Flow Characteristics at a River Diversion Juncture and Implications for Juvenile Salmon Entrainment
Abstract
:1. Introduction
2. Material and Methods
2.1. Fluid FLow Numerical Method
2.2. Fish Tracking Method
2.3. Discussion of Passive Fish Assumption
3. Result-Discussion
3.1. Flow Simulation and Model Validation
3.2. Discussion of the Flow Characteristics
3.3. Fish Entrainment Result at the Juncture of the Straight Main Channel
3.4. Secondary Flow Effect on the Fish Entrainment
3.5. Discussion of the Fish Entrainment Results
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neary, V.S.; Odgaard, A.J. Three-dimensional flow structure at open channel diversions. J. Hydraul. Eng. 1993, 119, 1223–1230. [Google Scholar] [CrossRef]
- Barkdoll, B.D.; Hagen, B.L.; Odgaard, A.J. Experimental comparison of dividing open-channel with duct flow in T-Junction. J. Hydraul. Eng. 1998, 124, 92–95. [Google Scholar] [CrossRef]
- Ramamurthy, A.S.; Qu, J.; Vo, D. Numerical and experimental study of dividing open-channel flows. J. Hydraul. Eng. 2007, 133, 1135–1144. [Google Scholar] [CrossRef]
- Babagoli Sefidkoohia, R.; Shahidib, A.; Ramezani, Y.; Kahed, M. Simulation of flow pattern in intake by using a numerical model. Water Harvest. Res. 2017, 2, 24–36. [Google Scholar] [CrossRef]
- Bulle, H. Untersuchungen Über die Geschiebeableitung bei der Spaltung von Wasserläufen: Modellversuche aus dem Flussbaulaboratorium der Technischen Hochschule zu Karlsruhe; VDI: Karlsruhe, Germany, 1926. (In German) [Google Scholar]
- Dutta, S.; Garcia, M.H. Nonlinear Distribution of Sediment at River Diversions: Brief History of the Bulle Effect and Its Implications. J. Hydraul. Eng. 2018, 144, 03118001. [Google Scholar] [CrossRef]
- Sommer, T.; Nobriga, M.L.; Harrell, W.C.; Batham, W.; Kimmerer, W.J. Floodplain rearing of juvenile Chinook salmon: Evidence of enhanced growth and survival. Can. J. Fish. Aquat. Sci. 2001, 58, 325–333. [Google Scholar] [CrossRef]
- Jeffres, C.A.; Opperman, J.J.; Moyle, P.B. Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon in a California river. Environ. Biol. Fishes 2008, 83, 449–458. [Google Scholar] [CrossRef]
- Bellmore, J.R.; Baxter, C.V.; Martens, K.; Connolly, P.J. The floodplain food web mosaic: A study of its importance to salmon and steelhead with implications for their recovery. Ecol. Appl. 2013, 23, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.J.; Rahel, F.J. Irrigation canals as sink habitat for trout and other fishes in a Wyoming drainage. Trans. Am. Fish. Soc. 2008, 137, 951–961. [Google Scholar] [CrossRef]
- Buchanan, R.A.; Skalski, J.R.; Brandes, P.L.; Fuller, A. Route use and survival of juvenile Chinook salmon through the San Joaquin River Delta. N. Am. J. Fish. Manag. 2013, 33, 216–229. [Google Scholar] [CrossRef]
- Nichols, F.H.; Cloern, J.E.; Luoma, S.N.; Peterson, D.H. The modification of an estuary. Science 1986, 231, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.W.; Skalski, J.R.; Brandes, P.L.; Sandstrom, P.T.; Klimley, A.P.; Ammann, A.; MacFarlane, B. Estimating survival and migration route probabilities of juvenile Chinook salmon in the Sacramento–San Joaquin river delta. N. Am. J. Fish. Manag. 2010, 30, 142–156. [Google Scholar] [CrossRef]
- Perry, R.W.; Romine, J.G.; Adams, N.S.; Blake, A.R.; Burau, J.R.; Johnston, S.V.; Liedtke, T.L. Using a non-physical behavioural barrier to alter migration routing of juvenile Chinook Salmon in the Sacramento−San Joaquin River Delta. River Res. Appl. 2014, 30, 192–203. [Google Scholar] [CrossRef]
- Newman, K.B.; Brandes, P.L. Hierarchical modeling of juvenile Chinook salmon survival as a function of Sacramento–San Joaquin Delta water exports. N. Am. J. Fish. Manag. 2010, 30, 157–169. [Google Scholar] [CrossRef]
- Brandes, P.L.; McLain, J.S. Juvenile Chinook Salmon Abundance, Distribution, and Survival in the Sacramento-San Joaquin Estuary; Brown, R.L., Ed.; Contributions to the Biology of Central Valley Salmonids; Fish Bulletin: Sacramento, CA, USA, 2001; Volume 179, pp. 39–99. [Google Scholar]
- Post, J.R.; van Poorten, B.T.; Rhodes, T.; Askey, P.; Paul, A. Fish entrainment into irrigation canals: An analytical approach and application to the Bow River, Alberta, Canada. N. Am. J. Fish. Manag. 2006, 26, 875–887. [Google Scholar] [CrossRef]
- Carlson, A.J.; Rahel, F.J. A basin wide perspective on entrainment of fish in irrigation canals. Trans. Am. Fish. Soc. 2007, 136, 1335–1343. [Google Scholar] [CrossRef]
- Steel, A.; Lemasson, B.; Smith, D.L.; Israel, J. Two-Dimensional Movement Patterns of Juvenile Winter-Run and Late-Fall-Run Chinook Salmon at the Fremont Weir, Sacramento River, CA. In Project Report, ERDC/EL TR-17-10; ERDC-EL Vicksburg United States: Sacramento, CA, USA, 2017. [Google Scholar]
- Goodwin, R.A. Hydrodynamics and Juvenile Salmon Movement Behavior at Lower Granite Dam: Decoding the Relationship Using 3-D Space-Time (CEL Agent IBM) Simulation. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2004. [Google Scholar]
- Goodwin, R.A.; Nestler, J.M.; Anderson, J.J.; Weber, L.J.; Loucks, D.P. Forecasting 3-D fish movement behavior using a Eulerian-Lagrangian-agent method (ELAM). Ecol. Modell. 2006, 192, 197–223. [Google Scholar] [CrossRef]
- Smith, D.L.; Nestler, J.M.; Johnson, G.E.; Goodwin, R.A. Species-specific spatial and temporal distribution patterns of emigrating juvenile salmonids in the Pacific Northwest. Rev. Fish. Sci. 2010, 18, 40–64. [Google Scholar] [CrossRef]
- McNamara, J.M.; Fawcett, T.W.; Houston, A.I. An adaptive response to uncertainty generates positive and negative contrast effects. Science 2013, 340, 1084–1086. [Google Scholar] [CrossRef]
- Goodwin, R.A.; Politano, M.; Garvin, J.W.; Nestler, J.M.; Hay, D.; Anderson, J.J.; Weber, L.J.; Dimperio, E.; Smith, D.L.; Timko, M.A. Fish navigation of large dams emerges from their modulation of flow field experience. Proc. Natl. Acad. Sci. USA 2014, 111, 5277–5282. [Google Scholar] [CrossRef] [Green Version]
- Dabiri, J.O. Biomechanics: How fish feel the flow. Nature 2017, 547, 406–407. [Google Scholar] [CrossRef] [PubMed]
- Oteiza, P.; Odstrcil, I.; Lauder, G.V.; Portugues, R.; Engert, F. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature 2017, 547, 445–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bever, A.J.; MacWilliams, M.L. Factors Influencing the Calculation of Periodic Secondary Circulation in a Tidal River: Numerical Modelling of the Lower Sacramento River, USA. Hydrol. Processes 2015, 30, 995–1016. [Google Scholar] [CrossRef]
- Ramon, C.L.; Acosta, M.; Rueda, F.J. Hydrodynamic Drivers of Juvenile-Salmon Out-Migration in the Sacramento River: Secondary Circulation. J. Hydraul. Eng. 2018, 144, 04018042. [Google Scholar] [CrossRef]
- Goodwin, R.A.; Lai, Y.G.; Smith, D.L.; Reeves, R.; McQuirk, J. Juvenile salmon movement/passage through the tidal free-flowing Georgiana Slough and Sacramento River junction emerge from swim orientation based on their recent past experience in water speed, the velocity gradient, water acceleration, and pressure. In Project Final Report; Department of Water Resources: Sacramento, CA, USA, 2018. [Google Scholar]
- Perry, R.W.; Brandes, P.L.; Burau, J.R.; Sandstrom, P.T.; Skalski, J.R. Effect of Tides, River Flow, and Gate Operations on Entrainment of Juvenile Salmon into the Interior Sacramento–San Joaquin River Delta. Trans. Am. Fish. Soc. 2015, 144, 445–455. [Google Scholar] [CrossRef]
- Cavallo, B.; Gaskill, P.; Melgo, J.; Zeug, S.C. Predicting juvenile Chinook salmon routing in riverine and tidal channels of a freshwater estuary. Environ. Biol. Fishes 2015, 98, 1571–1582. [Google Scholar] [CrossRef]
- Romine, J.G.; Perry, R.W.; Stumpner, P.R.; Blake, A.R.; Burau, J.R. Effects of tidally varying river flow on entrainment of juvenile salmon into Sutter and Steamboat Sloughs. San Fr. Estuary Watershed Sci. 2021, 19, 1–17. [Google Scholar] [CrossRef]
- Hance, D.J.; Perry, R.W.; Burau, J.R.; Blake, A.; Stumpner, P.; Wang, X.; Pope, A. Combining models of the critical dtreakline and the cross-sectional distribution of juvenile salmon to predict fish routing at river junctions. San Fr. Estuary Watershed Sci. 2020, 18, 3. [Google Scholar]
- Lai, Y.G.; Weber, L.J.; Patel, V.C. Non-hydrostatic three-dimensional method for hydraulic flow simulation—Part I: Formulation and verification. J. Hydraul. Eng. 2003, 129, 196–205. [Google Scholar] [CrossRef]
- Lai, Y.G.; Smith, D.L.; Bandrowski, D.J.; Xu, Y.; Woodley, C.M.; Schnell, K. Development of a CFD model and procedure for flows through in-stream structures. J. Appl. Water Eng. Res. 2021. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Gross, E.S.; Holleman, R.C.; Thomas, M.J.; Fangue, N.A.; Rypel, A.L. Development and Evaluation of a Chinook Salmon Smolt Swimming Behavior Model. Water 2021, 13, 2904. [Google Scholar] [CrossRef]
- Blake, A.; Horn, M.J. Acoustic tracking of juvenile Chinook salmon movement in the vicinity of the delta cross channel, Sacramento river, California—2001 study results. In USGS Open-File Reports; USGS: Washington, DC, USA, 2004. [Google Scholar]
- Zeng, Y. Hydrodynamics and Performance Evaluations of Fish Passages Based on Computational Fluid Dynamics and Individual-Based Methods. Ph.D. Thesis, Deptartment Civil Engineering, The Pennsylvania State University, University Park, PA, USA, 2021. [Google Scholar]
- Nelson, W.R.; Freidenburg, L.K.; Rondorf, D.W. Swimming performance of subyearling Chinook salmon. In Identification of the Spawning, Rearing, and Migratory Requirements of fall Chinook Salmon in the Columbia River Basin; Rondorf, D.W., Miller, V.H., Eds.; Bonneville Power Administration: Portland, OR, USA, 1994; pp. 39–62. [Google Scholar]
- Taylor, E.H. Flow characteristics at rectangular open-channel junctions. Trans. ASCE 1944, 107, 893–912. [Google Scholar] [CrossRef]
- Grace, J.L.; Priest, M.S. Division of Flow in Open Channel Junctions. Bulletin No. 31; Engineering Experimental Station, Polytechnic Institute: Auburn, AL, USA, 1958. [Google Scholar]
- Tanaka, K. The improvement of the inlet of the Power Canal. In Proceedings of the Transactions of the Seventh General Meeting of IAHR, Lisboa, Portugal, June 1957; Volume 1, p. 17. [Google Scholar]
- Law, S.W.; Reynolds, A.J. Dividing flow in an open channel. J. Hydraul. Div. 1966, 92, 4730–4736. [Google Scholar] [CrossRef]
- Hager, W.H. An approximate treatment of flow in branches and bends. J. Mech. Eng. Sci. 1984, 198, 63–69. [Google Scholar] [CrossRef]
- Gohari, S. Laboratory investigation of separation line at the intake sand its relation to sediment control. In Proceedings of the 9th International Congress on Civil Engineering, Isfahan University of Technology, Isfahan, Iran, 8 May 2012. [Google Scholar]
- Liepsch, D.; Moravec, S.; Rastogi, A.K.; Vlachos, N.S. Measurement and calculations of laminar flow in a ninety degree bifurcation. J. Biomech. 1982, 15, 473–485. [Google Scholar] [CrossRef]
- Shettar, A.; Murthy, K. A numerical study of division of flow in open channels. J. Hydraul. Res. 1996, 34, 651–675. [Google Scholar] [CrossRef]
- Vasquez, J.A. Two-dimensional numerical simulation of flow diversions. In Proceedings of the 17th Canadian Hydrotechnical Conference, Edmonton, Alberta, 17–19 August 2005. [Google Scholar]
- Neary, V.S.; Sotiropoulos, F. Numerical investigation of laminar flows through 90-degree diversion of rectangular cross-section. Comput. Fluids 1996, 25, 95–118. [Google Scholar] [CrossRef]
- Issa, R.I.; Oliveira, P.J. Numerical prediction of phase separation in two-phase flow through T-junction. Comput. Fluids 1994, 23, 347–372. [Google Scholar] [CrossRef] [Green Version]
- Neary, V.S.; Sotiropoulos, F.; Odgaard, A.J. Three-dimensional numerical model of lateral-intake inflows. J. Hydraul. Eng. 1999, 125, 126–140. [Google Scholar] [CrossRef]
- Heer, A.d.; Mosselman, E. Flow structure and bedload distribution at alluvial diversions. River Flow 2004. In Proceedings of the Second International Conference on Fluvial Hydraulics, Napoli, Italy, 23–25 June 2004; Volume 1, pp. 801–806. [Google Scholar]
- Qu, J. Three-Dimensional Turbulence Modeling for Free Surface Flows. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2005. [Google Scholar]
- Marelius, F.; Sinha, S.K. Experimental Investigation of Flow Past Submerged Vanes. J. Hydraul. Eng. 1998, 124, 542–545. [Google Scholar] [CrossRef]
- Daniels, M.D.; Rhoads, B.L. Influence of a large woody debris obstruction on three-dimensional flow structure in a meander bend. Geomorphology 2003, 51, 159–173. [Google Scholar] [CrossRef]
- Cash, K.M.; Adams, N.S.; Hatton, T.W.; Jones, E.C.; Rondorf, D.W. Three Dimensional Fish Tracking to Evaluate the Operation of the Lower Granite Surface Bypass Collector and Behavioral Guidance Structure during 2000; US Geological Survey Report to US Army Corps of Engineers: Walla Walla, DC, USA, 2002; Volume 73. [Google Scholar]
Scenario Label | % of Flow Diverted | Fish Distribution | % of Fish Entrained | Fish Entrainment Efficiency |
---|---|---|---|---|
84T | 83.8 | Top Half | 79.4 | 0.95 |
84B | 83.8 | Bottom Half | 90.3 | 1.08 |
84L | 83.8 | Entrainment Side Half | 100.0 | 1.20 |
84R | 83.8 | Non-Entrainment Half | 68.3 | 0.81 |
50T | 50.0 | Top Half | 44.4 | 0.89 |
50B | 50.0 | Bottom Half | 57.1 | 1.14 |
50L | 50.0 | Entrainment Side Half | 92.0 | 1.82 |
50R | 50.0 | Non-Entrainment Half | 9.9 | 0.20 |
20T | 20.0 | Top Half | 17.9 | 0.90 |
20B | 20.0 | Bottom Half | 23.0 | 1.15 |
20L | 20.0 | Entrainment Side Half | 40.0 | 2.0 |
20R | 20.0 | Non-Entrainment Half | 0.006 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.G. Flow Characteristics at a River Diversion Juncture and Implications for Juvenile Salmon Entrainment. Fluids 2022, 7, 98. https://doi.org/10.3390/fluids7030098
Lai YG. Flow Characteristics at a River Diversion Juncture and Implications for Juvenile Salmon Entrainment. Fluids. 2022; 7(3):98. https://doi.org/10.3390/fluids7030098
Chicago/Turabian StyleLai, Yong G. 2022. "Flow Characteristics at a River Diversion Juncture and Implications for Juvenile Salmon Entrainment" Fluids 7, no. 3: 98. https://doi.org/10.3390/fluids7030098
APA StyleLai, Y. G. (2022). Flow Characteristics at a River Diversion Juncture and Implications for Juvenile Salmon Entrainment. Fluids, 7(3), 98. https://doi.org/10.3390/fluids7030098