Disinfection of Escherichia coli by Mixing with Bulk Ultrafine Bubble Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. UFB Generation
2.2. Preparation of Bacteria
2.3. Experimental Methods
2.4. Disinfection Efficiencies of UFBs after Different Bubbling Times in Neutral Solution
2.5. Disinfection Efficiencies of UFBs in Solutions with Different pH
2.6. Analytical Methods
2.7. Fluorescence Intensity
2.8. Number Density and Mean Size
2.9. Zeta Potentials
3. Results and Discussion
3.1. Disinfection Efficienciesof UFBs after Different Bubbling Times in Neutral Solution
3.2. Disinfection Efficiency of UFBs in Solutions with Different pH
3.3. Bacterial Disinfection Mechanism of UFBs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bu, X.; Zhou, S.; Tian, X.; Ni, C.; Nazari, S.; Alheshibri, M. Effect of aging time, airflow rate, and nonionic surfactants on the surface tension of bulk nanobubbles water. J. Mol. Liq. 2022, 359, 119274. [Google Scholar] [CrossRef]
- Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V.S. A history of nanobubbles. Langmuir 2016, 32, 11086–11100. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Chiba, K.; Li, P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 2007, 111, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, Y.; Nazari, S.; Bu, X.; Hassanzadeh, A.; Ni, C.; He, Y.; Xie, G. An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. Minerals 2022, 12, 944. [Google Scholar] [CrossRef]
- Zhou, S.; Nazari, S.; Hassanzadeh, A.; Bu, X.; Ni, C.; Peng, Y.; Xie, G.; He, Y. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation. Ultrason. Sonochem. 2022, 84, 105965. [Google Scholar] [CrossRef]
- Ushikubo, F.Y.; Furukawa, T.; Nakagawa, R.; Enari, M.; Makino, Y.; Kawagoe, Y.; Shiina, T.; Oshita, S. Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf. A Physicochem. Eng. Aspects 2010, 361, 31–37. [Google Scholar] [CrossRef]
- Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180. [Google Scholar] [CrossRef]
- Temesgen, T.; Bui, T.T.; Han, M.; Kim, T.I.; Park, H. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Adv. Colloid Interface Sci. 2017, 246, 40–51. [Google Scholar] [CrossRef]
- Sumikura, M.; Hidaka, M.; Murakami, H.; Nobutomo, Y.; Murakami, T. Ozone micro-bubble disinfection method for wastewater reuse system. Water Sci. Technol. 2007, 56, 53–61. [Google Scholar] [CrossRef]
- Himuro, S.; Deguchi, T.; Takamatsu, R. Effects of microbubbles on bacteria. Prog. Multiph. Flow Res. 2009, 4, 95–102. [Google Scholar] [CrossRef]
- Bu, X.; Alheshibri, M. The effect of ultrasound on bulk and surface nanobubbles: A review of the current status. Ultrason. Sonochem. 2021, 76, 105629. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Maruyama, A.; Eguchi, T.; Hirakawa, T.; Murakami, Y. Influence of microbubbles on free radical generation by ultrasound in aqueous solution: Dependence of ultrasound frequency. J. Phys. Chem. B 2015, 119, 12887–12893. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Oshita, S.; Makino, Y.; Wang, Q.; Kawagoe, Y.; Uchida, T. Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustain. Chem. Eng. 2016, 4, 1347–1353. [Google Scholar] [CrossRef]
- Liu, S.; Oshita, S.; Kawabata, S.; Makino, Y.; Yoshimoto, T. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir 2016, 32, 11295–11302. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Takahashi, M.; Chiba, K. Degradation of phenol by the collapse of microbubbles. Chemosphere 2009, 75, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Takahashi, M.; Chiba, K. Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. Chemosphere 2009, 77, 1157–1160. [Google Scholar] [CrossRef]
- Wang, W.; Fan, W.; Huo, M.; Zhao, H.; Lu, Y. Hydroxyl radical generation and contaminant removal from water by the collapse of microbubbles under different hydrochemical conditions. Water Air Soil Pollut. 2018, 229, 86. [Google Scholar] [CrossRef]
- Tsuge, H. Fundamental of microbubbles and nanobubbles. Bull. Soc. Sea Water Sci. Jpn. 2010, 64, 4–10. [Google Scholar]
- Cohn, C.A.; Simon, S.R.; Schoonen, M.A. Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals. Part. Fibre Toxicol. 2008, 5, 2. [Google Scholar] [CrossRef]
- Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 2010, 27, 796–810. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M. Zeta potential of microbubbles in aqueous solutions: Electrical properties of the gas–water interface. J. Phys. Chem. B 2005, 109, 21858–21864. [Google Scholar] [CrossRef] [PubMed]
- Calgaroto, S.; Wilberg, K.Q.; Rubio, J. On the nanobubbles interfacial properties and future applications in flotation. Miner. Eng. 2014, 60, 33–40. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Lv, Y.; Wang, S.; Zheng, S.; Du, H.; Zhang, Y. Effect of microbubble diameter, alkaline concentration and temperature on reactive oxygen species concentration. J. Chem. Technol. Biotechnol. 2017, 92, 1738–1745. [Google Scholar] [CrossRef]
- Seddon, J.R.T.; Lohse, D.; Ducker, W.A.; Craig, V.S.J. A deliberation on nanobubbles at surfaces and in bulk. Chem. Phys. Chem. 2012, 13, 2179–2187. [Google Scholar] [CrossRef] [PubMed]
- D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef]
- Wang, D.; Yang, X.; Tian, C.; Lei, Z.; Kobayashi, N.; Kobayashi, M.; Adachi, Y.; Shimizu, K.; Zhang, Z. Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge. Bioresour. Technol. 2019, 273, 63–69. [Google Scholar] [CrossRef]
- Park, J.; Kurata, K. Application of microbubble to hydroponics solution promotes lettuce growth. Hort. Technol. 2009, 19, 212–215. [Google Scholar] [CrossRef]
Volume of tank 1 | 15 L |
Volume of water stored in tank 2 during running of the system | 1.5 L |
Height from the ground to the highest point of the system | 1.5 m |
Height from the ground to the bottom of tank 2 | 0.8 m |
Inside diameter of the pipe | 25 mm |
Total length of the pipe | 2.9 m |
Pump pressure | 1 MPa |
Pump flow rate | 41.7 L/min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogata, S.; Murata, Y. Disinfection of Escherichia coli by Mixing with Bulk Ultrafine Bubble Solutions. Fluids 2022, 7, 383. https://doi.org/10.3390/fluids7120383
Ogata S, Murata Y. Disinfection of Escherichia coli by Mixing with Bulk Ultrafine Bubble Solutions. Fluids. 2022; 7(12):383. https://doi.org/10.3390/fluids7120383
Chicago/Turabian StyleOgata, Satoshi, and Yuichirou Murata. 2022. "Disinfection of Escherichia coli by Mixing with Bulk Ultrafine Bubble Solutions" Fluids 7, no. 12: 383. https://doi.org/10.3390/fluids7120383
APA StyleOgata, S., & Murata, Y. (2022). Disinfection of Escherichia coli by Mixing with Bulk Ultrafine Bubble Solutions. Fluids, 7(12), 383. https://doi.org/10.3390/fluids7120383