Application of an Integral Turbulence Model to Close the Model of an Anisotropic Porous Body as Applied to Rod Structures
Abstract
:1. Introduction
2. Anisotropic Porous Body Model
2.1. Closing Relations of the Anisotropic Model of a Porous Body
2.2. The State of Work on the Development of an Integral Turbulence Model
3. Integral k−ε Turbulence Model
4. Determination of the Closing Relations for the Integral Turbulence Model
4.1. Computational Studies of the Flow around Smooth Bundles of Rods
4.2. Computational Studies of the Flow around Fuel Assemblies with a Spacer Grid and Wire-Wrapped Fuel Bundles
4.2.1. The Set of Closing Relations for Fuel Assemblies with a Spacer Grid
4.2.2. The Set of Closing Relations for Wire-Wrapped Fuel Bundles
5. Numerical Implementation and Testing of the Developed Model
5.1. Variational Formulation of the Problem
5.2. Scheme for Solving a System of Equations
5.3. Numerical Model Testing on a 19-Bar Experimental Assembly
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowe, D.S. Cross-Flow mixing between parallel flow channels during boiling Part-I COBRA-Computer program for coolant boiling in rod arrays. Nucl. Eng. Des. 2018, 332, 329–344. [Google Scholar]
- Rowe, D.S.; Angle, C.W. Cross Flow Mixing between Parallel Flow Channels during Boiling. Part II: Measurement of Flow and Enthalpy in Two Parallel Channels; Technical Report No. BNWL-371-Pt-2; Pacific Northwest Laboratory: Richland, DC, USA, 1967.
- Zhang, H.; Zou, L.; Zhao, H.; Martineau, R. Developing Fully Coupled Subchannel Model in RELAP-7; Idaho National Laboratory: Idaho Falls, ID, USA, 2014.
- Moorthia, A.; Sharmab, A.K.; Velusamyb, K. A review of sub-channel thermal-hydraulic codes for nuclear reactor core and future directions. Nucl. Eng. Des. 2018, 332, 329–344. [Google Scholar] [CrossRef]
- Liu, X.J.; Scarpelli, N. Development of a sub-channel code for liquid metal cooled fuel assembly. Ann. Nucl. Energy 2015, 77, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Imke, U.; Sanchez, V.H. Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests (PSBT). Sci. Technol. Nucl. Install. 2012, 2012, 465059. [Google Scholar] [CrossRef]
- Pedras, M.H.J.; de Lemos, M.J.S. Macroscopic turbulence modeling for incompressible flow through undeformable porous media. Int. J. Heat Mass Transfer 2001, 44, 1081–1093. [Google Scholar] [CrossRef]
- Korsun, A.S.; Kruglov, V.B.; Merinov, I.G.; Fedoseev, V.N.; Kharitonov, V.S. Heat and mass transfer when flowing around structures such as bundles of rods in the approximation of a porous body model. VANT Ser. Nucl. React. Const. 2014, 2, 88–95. Available online: https://vant.ippe.ru/year2014/2/842-9.html (accessed on 29 November 2021).
- Logg, A.; Kent-Andre, M.; Wells, G. The FEniCS Book. Automated Solution of Differential Equations by the Finite Element Method; Springer: Berlin, Germany, 2012; p. 732. Available online: https://fenicsproject.org/book/ (accessed on 29 November 2021).
- ANSYS, Inc. ANSYS CFX Help File; ANSYS, Inc.: Canonsburg, PA, USA, 2018. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; Birmingham Press: San Diego, CA, USA, 2006; p. 536. ISBN 978-1928729082. [Google Scholar]
- Garbaruk, A.V.; Strelets, M.h.; Travin, A.K.; Shur, M.L. Modern Approaches to Turbulence Modeling; Publishing House of the Polytechnic University: St. Petersburg, Russia, 2016. [Google Scholar]
- Roelofs, F.; Gopala, V.R.; Chandra, L.; Viellieber, M.; Class, A. Simulating fuel assemblies with low-resolution CFD approaches. Nucl. Eng. Des. 2012, 250, 548–559. [Google Scholar] [CrossRef]
- Smith, B.L. Assessment of CFD codes used in nuclear reactor safety simulations. Nucl. Eng. Technol. 2010, 42, 339–364. [Google Scholar] [CrossRef] [Green Version]
- Korsun, A.S.; Kruglov, A.B.; Kruglov, V.B.; Odintsov, A.A.; Kharitonov, V.S. Experimental study of resistance for angular flow around beams of rods. In Proceedings of the Thermophysics-2008, Obninsk, Russia, 15–17 October 2008. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; p. 662. Available online: www.cambridge.org/9780521548236 (accessed on 29 November 2021).
- Vlasov, M.N.; Korsun, A.S.; Maslov, Y.A.; Merinov, I.G.; Kharitonov, V.S. Modeling of thermohydraulic processes in the cores of fast reactors. In Proceedings of the Thermophysics-2012, Obninsk, Russia, 24–26 October 2012. [Google Scholar]
- Vlasov, M.N.; Korsun, A.S.; Maslov, Y.A.; Merinov, I.G.; Rachkov, V.I.; Kharitonov, V.S. Determination of integral turbulence model parameters as applied to the calculation of rod-bundle flows in porous-body approximation. Thermophys. Aeromech. 2016, 23, 201–209. [Google Scholar] [CrossRef]
- Lemos, M.J.S. Turbulence in Porous Media: Modeling and Applications; Elsevier: Amsterdam, The Netherlands, 2006; p. 384. [Google Scholar] [CrossRef]
- Hinze, J.O. Turbulence, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975; ISBN 978-0070290372. [Google Scholar]
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972; ISBN 0262200198. [Google Scholar]
- Pedras, M.H.J.; de Lemos, M.J.S. Simulation of turbulent flow in porous media using a spatially periodic array and a low Re two-equation closure. Numer. Heat Transf. Part A Appl. 2001, 39, 35–59. [Google Scholar] [CrossRef]
- Pedras, M.H.J.; de Lemos, M.J.S. Computation of Turbulent Flow in Porous Media Using a Low-Reynolds Model and an Infinite Array of Transversally Displaced Elliptic Rods. Numer. Heat Transf. Part A Appl. 2003, 43, 585–602. [Google Scholar] [CrossRef]
- Launder, B.; Sharma, B.I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Phys. Lett. Heat Mass Tranf. 1974, 1, 131–137. [Google Scholar] [CrossRef]
- ANSYS-Meshing. Available online: https://www.ansys.com/Products/Platform/ANSYS-Meshing (accessed on 29 November 2021).
- ANSYS Meshing User’s Guide; Release 15.0; ANSYS, Inc.: Canonsburg, PA, USA, 2013.
- Kirillov, P.L.; Bobkov, V.P.; Zhukov, A.V.; Yuriev, Y.S. Handbook of thermo-hydraulic calculations in nuclear power. In Thermal-Hydraulic Processes in Nuclear Power Plants; IzdAT: Moscow, Russia, 2010; Volume 1. [Google Scholar]
- CFD-Online. Available online: https://www.cfd-online.com/Wiki/Standard_k-epsilon_model (accessed on 29 November 2021).
- Kirillov, P.L.; Yuriev, Y.S. Hydrodynamic Calculations: Reference Tutorial; IPPE: Obninsk, Russia, 2007. [Google Scholar]
- Subbotin, V.I.; Ibragimov, M.K.; Ushakov, P.A.; Bobkov, V.P.; Zhukov, A.V.; Yuriev Yu, S. Hydrodynamics and Heat Transfer in Nuclear Power Plants (Calculation Basis); Atomizdat: Moscow, Russia, 1975; pp. 123–124. [Google Scholar]
- Yuryev Yu, S.; Kolpakov, A.P.; Efanov, A.D. Development of a hydrodynamic and thermal model of a porous body and its application to the calculation of nuclear reactors of the BN type. VANT Ser. Phys. Techn. Nuc. React. 1984, 41, 79–85. [Google Scholar]
- Vlasov, M.N.; Korsun, A.S.; Maslov, Y.A.; Merinov, I.G.; Kharitonov, V.S. Determination of integral turbulence model parameters as applied to the calculation of flows in fuel assemblies of fast reactors in porous-body approximation. IOP Conf. Ser. J. Phys. Conf. Ser. 2020, 1689, 12068. [Google Scholar] [CrossRef]
- FEniCSx. Available online: https://fenicsproject.org/download/ (accessed on 29 November 2021).
- Femtable. Available online: https://femtable.org/ (accessed on 29 November 2021).
- VTK. Available online: https://www.vtk.org/ (accessed on 29 November 2021).
- Zhukov, A.V.; Matyukhin, N.M.; Rymkevich, K.S. Influence of Blocking the Flow Section of a Model Assembly of a Fuel-Element Cassette of a Fast Reactor on the Distribution of Coolant Velocities; Preprint FEI-1479; IPPE: Obninsk, Russia, 1983. [Google Scholar]
- Gmsh. Available online: http://gmsh.info/ (accessed on 29 November 2021).
- ParaView. Available online: http://www.paraview.org/ (accessed on 29 November 2021).
- Hubler, F.; Peppler, W. Summary and Implications of Out-of-Pile Investigations of Local Cooling Disturbances in LMFBR Subassembly Geometry Under Single-Phase and Boiling Conditions; KfK Rep. 3927; Kernforschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 1985. [Google Scholar]
- Dmitrenko, A.V. Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2017, 90, 1288–1294. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Results of investigations of non-isothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1009, 012017. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, A.V. Calculation of pressure pulsations for a turbulent heterogeneous medium. Dokl. Phys. 2007, 52, 384–387. [Google Scholar] [CrossRef]
- Newton, P.K. The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 2016, 786, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Faranda, D.; Sato, Y.; Saint-Michel, B.; Wiertel, C.; Padilla, V.; Dubrulle, B.; Daviaud, F. Stochastic Chaos in a Turbulent Swirling Flow. Phys. Rev. Lett. 2017, 119, 14502. [Google Scholar] [CrossRef] [Green Version]
- Grimm, F.; Reichling, G.; Ewert, R.; Dierke, J.; Noll, B.; Aigner, M. Stochastic and Direct Combustion Noise Simulation of a Gas Turbine Model Combustor. Acta Acust. Unit. Acust. 2017, 103, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, A.V. An estimation of turbulent vector fields, spectral and correlation functions depending on initial turbulence based on stochastic equations. The Landau fractal equation. Int. J. Fluid Mech. Res. 2016, 43, 271–280. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasov, M.N.; Merinov, I.G. Application of an Integral Turbulence Model to Close the Model of an Anisotropic Porous Body as Applied to Rod Structures. Fluids 2022, 7, 77. https://doi.org/10.3390/fluids7020077
Vlasov MN, Merinov IG. Application of an Integral Turbulence Model to Close the Model of an Anisotropic Porous Body as Applied to Rod Structures. Fluids. 2022; 7(2):77. https://doi.org/10.3390/fluids7020077
Chicago/Turabian StyleVlasov, Maksim N., and Igor G. Merinov. 2022. "Application of an Integral Turbulence Model to Close the Model of an Anisotropic Porous Body as Applied to Rod Structures" Fluids 7, no. 2: 77. https://doi.org/10.3390/fluids7020077
APA StyleVlasov, M. N., & Merinov, I. G. (2022). Application of an Integral Turbulence Model to Close the Model of an Anisotropic Porous Body as Applied to Rod Structures. Fluids, 7(2), 77. https://doi.org/10.3390/fluids7020077