R)aRbrc(1− r)d ψαβ(r, R)dr dR

= kαβ

Γ
(
aα + aβ + a + 2

)
Γ
(
b + 3

2
)
Γ(aα + c + 1)Γ

(
aβ + d + 1

)
Γ
(
aα + aβ + a + b + 7

2
)
Γ
(
aα + aβ + c + d + 2

) , (A20)

Therefore, in what follows, we consider each production term separately.
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Appendix C.1. Production Term mα

Using the notations (A19) and (A20), the production term mα becomes

mα = −∑
β

vα − vβ∣∣vα − vβ

∣∣ ρα

mα

ρβ

mβ
Kαβ(8

√
π)

(
UαUβ

cαβ

)3/2

e−aαβ|vα−vβ|2 µαβ

×
∫
[0,∞)
I2(|g|)|g|3e−aαβ |g|2

{
C(

0,
γαβ

2 ,0,0
)|g|γαβ

+ η
(

∑
α

mα

)−γαβ/2
(

B( γαβ
2 ,0

)C( γαβ
2 ,0,

γαβ
2 ,0

) + B(
0,

γαβ
2

)C( γαβ
2 ,0,0,

γαβ
2

))}d|g|.

Using (A17) and UαUβ(aαβcαβ)
−1 = 1,

mα = −∑
β

(vα − vβ)
ρα

mα

ρβ

mβ
Kαβ(4π)µαβ

{
C(

0,
γαβ

2 ,0,0
)F 2

γαβ

+ η
(

∑
α

mα

)−γαβ/2
(

B( γαβ
2 ,0

)C( γαβ
2 ,0,

γαβ
2 ,0

) + B(
0,

γαβ
2

)C( γαβ
2 ,0,0,

γαβ
2

))}.

Expanding constants (A19) and (A20) and simplifying expressions involving Gamma
functions yield the final expression (78).

Appendix C.2. Production Term P̃α

Using the notation for constants (A19) and (A20), the production term P̃α becomes

P̃α = ∑
β

ρα

mα

ρβ

mβ
Kαβ(8

√
π)

(
UαUβ

cαβ

)3/2

e−aαβ|vα−vβ|2
∫
[0,∞)
I1(|g|)|g|2e−aαβ |g|2

×
(
|g|2+γαβ µαβ

(
−

mβ

mα + mβ
C(

1,
γαβ

2 ,0,0
) + 2dαβC(

0,
γαβ

2 ,0,0
)
)

+|g|γαβ
2mβ

mα + mβ
C(

0,1+
γαβ

2 ,0,0
)(B(1,0) + B(0,1)

)
+

η µαβ|g|2

(∑α mα)
γαβ

2

((
−

mβ

mα + mβ
C(

1+
γαβ

2 ,0,
γαβ

2 ,0
) + 2dαβC( γαβ

2 ,0,
γαβ

2 ,0
)
)

B( γαβ
2 ,0

)

+

(
−

mβ

mα + mβ
C(

1+
γαβ

2 ,0,0,
γαβ

2

) + 2dαβC( γαβ
2 ,0,0,

γαβ
2

)
)

B(
0,

γαβ
2

)
)

+
2mβ

mα + mβ

η

(∑α mα)
γαβ

2

(
C( γαβ

2 ,1,
γαβ

2 ,0
)(B( γαβ

2 +1,0
) + B( γαβ

2 ,1
))

+C( γαβ
2 ,1,0,

γαβ
2

)(B(
1,

γαβ
2

) + B( γαβ
2 +1

))))d|g|.

Involving (A15), integration with respect to |g| yields
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P̃α = ∑
β

ρα

mα

ρβ

mβ
Kαβ(4π)

×
(
F 2

2+γαβ
µαβ

(
−

mβ

mα + mβ
C(

1,
γαβ

2 ,0,0
) + 2dαβC(

0,
γαβ

2 ,0,0
)
)

+F 2
γαβ

2mβ

mα + mβ
C(

0,1+
γαβ

2 ,0,0
)(B(1,0) + B(0,1)

)
+

η µαβF 2
2

(∑α mα)
γαβ

2

((
−

mβ

mα + mβ
C(

1+
γαβ

2 ,0,
γαβ

2 ,0
) + 2dαβC( γαβ

2 ,0,
γαβ

2 ,0
)
)

B( γαβ
2 ,0

)

+

(
−

mβ

mα + mβ
C(

1+
γαβ

2 ,0,0,
γαβ

2

) + 2dαβC( γαβ
2 ,0,0,

γαβ
2

)
)

B(
0,

γαβ
2

)
)

+
2mβ

mα + mβ

η

(∑α mα)
γαβ

2

(
C( γαβ

2 ,1,
γαβ

2 ,0
)(B( γαβ

2 +1,0
) + B( γαβ

2 ,1
))

+C( γαβ
2 ,1,0,

γαβ
2

)(B(
1,

γαβ
2

) + B( γαβ
2 +1

)))).

The expansion of coefficients B and C using their definitions (A19) and (A20) yields
the final expression (80).

Appendix C.3. Production Term ẽα

In the similar fashion, the production term ẽα becomes

ẽα = ∑
β

ρα

mα

ρβ

mβ
Kαβ(4π)

(
µαβ

2
F 1

2+γαβ
C(

1,
γαβ

2 ,1,0
)

+F 1
γαβ

(
B(0,1)C(1,

γαβ
2 ,1,0

) − B(1,0)

(
C(

0,
γαβ

2 ,0,0
) − C(

1,
γαβ

2 ,1,0
)))

+
µαβ

2(∑α mα)
γαβ

2

F 1
2

(
B( γαβ

2 ,0
)C(

1+
γαβ

2 ,0,1+
γαβ

2 ,0
) + B(

0,
γαβ

2

)C(
1+

γαβ
2 ,0,1,

γαβ
2

))

+
η

(∑α mα)
γαβ

2

{
B( γαβ

2 ,1
)C(

1+
γαβ

2 ,0,1+
γαβ

2 ,0
) + B(

0,1+
γαβ

2

)C(
1+

γαβ
2 ,0,1,

γαβ
2

)

−B(
1+

γαβ
2 ,0

)(C( γαβ
2 ,0,

γαβ
2 ,0

) − C(
1+

γαβ
2 ,0,1+

γαβ
2 ,0

))
−B(

1,
γαβ

2

)(C( γαβ
2 ,0,0,

γαβ
2

) − C(
1+

γαβ
2 ,0,1,

γαβ
2

))}).

After expanding constants, we get the final expression (81).

Appendix D. Linearization of Source Terms

We first introduce the following notation, common to all production terms,

h1 =
2√
π

Γ
(

γαβ+3
2

)
Γ
(

γαβ+5
2

) kB
(mα + mβ)

(
2kB
µαβ

)γαβ/2

,

h2 = η
k

1+γαβ/2
B

(mα + mβ)
.

(A21)
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Appendix D.1. Production Term mα

In order to linearize the production term mα, we compute the gradient. In this case, the
only term that does not vanish in the equilibrium state w0 for equal velocities, temperatures,
and vanishing dynamic pressure is the term related to velocities, i.e., for any i, j = 1, . . . , 3,

∂mαβi

∂vαj
(w0) = −

∂mαβi

∂vβj
(w0)

= −δij
mαmβ

kB

(
aα + aβ +

γαβ+7
2

)(2
3
h1 + h2

(
Cα + Cβ

))
T

γαβ
2 .

(A22)

Therefore, the production term mα, can be approximated as stated in (82),

mα ≈ −
n

∑
β=1
β 6=α

Mαβ ραρβ (vα − vβ) T
γαβ

2 ,

where the constantMαβ, non-negative and symmetric in (α, β), is given by

Mαβ = Kαβ

mαmβ

kB

(
aα + aβ +

γαβ+7
2

)(2
3
h1 + h2

(
Cα + Cβ

))
, (A23)

with notation (A21).

Appendix D.2. Production Term Pα

From the expression for the production term Pα given in (79), we can compute its
gradient,

∇Pα(w0) =
n

∑
β=1

ραρβ Kαβ

(
∇P̃αβ(w0) + 2vi∇mαβi(w0)

)
,

Then we compute derivatives of P̃αβ and evaluate at the equilibrium state w0,

∂P̃αβ

∂Tα
(w0) = −

∂P̃αβ

∂Tβ
(w0) = mβ

(
1

(mα+mβ)
h1c1 + 3 h2c2

)
T

γαβ
2 ,

∂P̃αβ

∂Πα
(w0) =

mβ

kB nα

(
1

(mα+mβ)
h1c3 + 3 h2c4

)
T

γαβ
2 ,

∂P̃αβ

∂Πβ
(w0) =

mβ

kB nβ

(
1

(mα+mβ)
h1c5 + 3 h2c6

)
T

γαβ
2 ,

(A24)

where the constants are

c1 = 2
(
mα

(
aα + 2aβ + 6 + γαβ

)
+
(
aβ + 1

)
mβ

)
> 0,

c2 =
c1

2(mα + mβ)

(
Cα + Cβ

)
+

γαβ

2(mα + mβ)

(
mβCβ −mαCα

)
> 0,

c3 = c1 + (mα + mβ)(2aα + 5) > 0,

c4 = c2 +

(
aα +

5
2

)((
1 +

γαβ

2(aα + 1)

)
Cα + Cβ

)
> 0,

c5 = c1 − (mα + mβ)(2aβ + 5),

c6 = c2 −
(

aβ +
5
2

)(
Cα +

(
1 +

γαβ

2(aβ + 1)

)
Cβ

)
,
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where the involved constants are given in (75). Therefore, taking into account (A22) and
(A24), the production term Pα can be approximated as

Pα ≈
n

∑
β=1

ραρβ Kαβ

×
(
− v · (vα − vβ)T

γαβ
2

2mαmβ

kB

(
aα + aβ +

γαβ+7
2

)(2
3
h1 + h2

(
Cα + Cβ

))
−mβ

(
1

(mα+mβ)
h1c1 + 3 h2c2

)
T

γαβ
2
(
Tα − Tβ

)
−mβ

(
1

(mα+mβ)
h1c3 + 3 h2c4

)
T

γαβ
2

Πα

kB nα
+ mβ

(
1

(mα+mβ)
h1c5 + 3 h2c6

)
T

γαβ
2

Πβ

kB nβ

)
,

which is exactly (83) with notation (A23) and

PT
αβ = mβ Kαβ

(
1

(mα+mβ)
h1c1 + 3 h2c2

)
> 0,

PΠ
αβ = mβ Kαβ

(
1

(mα+mβ)
h1c3 + 3 h2c4

)
> 0,

P̃Π
αβ = mβ Kαβ

(
1

(mα+mβ)
h1c5 + 3 h2c6

)
.

(A25)

The following combination of the aforementioned constants is used

PΠ
bc Ãc − P̃Π

bc Ãb

Ab Ãc − Ac Ãb
=

(Ãc − Ãb)PT
bc + mc Pχ

bc
Ab Ãc − Ac Ãb

= −2
(
PT

bc +
2 mc(1 + ab)(1 + ac)

3(ab − ac)
Pχ

bc

)
,

(A26)

where Pχ
bc is positive and symmetric in (b, c) and is given by

Pχ
bc =

3
2Kbc

(
h1

(
2ab + 5
ac + 1

+
2ac + 5
ab + 1

)
+3 h2

{(
ab +

5
2

ac + 1

)((
1 +

γαβ

2(ab + 1)

)
Cb + Cc

)

+

(
ac +

5
2

ab + 1

)((
1 +

γαβ

2(ac + 1)

)
Cc + Cb

)})
, (A27)

as much as
1

Ab An

[(
Ãb An − Ãn Ab

)
PT

bn + P
Π
bn An − P̃Π

bn Ab

]
= mnPω

bn, (A28)

with Pω
bn > 0 given by

Pω
bn = Kbn(4(2 + ab + an)h1 + 3(γbn + 2(2 + ab + an))(Cb + Cn)h2), (A29)

where h1 and h2 are to be understood as (A21) for α = b and β = n.

Appendix D.3. Production Term eα

Taking into account (68), the gradient of eα at the equilibrium state w0 can be computed as

∇eα(w0) =
n

∑
β=1
β 6=α

ραρβ Kαβ

(
∇Pαβ(w0)

2
+∇ẽαβ(w0)

)
.
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Derivatives of ẽαβ evaluated at w0 are given as follows

∂ẽαβ

∂Tα
(w0) = −

∂ẽαβ

∂Tβ
(w0) =

(
aα+1

γαβ+3 h1 c̃1 + h2 c̃2

)
T

γαβ
2 ,

∂ẽαβ

∂Πα
(w0) =

T
γαβ

2

kB nα

(
aα+1

γαβ+3 h1 c̃3 + h2 c̃4

)
,

∂ẽαβ

∂Πβ
(w0) =

T
γαβ

2

kB nβ

(
aα+1

γαβ+3 h1 c̃5 + h2 c̃6

)
,

where the involved terms are defined as

c̃1 = −mα

(
γαβ + 2aβ + 5

)
− 2
(
aβ + 1

)
mβ,

c̃2 =
aα + 1

2

(
c̃1

[(
1 +

γαβ

2(aα + 1)

)
Cα + Cβ

]

+ γαβ

[(
1 +

γαβ

2(aα + 1)

)
mαCα −mβCβ

])
,

c̃3 =
1

2(aα + 1)
(
−3 c̃1 + mβ

(
γαβ + 3

)
(2aα + 5)

)
c̃4 = − 3

2(aα + 1)
c̃2 +

3
4
(2aα + 5)mβ

((
2aα + γαβ + 2

)
2(aα + 1)

Cα + Cβ

)
c̃5 = γαβ mα − 3mβ,

c̃6 = −c̃2 −
(
2aβ + 5

)(
mα + mβ

)
4
(
aβ + 1

) ((
aβ + 1

)(
2aα + γαβ + 2

)
Cα

+ (aα + 1)
(
γαβ + 2aβ + 2

)
Cβ

)
.

Therefore, ẽαβ can be linearized as follows

ẽαβ ≈
(

aα+1
γαβ+3 h1 c̃1 + h2 c̃2

)
T

γαβ
2
(
Tα − Tβ

)
+

Πα

kB nα
T

γαβ
2

(
aα+1

γαβ+3 h1 c̃3 + h2 c̃4

)
+

Πβ

kB nβ
T

γαβ
2

(
aα+1

γαβ+3 h1 c̃5 + h2 c̃6

)
. (A30)

Combining the last expression with (83), eα can be approximated as

eα ≈
n

∑
β=1
β 6=α

ραρβ Kαβ

×
(
− v · (vα − vβ)T

γαβ
2

mαmβ

kB

(
aα + aβ +

γαβ+7
2

)(2
3
h1 + h2

(
Cα + Cβ

))
−
(
h1[ĉ1(α, β) + ĉ1(β, α)] + h2[ĉ2(α, β) + ĉ2(β, α)]

)
T

γαβ
2
(
Tα − Tβ

)
+ (h1 ĉ3(α, β) + h2 ĉ4(α, β))T

γαβ
2

Πα

kB nα
− (h1 ĉ3(β, α) + h2 ĉ4(β, α))T

γαβ
2

Πβ

kB nβ

)
,



Fluids 2022, 7, 381 37 of 38

with constants

ĉ1(α, β) =
mα

(
2aβ + γαβ + 5

)(
γαβ + 3

)(
mα + mβ

)(mα(aα + 1) +
mβ

2
(
2aα + γαβ + 5

))
> 0,

ĉ2(α, β) =
Cα

4
(
mα + mβ

)(m2
α

(
2aβ + 5

)(
2aα + γαβ + 2

)
+ 2mαmβ

(
2aβ + 5

)(
2aα + γαβ + 5

)
+ 2m2

β

(
aβ + 1

)(
2aα + γαβ + 5

))
> 0,

ĉ3(α, β) = − 1
2
(
γαβ + 3

)(
mα + mβ

)(− 3m2
α

(
2aβ + γαβ + 5

)
+ 2m2

βγαβ

(
aβ + 1

)
+ mαmβ

(
γαβ

(
2aα + 2γαβ + 4aβ + 15

)
+ 6aα + 15

))
ĉ4(α, β) = − 3

2(aα + 1)

(
− ĉ2(α, β)

+
(2aα + 5)mβ Cα

4
(
mα + mβ

) (
mα

(
2
(
aα + 2aβ + 6

)
+ γαβ

)
+ 2
(
aβ + 1

)
mβ

)
−

(aα + 1)mα Cβ

2
(
mα + mβ

) (mα

(
γαβ + 2aβ + 5

)
− (2aα + 5)mβ

))
.

The final form (84) is obtained by denoting

ET
αβ = Kαβ

(
h1[ĉ1(α, β) + ĉ1(β, α)] + h2[ĉ2(α, β) + ĉ2(β, α)]

)
,

EΠ
αβ = Kαβ

(
h1 ĉ3(α, β) + h2 ĉ4(α, β)

)
.

(A31)
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26. Pavić-Čolić, M.; Simić, S. Moment equations for polyatomic gases. Acta Appl. Math. 2014, 132, 469–482. [CrossRef]
27. Djordjić, V.; Pavić-Čolić, M.; Spasojević, N. Polytropic gas modelling at kinetic and macroscopic levels. Kinet. Relat. Models 2021,

14, 483–522. [CrossRef]
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30. Djordjić, V.; Oblapenko, G.; Pavić-Čolić, M.;Torrilhon, M. Boltzmann collision operator for polyatomic gases in agreement with

experimental data and DSMC method. Contin. Mech. Thermodyn. 2022 . [CrossRef]
31. Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M. Extended thermodynamics of real gases with dynamic pressure: An extension

of Meixner’s theory. Phys. Lett. A 2012, 376, 2799–2803. [CrossRef]
32. Arima, T.; Ruggeri, T.; Sugiyama, M.; Taniguchi, S. Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non

Linear Mech. 2015, 72, 6–15. [CrossRef]
33. Ruggeri, T. Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure. Bull. Inst. Math. Acad.

Sin. 2016, 11, 1–22.
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