Analysis of Deformation in an Aluminium Hull Impacting Water Free Surface
Abstract
:1. Introduction
2. Experimental Setup
3. Shape Reconstruction Methodology
4. Numerical Model
5. Results
5.1. 0° V–0° G Impact (Vertical Impact)
5.2. 0° V–10° G Impact
5.3. 10° V–0° G Impact
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abrate, S. Hull Slamming. Appl. Mech. Rev. 2011, 64, 060803. [Google Scholar] [CrossRef]
- Charca, S.; Shafiq, B.; Just, F. Repeated Slamming of Sandwich Composite Panels on Water. J. Sandw. Struct. Mater. 2009, 11, 409–424. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Iida, K.; Fukasawa, T.; Murakami, T.; Arai, M.; Ando, A. Structural Damage Analysis of a Fast Ship Due to Bow Flare Slamming. Int. Shipbuild. Prog. 1985, 32, 124–136. [Google Scholar] [CrossRef]
- Seddon, C.; Moatamedi, M. Review of Water Entry with Applications to Aerospace Structures. Int. J. Impact Eng. 2006, 32, 1045–1067. [Google Scholar] [CrossRef]
- Panciroli, R.; Ubertini, S.; Minak, G.; Jannelli, E. Experiments on the Dynamics of Flexible Cylindrical Shells Impacting on a Water Surface. Exp. Mech. 2015, 55, 1537–1550. [Google Scholar] [CrossRef]
- Fanelli, P.; Biscarini, C.; Jannelli, E.; Ubertini, F.; Ubertini, S. Structural Health Monitoring of Cylindrical Bodies under Impulsive Hydrodynamic Loading by Distributed FBG Strain Measurements. Meas. Sci. Technol. 2017, 28, 024006. [Google Scholar] [CrossRef]
- Mercuri, A.; Fanelli, P.; Ubertini, S.; Falcucci, G.; Jannelli, E.; Biscarini, C. Effect of Strain Measurement Layout on Damage Detection and Localization in a Free Falling Compliant Cylinder Impacting a Water Surface. Fluids 2021, 6, 58. [Google Scholar] [CrossRef]
- Panciroli, R.; Biscarini, C.; Falcucci, G.; Jannelli, E.; Ubertini, S. Live Monitoring of the Distributed Strain Field in Impulsive Events through Fiber Bragg Gratings. J. Fluids Struct. 2016, 61, 60–75. [Google Scholar] [CrossRef]
- Fanelli, P.; Facci, A.L.; Russo, S. Influence of Sensors Layout in Damage Monitoring of Cylindrical Bodies under Impulsive Hydrodynamic Loading. AIP Conf. Proc. 2018, 1978, 420009. [Google Scholar]
- Fanelli, P.; Trupiano, S.; Belardi, V.G.; Vivio, F.; Jannelli, E. Structural Health Monitoring Algorithm Application to a Powerboat Model Impacting on Water Surface. Procedia Struct. Integr. 2019, 24, 926–938. [Google Scholar] [CrossRef]
- Fanelli, P.; Facci, A.; Jannelli, E. Live Crack Damage Detection with Local Strain Measurement on Solid Bodies Subjected to Hydrodynamic Loading. Procedia Struct. Integr. 2018, 8, 539–551. [Google Scholar] [CrossRef]
- Kang, L.-H.; Kim, D.-K.; Han, J.-H. Estimation of Dynamic Structural Displacements Using Fiber Bragg Grating Strain Sensors. J. Sound Vib. 2007, 305, 534–542. [Google Scholar] [CrossRef]
- Bogert, P.; Haugse, E.; Gehrki, R. Structural Shape Identification from Experimental Strains Using a Modal Transformation Technique. In Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, 7–10 April 2003; p. 1898. [Google Scholar]
- Kashyap, R. Fiber Bragg Gratings; Elsevier: San Diego, CA, USA, 1999; ISBN 9780124005600. [Google Scholar]
- Grattan, K.T.V.; Sun, T. Fiber Optic Sensor Technology: An Overview. Sensors Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Silva-Muñoz, R.A.; Lopez-Anido, R. Structural Health Monitoring of Marine Composite Structural Joints Using Embedded Fiber Bragg Grating Strain Sensors. Compos. Struct. 2009, 89, 224–234. [Google Scholar] [CrossRef]
- Kuang, K.; Kenny, R.; Whelan, M.; Cantwell, W.; Chalker, P. Embedded Fibre Bragg Grating Sensors in Advanced Composite Materials. Compos. Sci. Technol. 2001, 61, 1379–1387. [Google Scholar] [CrossRef]
- Guemes, J.; Menéndez, J. Response of Bragg Grating Fiber-Optic Sensors When Embedded in Composite Laminates. Compos. Sci. Technol. 2002, 62, 959–966. [Google Scholar] [CrossRef]
- And, K.K.; Cantwell, W.; Kuang, K.S.C.; Cantwell, W. Use of Conventional Optical Fibers and Fiber Bragg Gratings for Damage Detection in Advanced Composite Structures: A Review. Appl. Mech. Rev. 2003, 56, 493–513. [Google Scholar] [CrossRef]
- Fanelli, P.; Mercuri, A.; Trupiano, S.; Vivio, F.; Falcucci, G.; Jannelli, E. Live Reconstruction of Global Loads on a Powerboat Using Local Strain FBG Measurements. Procedia Struct. Integr. 2019, 24, 949–960. [Google Scholar] [CrossRef]
- Russo, S.; Biscarini, C.; Facci, A.L.; Falcucci, G.; Jannelli, E.; Ubertini, S. Experimental Assessment of Buoyant Cylinder Impacts through High-Speed Image Acquisition. J. Mar. Sci. Technol. 2018, 23, 67–80. [Google Scholar] [CrossRef]
- Faltinsen, O.; Kjærland, O.; Nøttveit, A.; Vinje, T. Water Impact Loads And Dynamic Response Of Horizontal Circular Cylinders In Offshore Structures. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 1977. [Google Scholar]
- Khabakhpasheva, T. Fluid–Structure Interaction during the Impact of a Cylindrical Shell on a Thin Layer of Water. J. Fluids Struct. 2008, 25, 431–444. [Google Scholar] [CrossRef]
- Lin, M.-C.; Shieh, L.-D. Flow Visualization and Pressure Characteristics of a Cylinder for Water Impact. Appl. Ocean Res. 1997, 19, 101–112. [Google Scholar] [CrossRef]
- Sun, H.; Faltinsen, O.M. Water Impact of Horizontal Circular Cylinders and Cylindrical Shells. Appl. Ocean Res. 2006, 28, 299–311. [Google Scholar] [CrossRef]
- Van Nuffel, D.; Vepa, K.; De Baere, I.; Lava, P.; Kersemans, M.; Degrieck, J.; De Rouck, J.; VAN Paepegem, W. A Comparison between the Experimental and Theoretical Impact Pressures Acting on a Horizontal Quasi-Rigid Cylinder during Vertical Water Entry. Ocean Eng. 2014, 77, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Hu, C. An Experimental Study on Water Entry of Horizontal Cylinders. J. Mar. Sci. Technol. 2014, 19, 338–350. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, C. Experimental Study on Water Entry of Circular Cylinders with Inclined Angles. J. Mar. Sci. Technol. 2015, 20, 722–738. [Google Scholar] [CrossRef]
- Facci, A.L.; Falcucci, G.; Agresta, A.; Biscarini, C.; Jannelli, E.; Ubertini, S. Fluid Structure Interaction of Buoyant Bodies with Free Surface Flows: Computational Modelling and Experimental Validation. Water 2019, 11, 1048. [Google Scholar] [CrossRef] [Green Version]
- Falcucci, G.; Amati, G.; Fanelli, P.; Krastev, V.K.; Polverino, G.; Porfiri, M.; Succi, S. Extreme Flow Simulations Reveal Skeletal Adaptations of Deep-Sea Sponges. Nat. Cell Biol. 2021, 595, 537–541. [Google Scholar] [CrossRef]
- Shams, A.; Zhao, S.; Porfiri, M. Hydroelastic Slamming of Flexible Wedges: Modeling and Experiments from Water Entry to Exit. Phys. Fluids 2017, 29, 037107. [Google Scholar] [CrossRef]
- Russo, S.; Jalalisendi, M.; Falcucci, G.; Porfiri, M. Experimental Characterization of Oblique and Asymmetric Water Entry. Exp. Therm. Fluid Sci. 2018, 92, 141–161. [Google Scholar] [CrossRef]
Sensor | [nm] | Sensor | [nm] |
---|---|---|---|
1 | 1531.03 | 7 | 1548.99 |
2 | 1534.07 | 8 | 1552.10 |
3 | 1537.07 | 9 | 1555.06 |
4 | 1540.13 | 10 | 1557.99 |
5 | 1542.98 | 11 | 1561.11 |
6 | 1545.93 | 12 | 1564.22 |
Mode Shape | 69 | 70 | 71 | 74 | 78 | 83 | 86 | 89 |
---|---|---|---|---|---|---|---|---|
Frequency [Hz] | 715.3 | 721.8 | 725.9 | 763.7 | 827.7 | 902.6 | 921.1 | 949.1 |
Specimen | Drop Height | Impact Angles |
---|---|---|
Al wedge | 0.5 m | 0° V/0° G 0° V/10° G 10° V/0° G |
Layout | Control Sensors | Error on CS 1 | Error on CS 2 | Error on CS 3 | Error on CS 4 |
---|---|---|---|---|---|
L1 | 8-10-11-12 | 0.113 | 0.126 | 0.153 | 0.151 |
L2 | 8-9-10-11 | 0.117 | 0.110 | 0.143 | 0.095 |
L3 | 2-8-10-11 | 0.132 | 0.106 | 0.132 | 0.096 |
Layout | Control Sensors | Error on CS 1 | Error on CS 2 | Error on CS 3 | Error on CS 4 |
---|---|---|---|---|---|
L1 | 8-10-11-12 | 0.096 | 0.132 | 0.096 | 0.197 |
L2 | 8-9-10-11 | 0.107 | 0.052 | 0.130 | 0.067 |
L3 | 2-8-10-11 | 0.085 | 0.096 | 0.130 | 0.076 |
Layout | Control Sensors | Error on CS 1 | Error on CS 2 | Error on CS 3 | Error on CS 4 |
---|---|---|---|---|---|
L1 | 8-10-11-12 | 0.077 | 0.103 | 0.119 | 0.150 |
L2 | 8-9-10-11 | 0.085 | 0.034 | 0.109 | 0.078 |
L3 | 2-8-10-11 | 0.036 | 0.077 | 0.106 | 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercuri, A.; Fanelli, P.; Falcucci, G.; Ubertini, S.; Jannelli, E.; Biscarini, C. Analysis of Deformation in an Aluminium Hull Impacting Water Free Surface. Fluids 2022, 7, 49. https://doi.org/10.3390/fluids7020049
Mercuri A, Fanelli P, Falcucci G, Ubertini S, Jannelli E, Biscarini C. Analysis of Deformation in an Aluminium Hull Impacting Water Free Surface. Fluids. 2022; 7(2):49. https://doi.org/10.3390/fluids7020049
Chicago/Turabian StyleMercuri, Alessandro, Pierluigi Fanelli, Giacomo Falcucci, Stefano Ubertini, Elio Jannelli, and Chiara Biscarini. 2022. "Analysis of Deformation in an Aluminium Hull Impacting Water Free Surface" Fluids 7, no. 2: 49. https://doi.org/10.3390/fluids7020049
APA StyleMercuri, A., Fanelli, P., Falcucci, G., Ubertini, S., Jannelli, E., & Biscarini, C. (2022). Analysis of Deformation in an Aluminium Hull Impacting Water Free Surface. Fluids, 7(2), 49. https://doi.org/10.3390/fluids7020049