Modelling Experimental Measurements of Fluid Flow through Railway Ballast
Abstract
:1. Introduction
2. Numerical Modelling of Flow through Railway Ballast
3. Materials and Experiment
3.1. Atmojo’s Experiment
3.2. Tsubaki’s Experiment
4. Results
5. Computation for Real Railway Ballast
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Further Validation and Convergence Study
References
- Tsubaki, R.; Bricker, J.D.; Ichii, K.; Kawahara, Y. Development of Fragility Curves for Railway Embankment and Ballast Scour due to Overtopping Flood Flow. Nat. Hazards Earth Syst. 2016, 16, 2455–2472. [Google Scholar] [CrossRef] [Green Version]
- Johnston, I.; Murphy, W.; Holden, J. A Review of Floodwater Impacts on the Stability of Transportation Embankments. Earth-Sci. Rev. 2021, 215, 103553. [Google Scholar] [CrossRef]
- Tennakoon, N.; Indraratna, B.; Rujikiatkamjorn, C.; Nimbalkar, S.; Neville, T. The Role of Ballast-Fouling Characteristics on the Drainage Cpacity of Rail Substructure. Geotech. Test. J. 2012, 35, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Alrdadi, R.; Meylan, M.H. Modelling Water Flow through Railway Ballast with Random Permeability and a Free Boundary. Appl. Math. Model. 2021, 103, 36–50. [Google Scholar] [CrossRef]
- Tsubaki, R.; Kawah, Y.; Ueda, Y. Railway Embankment Failure due to Ballast Layer Breach Caused by Inundation Flows. Nat. Hazards 2017, 87, 717–738. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Meylan, M.H.; Lamichhane, B. Coupled Brinkman and Kozeny–Carman Model for Railway Ballast Washout using the Finite Element Method. J. R. Soc. N. Z. 2021, 51, 375–388. [Google Scholar] [CrossRef]
- Kochina, P. Theory of Ground Water Movement; Princeton University Press: Princeton, NJ, USA, 1962. [Google Scholar]
- Elliott, C.M.; Ockendon, J.R. Weak and Variational Methods for Moving Boundary Problems; Pitman: Boston, MA, USA, 1982. [Google Scholar]
- Xiao, J.E.; Ku, C.Y.; Liu, C.Y.; Fan, C.M.; Yeih, W. On Solving Free Surface Problems in Layered Soil using the Method of Fundamental Solutions. Eng. Anal. Bound. Elem. 2017, 83, 96–106. [Google Scholar] [CrossRef]
- Atmojo, P.S.; Sachro, S.S.; Edhisono, S.; Hadihardaja, I.K. Simulation of the Effectiveness of the Scouring Prevention Structure at the External Rail Ballast using Physical Model. Int. J. GEOMATE 2018, 15, 178–185. [Google Scholar] [CrossRef]
- Polemio, M.; Lollino, P. Failure of Infrastructure Embankments Induced by Flooding and Seepage: A Neglected Source of Hazard. Nat. Hazards Earth Syst. 2011, 11, 3383–3396. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, P.J.; Mitchell, J.W. Fox and McDonald’s Introduction to Fluid Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Vafai, K. (Ed.) Handbook of Porous Media; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Danquah, W.O.; Ghataora, G.S.; Burrow, M.N. The Effect of Ballast Fouling on the Hydraulic Conductivity of the Rail Track Substructure. In Proceedings of the XV Danube-European Conference on Geotechnical Engineering (DECGE), Vienna, Austria, 9–11 September 2014; Austrian Society for Soil Mechanics and Geotechnical Engineering: Vienna, Austria, 2014. [Google Scholar]
- Koohmishi, M.; Palassi, M. Effect of Gradation of Aggregate and Size of Fouling Materials on Hydraulic Conductivity of Sand-Fouled Railway Ballast. Constr. Build. Mater. 2018, 167, 514–523. [Google Scholar] [CrossRef]
- Larese, A.N.; Rossi, R.; Onate, E.; Idelsohn, S. A Coupled PFEM–Eulerian Approach for the Solution of Porous FSI Problems. Comput. Mech. 2012, 50, 805–819. [Google Scholar] [CrossRef]
Water Level () | X | Z | |||
---|---|---|---|---|---|
cm | 10 cm | 12 cm | 14 cm | 15 cm | |
0 | 10 | 12 | 14 | 15 | |
16 | 10 | 12 | 14 | 15 | |
28 | 9 | 11.5 | 13.7 | 14.5 | |
46 | 8.4 | 10.5 | 13.4 | 14.1 | |
48 | 8.4 | 10.5 | 13 | 12.2 | |
69 | 7 | 9.5 | 11.8 | 12.2 | |
71 | 7 | 9.5 | 11 | 10.7 | |
88 | 4.2 | 4.2 | 7.5 | 7.5 | |
100 | 1.3 | 1.1 | 2.7 | 2 | |
140 | 1.3 | 1.5 | 2 | 2 | |
148 | 1.3 | 1.3 | 1.8 | 1.9 | |
157 | 1.3 | 1.3 | 1.8 | 1.9 | |
160 | 1.3 | 1.3 | 1.8 | 1.9 |
Area of Flow cm | Error | ||
---|---|---|---|
Experiment | This Study | ||
10 cm | 830.8500 | 838.3808 | |
12 cm | |||
14 cm | |||
15 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrdadi, R.; Meylan, M.H. Modelling Experimental Measurements of Fluid Flow through Railway Ballast. Fluids 2022, 7, 118. https://doi.org/10.3390/fluids7030118
Alrdadi R, Meylan MH. Modelling Experimental Measurements of Fluid Flow through Railway Ballast. Fluids. 2022; 7(3):118. https://doi.org/10.3390/fluids7030118
Chicago/Turabian StyleAlrdadi, Raed, and Michael H. Meylan. 2022. "Modelling Experimental Measurements of Fluid Flow through Railway Ballast" Fluids 7, no. 3: 118. https://doi.org/10.3390/fluids7030118
APA StyleAlrdadi, R., & Meylan, M. H. (2022). Modelling Experimental Measurements of Fluid Flow through Railway Ballast. Fluids, 7(3), 118. https://doi.org/10.3390/fluids7030118