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Abstract: A data-driven adaptive reduced order modelling approach is presented for the reconstruc-
tion of impulsively started and vortex-dominated flows. A residual-based error metric is presented
for the first time in the framework of the adaptive approach. The residual-based adaptive Reduced
Order Modelling selects locally in time the most accurate reduced model approach on the basis of
the lowest residual produced by substituting the reconstructed flow field into a finite volume dis-
cretisation of the Navier–Stokes equations. A study of such an error metric was performed to assess
the performance of the resulting residual-based adaptive framework with respect to a single-ROM
approach based on the classical proper orthogonal decomposition, as the number of modes is varied.
Two- and three-dimensional unsteady flows were considered to demonstrate the key features of the
method and its performance.

Keywords: data-driven reduced order modelling; unsteady aerodynamics; vortex-dominated flows

1. Introduction

The development of algorithms capable of reducing the computational efforts required
to obtain numerical solutions to aerodynamic problems has attracted much attention in
the past decades [1–4]. The aim being to find the optimal trade-off between accuracy and
cost, recent trends have seen the emergence of the so-called data-driven Reduced Order
Models (ROMs) [5]. These are techniques where a set of reference data, called the training
set, is collected and scrutinised to identify the relevant dynamics underlying the flow
under investigation, which is subsequently used to make predictions for new untested
conditions in a fast and accurate manner. Unsteady problems in fluid dynamics are good
candidates for the application of reduced order modelling since time dynamics of high-
dimensional fluid systems is likely to lie in a much lower dimensional space than the
original high-dimensional system [6]. Nevertheless, highly nonlinear unsteady flows pose
several challenges to model order reduction techniques as they can exhibit time-varying
dominant and underlying features that might not always be easily identified. This is why
much attention has been devoted recently to the formulation of ROM techniques specifically
targeting unsteady flow physics [7–9].

A widely used algorithm to achieve order reduction is Proper Orthogonal Decom-
position (POD) [10,11]. The algorithm extracts a set of orthogonal basis functions that
identify an optimal low-dimensional linear manifold. The evolution of the system on this
linear space can then be obtained by intrusively projecting the system governing equations
onto the low-dimensional manifold [12–14] or alternatively using non-intrusive techniques
that rely on interpolation [15–17] or machine learning algorithms [18–21]. The POD basis
functions are orthogonal and optimal with respect to an energy norm, which means that
they are the closest basis to the original dataset with respect to any other linear basis
obtained adopting the same norm [22]. Nevertheless, POD has been recognised to have
some limitations in extracting pure dynamics information [7,23], and alternatives have
been proposed [8,9,24]. One of the drawbacks of POD is the energy criterion used to extract
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the basis functions. When the truncation of the initial set of modes is considered, only the
most energetic flow primitives are retained. This might cause the loss of important spatial
structures, which are low in energy, but important for the time dynamics [23]. Usually the
neglected spatial structures are the ones associated with dissipation, and not considering
them is likely to cause instabilities in time. To avoid inaccuracies related to the POD basis,
ad hoc fixes have been introduced, which include adding damping terms [25] or perform-
ing calibration techniques to adjust the POD coefficients, in order to take into account the
effect of the unresolved modes. Moreover, it can happen that the most energetic modes are
not representative of physical coherent structures in the flow [9] and therefore not able to
represent the actual dynamics in a low-dimensional space. When reconstructing certain
classes of flows, variants of POD such as spectral POD [9] and diverse formulations of
Dynamic Mode Decomposition (DMD) [8,24,26–28] have been found to perform better
than POD. However, the exploration of these variants revealed that a unique, single-ROM
approach cannot be identified that consistently outperforms other methods when used to
reconstruct a flow whose characteristics are not known a priori, i.e., a flow for which it is
not known if it is periodic, quasi-periodic, or shows some otherwise well-defined trend, etc.

In order to cope with this circumstance, a new strategy has been recently introduced
that promotes synergy among different techniques for basis extraction [29]. The so-called
adaptive ROM framework implements a strategy that automatically, at every instant of time,
is capable of selecting locally a set of basis functions proven to provide the best accuracy
possible in reconstructing the flow dynamics among a collection of methods available. The
concept of adaptivity has been used in the recent literature on ROM [30–32], but it has not
been developed in the sense of realising an adaptive choice of basis functions from different
techniques. In all these existing examples, POD has always been the basis to elaborate the
adaptivity in different manners. Moreover, in the wider field of surrogate modelling, there
has been work performed where error metrics are used to choose the best-fitting model [33].
The originality in [29] stands therefore in combining different sets of basis functions in a
unique framework, which aims at introducing a dynamic component that can balance the
energy-only-based description provided by POD. Key to the adaptive ROM framework is
the definition of a metric to judge what is the best method. In [29], the adaptive framework
uses a direct error estimation, where a snapshot is excluded from the training set and used
to compute the difference between that and a corresponding ROM solution. Other than not
allowing exploiting all the available snapshots for training, such a direct approach bears
a certain level of inaccuracy when evaluating the error at points for which a high-fidelity
solution is not available. This means that the direct method, despite being an immediate
natural choice, leaves the adaptive framework with a heterogeneous measure of the ROM
reconstruction, likely to be accurate in the test points and more uncertain in other locations
where some sort of interpolation or nearby error values are used.

In the present work, an a posteriori error measure is adopted for use in the framework
of [29]. This metric uses the residual of the Navier–Stokes equations obtained by substi-
tuting the ROM solution into a finite volume discretisation. Using the residual does not
require excluding snapshots from the initial set of training samples and, more importantly,
promotes a more consistent estimate of the error for the whole parameter space. Since the
error can be evaluated at many points at a low cost, estimates for all other points can be
more accurately obtained by interpolation. This approach was first introduced in [34], while
this work extends the analysis presented there. A sensitivity analysis is performed with re-
spect to the number of modes used for reconstructions. How this affects the reconstruction
is discussed with the aim of understanding how the residual-based error measure is able
to provide improvements over a single-ROM approach. This element is key to assessing
the ability of the adaptive framework to produce improved solutions with a lower number
of degrees of freedom than a single-ROM approach. Since the aim of the framework is
to perform effectively and efficiently over a wide class of unsteady flows, problems with
different flow physics are considered here, e.g., flow with no specific periodic pattern or
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development and flow that starts with a highly nonlinear generation and interaction of
vortices and then develops towards an advection–diffusion-dominated flow, among others.

A practical application of the framework is the enrichment of the nonlinear time
dynamics of a problem. Provided that the physical processes are contained with sufficient
detail in the snapshot set, the user can precisely identify in time–space where certain events
occur, e.g., flow separation or vortex breakdown. This is made possible since the constraint
on the time step size (due to increasing computational complexity) is eliminated by the
framework. Similarly, the framework can be leveraged with the intent of saving storage
space. The user can save CFD solutions only at some of the time steps to construct the
training set. Then, solutions at any of the intermediate time steps can be recovered in a fast
manner, e.g., in comparison to direct interpolation on the full-order model.

The paper is structured as follows: Section 2 describes the mathematical formulation
of the adaptive ROM problem based on the residual error metric; Section 3 presents the
implementation of the adaptive framework, describing also the set of ROMs considered;
Section 4 presents the numerical derivation of the residual error measure used in the
adaptive framework; Section 5 proposes a sensitivity analysis on the residual with respect
to the number of modes retained in the adaptive framework presenting two demonstration
cases, namely the impulsive start of a NACA0009 airfoil and a 30P30N airfoil; Section 6
presents a 3D test case, where an analysis of the unsteady vortex dynamics past a delta
wing are provided, including the analysis of vortex breakdown over the wing; then, in
Section 7 an application of the adaptive framework is provided in the context of three delta
wings in a formation flight; finally, Section 8 presents final remarks and the outlook.

2. Mathematical Formulation of the Adaptive ROM Framework for Multi-Query Problems

Let S = {qN1 , qN2 , . . . , qNNs
} be a set of solutions to the Navier–Stokes equations, over

a given tessellation TΩ of the physical domain Ω, where qN (t) ∈ VN , VN represents the
space of all possible solutions, and N represents the number of degrees of freedom of
the problem, depending on the specific tessellation T used. A continuous definition of
the residual associated with these solutions, for the specific case of unsteady problems, is
defined as:

R(t, q, w) =
∫

Ω

(
∂q
∂t

+∇ · (F c(t, q) +F v(t, q))
)
· w ∂Ω (1)

where w is a function with compact support, according to the finite volume formulation,
q represents the vector of conservative variables, and F c,F v are the vectors of convective
and viscous fluxes, respectively,

q =


ρ

ρ~u
ρet

,F c =


ρ~u

ρ~u⊗ ~u + PI
ρet~u + P~u

,F v =


0
τ̄

τ̄~u + ρ~Q

 (2)

In Equation (2), ρ is the flow density, ~u is the velocity vector, P is the thermodynamic
pressure, et is the total energy, τ̄ is the viscous stress tensor, and ~Q is the heat flux vector.

Let A = {qN,1
∗ , qN,2

∗ , . . . , qN,R
∗ } be a set of low-dimensional solutions computed from

different ROM algorithms mr ∈ M = {m1, m2, . . . , mR} at an instance t∗ of the many-query
problem considered, which can be different from the set of times used to train the ROM,
i.e., the set S. N represents the number of degrees of freedom of the set of low-dimensional
solutions, which is often much smaller than the number of degrees of freedom of the
original problem (N � N ). The rationale at the basis of the proposed adaptive framework
is to select the low-dimensional solution that is closest to the solution directly computed
in VN . In this work, a residual-based approach is introduced to assess the various ROM
solutions, which consists of the evaluation of the residual defined in Equation (1). Hence,
the adaptive framework aims at selecting the reduced order method that satisfies the
following condition:

min
mr∈M

‖R(t∗, qN,r, w)‖ (3)
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where ‖ · ‖ denotes the Euclidean norm. The adaptive framework selects the low-dimensional
solution that generates the minimum residual when substituted in the set of Navier–
Stokes equations.

3. Implementation of Adaptive ROM

In terms of practical steps, the adaptive framework can be schematised as follows,
separated into an offline and online phase. The offline phase consists of three steps:

(1) Generation of the dataset S = {qN1 , qN2 , . . . , qNNs
}, where qNj indicates the entire set of

conservative variables;
(2) Construction of R low-dimensional models, where R is defined by the user on the

basis of the ROM algorithms available, and computation of their reconstruction on a
specified time grid, A = {qN,1

tj
, . . . , qN,R

tj
}, with j = 1, 2, . . . , Nt the specified time grid;

(3) Error estimation for each method on the specified time grid through the residual
R(tj, qN,r

tj
, w). Each method will have, at each time instance of the time grid used, a set

of residuals corresponding to the set of conservative variables of the problem at hand.

There is no limitation in the number and type of ROMs to include in the adaptive
framework, and methods can be added and removed at any time, also on the basis of the
specific problem at hand. Consequently, at the end of the offline phase, a certain number of
different basis sets are extracted and a residual database is obtained associated with each
ROM. A residual database is constructed by feeding ROM solutions to the same solver that
was used to obtain high-fidelity snapshots for the training set. The specific solver used in
the present work is the open-source CFD solver SU2 [35]. The online phase consists of two
very fast steps:

(1) Using as inputs the residual database and the desired time instant t∗ of the many-query
problem, selecting the best low-dimensional model for each conservative variable
in qN∗ ;

(2) Computing the reconstruction for each conservative variable in qN∗ , using a formula
based on the method selected.

A schematic of the complete offline-online procedure is reported in Algorithm 1. Since
the error definition used in the adaptive strategy is equation based, i.e., it uses the original
set of governing equations of the system, the adaptive framework implemented will be also
referred to as residual-based adaptive ROM. Moreover, considering the definition of the
residual error, it will always be assumed hereafter that the adaptive framework is applied
to the entire set of conservative variables, namely the vector q in Equation (2), which are
all treated as independent variables to build the low-dimensional space.
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Algorithm 1: Adaptive reduced order modelling framework.

Offline Phase

1. Design of experiments and generation of snapshot set S = {qN1 , qN2 , . . . , qNNs
}

inputs : Snapshot set, S
outputs : Low-dimensional models, A, error database,R
variables : Total number of methods, R, time step for error estimation, ∆tres,

vector of conserved quantities, q

begin

for r ∈ [1, ..., R] do

2. Construction of low-dimensional models from S.

3. Error estimation on the specified ∆tres grid

3a. Solution reconstruction of the set of conservative variables with
time step ∆tres

3b. Substitution of reconstructions into FV discretisation to compute
the residual of each conservative variable

3c. Interpolation step to obtain an estimate of the error for all time
instants

A = {qN,1
tj

, . . . , qN,R
tj
}

R(tj, qN,r
tj

, w)

Online Phase

inputs : Low-dimensional models, A, error database,R
outputs : Full-order solution reconstruction of conserved quantities, q
variables : Untried time instant(s) t∗

begin

for t∗ ∈ t do

1. Method selection

1a. Find r∗ to select the method from A whereR(t∗, qN,r, w) is lowest.

2. Solution reconstruction

2a. Load low-dimensional model from A, for t∗ and r∗.

2b. RBF interpolation of modal coefficients.

2c. Compute full-order solution reconstruction at t∗.

qN∗

Basis Identification and Flow Reconstruction

Three model order reduction algorithms are considered for building the adaptive
framework in this work, namely POD, DMD, and Recursive Dynamic Mode Decom-
position (RDMD). The last two algorithms are introduced in an effort to better exploit
the time correlation among snapshots, which is not explicitly considered by POD. All
three algorithms are based on the following assumption for expressing the approximated
ROM solution:

q(x, t) ≈ q̂ =
Nm

∑
i=1

ai(t)φi(x) (4)
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where Nm is the number of modes and q̂ is the approximated ROM solution of conserved
quantities, which is expressed as a linear combination of spatial basis functions φi through
time dynamics coefficients ai. The assumption in Equation (4) makes these methods linear,
even though nonlinearities in space and time can be resolved through nonlinear temporal
and spatial eigenfunctions, ai and φi, respectively. In the present work, both spatial and
temporal eigenfunctions are extracted through data. The POD spatial eigenfunctions are
extracted using the method of snapshots introduced by Sirovich [36], and the DMD spatial
eigenfunctions are obtained using the exact DMD algorithm described in [37], whereas
the RDMD spatial modes are computed through the algorithm introduced in [24]. The
coefficients ai in the case of the DMD method are computed as follows:

ai(t) = αieωit (5)

where ωi and αi are constant values extracted from the data. ωi is the i−th DMD eigenvalue
computed according to the exact DMD algorithm [37]; αi are instead computed according
to [38]. POD and RDMD provide instead discretised temporal eigenvectors, the temporal
eigenfunctions, which are later interpolated using Radial Basis Function (RBF) interpolation
to obtain a continuous function of time:

ai(t) = p(t) +
Ns

∑
j=1

wj f (|t− tj|) (6)

where p(t) is a polynomial of low degree and the basis function f is a real-valued func-
tion [39], which in the present work was chosen to be a Gaussian. The tj are referred to
as the centres of the RBF, and they are the time instants corresponding to the training
snapshots. On the basis of these formulas, the online phase of the adaptive framework is
completely non-intrusive. An important note in relation to reconstructions computed using
the adaptive selection is that at present, time continuity is not enforced when solutions at
subsequent time instants are obtained using different ROM methods.

4. Residual-Based Error Estimation

A derivation of the residual error introduced in Section 2 is reported in the current
section. A finite volume discretisation of the initial set of Navier–Stokes Equation is
considered, and the residual error is then computed by substituting an approximated ROM
solution provided by Equation (4) into such a discretisation. Since the focus is on unsteady
fluid problems, an edge-based finite volume formulation is considered for the residual
error, equipped with a Backward Difference Formula (BDF) for the unsteady term, which
ensures second-order accuracy. The formula is derived in the following. The Navier–Stokes
equations in conservative form reads:

∂q
∂t

+∇ · F (q) = 0 (7)

where q indicates the vector of conservative variables and F represents the vector of
convective and viscous fluxes, whose analytical expressions are reported in Equation (2).
Considering a finite volume approach, Equation (7) is integrated over the generic cell Ωi of
the computational domain, obtaining:∫

Ωi

∂q
∂t

dΩi +
∫

∂Ωi

F · nd(∂Ωi) = 0 (8)

where the second integral is obtained by applying the divergence theorem. Equation (8)
is still exact, and approximations are introduced to compute the volume and surface
integrals. Specifically, a linear variation of the quantity q is considered over the generic
cell Ωi, and the generic flux F (q) is evaluated over the edges of cell Ωi considering an
intermediate state q̂, which is computed on the basis of the value of q in the actual cell and
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the one in the neighbour cell sharing the same edge. The following approximations are
therefore introduced:

q(x) ≈ qi + (x− xi) · ∇q (9)

∫
∂Ωi

F · nd(∂Ωi) ≈
Nedges

∑
j=1
F̂j · Sj (10)

where F̂j is the flux computed at the intermediate state F̂j = F (q̂) and Sj = nSj, with Sj

the area of the generic edge. Substituting in Equation (8) and defining as R
′
i the residual

produced by the approximations introduced,

∂qi
∂t

Ωi +

Nedges

∑
j=1
F̂j · Sj = R

′
i (11)

A second-order BDF is finally considered for the temporal derivative, obtaining the
final expression of the residual Ri for the generic cell Ωi and for the entire set of the
conservative variables,

Ri = Ωi
3qn+1

i − 4qn
i + qn−1

i
2∆tres

+

Nedges

∑
j=1

F̂j · Sj

n+1

with i = 1, 2, . . . , Np (12)

where Ri = R
′
i + r and r represents the additional contribution to the residual coming from

the discretisation of the temporal derivative. Np represents the number of points of the
computational domain. The residual is evaluated at time instant t = tn+1. To obtain a
final measure of the residual error, the norm of Ri over the entire computational domain is
computed, normalised by the number of points. Therefore, for each conservative variable:

εR,j =

√√√√ 1
Np

Np

∑
i=1

R2
j,i (13)

with Rj,i the residual produced by the j−th conservative variable, in the i−th cell, according
to Equation (12). The ∆tres in Equation (12) represents an additional parameter for this
particular error definition and dictates at which time instants the ROM reconstructions
are computed to evaluate the residual. This can be different from the time step used for
the unsteady CFD simulation, denoted hereafter as ∆tCFD. In Step 3 of the offline phase,
∆tres is used for the computation of the error database (see Section 3). Another important
parameter used in this work is ∆tsamp, which is the time step used for the sampling of the
training snapshots to build the adaptive ROM.

5. Sensitivity with Respect to the Number of Modes

In order to investigate the capabilities of the adaptive framework as the number of
modes retained is varied, an integral of the residual error with respect to time is presented
as a function of the number of modes:

εR,T =
∫ T

t0

εRdt (14)

where [t0, T] is the time interval used to train each ROM and εR is the residual error defined
in Equation (13) for a generic conservative variable. To compute the integral, the residual
error εR is computed on a set of test points equispaced in time and with a resolution
∆tres ≤ ∆tCFD, which represents the same procedure adopted to build the residual error
database for the adaptive ROM. The integral is then approximated using a trapezoidal
rule. An additional quantity will be reported, which provides a better understanding of the
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improvements introduced by the adaptive framework locally in time, varying the number
of modes. This quantity represents the difference of the residual error produced by the
adaptive ROM and that produced by a single ROM,

εdiff = εR,S − εR,A (15)

where the subscripts A and S stand for adaptive and single, respectively, while εR still
represents the residual error as defined in Equation (13), for a generic conservative variable.
The expression single ROM refers to any ROM that extracts one set of global basis functions
from the original set of snapshots. In the following analysis, εR,S is considered as the
residual error of the POD method. This is because POD has been the most widely used
method in the literature for implementing ROMs in the case of unsteady problems and
it represents a good reference point for the community, even if the εR,S can represent the
error of any single ROM. For the same reason, the analysis reported on εR,T for the adaptive
framework will be compared with the POD technique as well. It is worth noting that, since
the POD is also included in the adaptive ROM, the quantity defined in Equation (15) will
always be a non-negative quantity.

5.1. Impulsive Start of a NACA0009 Airfoil

The impulsive start of a NACA0009 airfoil is considered here. The fixed freestream
values and parameters used for the unsteady simulation are summarised in Table 1. Under
these conditions, a vortex-dominated flow is established. In particular, the flow field is
characterised by an initial laminar bubble that grows gradually in time until it interacts
with the separated region near the trailing edge. This eventually leads to the onset of an
instability in the airfoil wake, causing the development of a quasi-periodic vortex-shedding-
like motion. The flow field is shown at different instants of time in Figure 1.

The mesh used for the domain discretisation is a viscous structured mesh with 91,039
elements and 91,650 grid points. The time discretisation is obtained using a constant time
step, ∆tCFD = 10−3 s, for advancing the unsteady simulation. As per the numerical setup
for the high-fidelity simulation, the laminar Navier–Stokes equations were solved, using
a second-order finite volume discretisation for the fluxes, adopting the standard MUSCL
approach and a second-order dual-time stepping scheme to deal with the unsteady part for
this and subsequent test cases. Note that with dual-time stepping, the CFL number only
impacts the solution in pseudo-time. The convective fluxes were discretised using the Roe
scheme. As the initial condition, the entire domain was initialised to freestream quantities,
while the boundary conditions on the body and at the domain borders were no-slip (for
momentum equations), adiabatic (for energy equation), and freestream quantities, respec-
tively.

Table 1. NACA0009 simulation parameters.

Mach α (deg) Reynolds T∞ (K) Time (s) ∆tCFD (s) CFL

0.1 15 10,000 288.15 0.3 10−3 5
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Figure 1. Contours of the Mach number for the impulsive start over the NACA0009 airfoil at different
instants of time. Left to right, top to bottom: t = 5.0× 10−3, 1.0× 10−2, 1.5× 10−2, 2.0× 10−2,
2.5× 10−2, 3.0× 10−2 s.

For the analysis of εR,T and εdiff, ROMs were constructed within the time window
[0, 0.3] s, where the dynamics of interest take place, using a sampling ∆tsamp of 4× 10−3 s,
which results in a number of snapshots Ns = 75 equally spaced in time. The maximum
number of modes that can be used in the adaptive ROM is therefore 75. Figure 2 reports the
quantity εR,T for the adaptive ROM and POD-only ROM, for the entire set of conservative
variables. An interesting aspect to discuss for these plots is the presence of a nonmonotonic
trend as the number of modes is increased. Indeed, the residual integral starts from
relatively lower values when using very few modes and increases as other modes are
added. Starting from a certain number of modes, the overall trend is then decreasing,
reaching a minimum when the entire set of modes is used. The nonmonotonic behaviour
can be linked to a physical interpretation of the modes. It is expected that the most
important modes should carry information about large spatial structures, while higher
modes solve for smaller spatial structures. When using very few modes, small spatial
structures are not resolved and something closer to the mean field with little variation
in time is reconstructed, which might be responsible for the lower residual. It is worth
highlighting at this point that Equation (12) represents a weak discretisation of the set
of initial governing equations of the system (the space of possible solutions is therefore
expanded), and moreover, it is completely blind to the actual physical time considered. As
more modes are added, new spatial structures start to be resolved, albeit with very low
resolution, which causes the residual integral to increase. Once the number of modes is
reached where all the spatial structures are present in the reconstructed flow field, adding
additional modes will decrease the integral residual, since also small structures start to be
resolved more accurately.
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Figure 2. The log10(εR,T) varying the number of modes, for adaptive ROM and POD, NACA0009
test case.

An illustration of this discussion can be seen in Figure 3, where a reconstruction at
a specific time instant, provided by the adaptive ROM, is reported using two different
numbers of modes that show the same residual integral from Figure 2, specifically 2 modes
(on the left) and 28 modes (on the right). The reconstruction in the wake of the airfoil with
two modes shows only averaged flow features, where the region of separated flow is clearly
visible, but no structures in the wake are resolved. Moving to 28 modes, it can be noticed
how more structures in the wake are resolved, but also new oscillations not present in the
reference field are added. These oscillations will vanish only when more modes are added,
with a consequent reduction of the residual error. The trend of εR,T with the number of
modes is not a unique feature of the residual-based adaptive ROM used in the present work.
As a matter of fact, considering the number of modes in the same way as the degrees of
freedom of the computational mesh, the nonmonotonic behaviour has been observed also
for the case of error estimators used for a steady linear advection–diffusion equation [40]. In
particular, the authors in [40] define error estimators that show a nonmonotonic behaviour
while increasing the size of the initial computational mesh.

Another important result from Figure 2 is that the improvement of the adaptive ROM
over using the POD-only single ROM is higher when far fewer modes are used than the
entire set of modes available (10–15 out of 75, on the basis of the distance between the red
and black curves reported in Figure 2). Overall, the adaptive framework always performs
better than pure POD in terms of residual integrals. Figure 4 shows εdiff, in log scale, in the
box t× Nm = [0, 0.3]× [2, 75]. White spaces correspond to εdiff = 0, which means that POD
has been chosen from the adaptive framework for that combination of time and number of
modes. From the εdiff contours also, it is visible how the adaptive framework introduces
improvements with respect to the Single ROM (εdiff > 0) when using a subset of all the
modes available. As the number of modes is increased, the improvements introduced by
the adaptive framework with respect to POD are less and less visible. This is obviously
linked to the enrichment of the POD basis with the whole information content coming
from the training snapshots, which is eventually able to reconstruct the entire dynamics
contained in them.
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Figure 3. Volume reconstruction of density at time t = 0.06 s for 2 modes (left) and 28 modes (right),
NACA0009 test case. Black contours represent the CFD reference solution; red contours represent the
ROM reconstructed solution.

Figure 4. The log10(εdiff) considering POD as the reference single ROM, versus the time and number
of modes, NACA0009 test case. White regions correspond to εdiff = 0, i.e., the residual based adaptive
ROM selects POD.

An adaptive ROM is finally built retaining only 10 modes out of the 75 available and
used to compute a number of reconstructions of the entire flow field. These solutions are
compared against the CFD reference solution and to reconstructions obtained using POD. In
particular, Figure 5 shows the conservative variable density reconstructed at four different
instants of time, where the first column presents the adaptive reconstruction and the second
column reports the POD reconstruction, both compared against the reference solution.
Even if some resolution is lost in capturing all spatial structures due to the selection of only
a small subset of modes, it can be observed that the adaptive framework is able to provide
a more accurate description than purely POD. This is especially apparent for the structures
forming downstream, in the top right corner of the visualised flow field in Figure 5.
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Figure 5. Comparison of the volume solution in terms of ρ. Coloured lines show the ROM reconstruction,
while the black lines show the reference CFD solution. The left column shows the adaptive reconstruction,
and the right column shows the pure POD reconstruction, both computed retaining 10 modes.

5.2. Impulsive Start of a 30P30N Multi-Element Airfoil

The 30P30N test case is now considered. The parameters used for the unsteady
simulation are summarised in Table 2. The mesh used for the domain discretisation is
a viscous hybrid mesh with 559,652 elements and 327,733 grid points. The flow field is
shown in Figure 6.

Table 2. The 30P30N simulation parameters.

Mach α (deg) Reynolds T∞ (K) Time (s) ∆tCFD (s) CFL

0.2 19 9× 106 300 0.03 10−4 0.4

The ROMs are built within the time window [0, 0.03] s where the dynamics of inter-
est take place, using a sampling ∆tsamp of 6× 10−4 s, which yields Ns = 50 snapshots
equispaced in time. Similar to the previous test case, Figure 7 reports the quantity εR,T
for both adaptive and POD-only ROM and for the primary conservative variables. Since
high-fidelity solutions for 30P30N are computed using RANS, modelling turbulence with
SST, the turbulent variables were considered in the computation of the residual error for the
primary variables, but they are not reported in the analysis. In Figure 7, a nonmonotonic
behaviour of the residual integral can be observed with respect to the number of modes,
and a similar discussion can be given as what was presented in Section 5.1.
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Figure 6. Contours of pressure for the impulsive start over the 30P30N airfoil at different instants of time.

Figure 7. The log10(εR,T) varying the number of modes, for adaptive ROM and POD, 30P30N
test case.
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Figure 8 shows the reconstruction of the density field obtained with the adaptive
framework at a specific instant of time, for two sets of modes that present the same value
of εR,T. Specifically, 6 modes were used for the reconstruction on the left and 17 modes for
the one on the right. The black contour lines represent the reference CFD solution, and the
reconstructed solution obtained using the adaptive framework is represented by red lines.
Using only six modes, the details of the vortices detaching from the multiple airfoil surfaces,
namely slat, main component and flap, are not captured at all, since these vortices are
represented as a single large spatial structure. With 17 modes, more details of the detaching
vortices can be observed, however still not merged. Moreover, additional oscillations in
space are introduced, which vanish only with the addition of more modes. This balance
between resolving only for large spatial structures (six-mode case) and resolving also for
smaller structures, but introducing spatial oscillations in other regions of the flow field
(17-mode case) explains the nonmonotonic behaviour in Figure 7. Another important aspect
to consider is the advective nature of the problem, since the most important dynamics are
linked to the advection of the vortices detaching from the various lifting surfaces. The
spatial oscillations downstream of the starting vortices, visible on the right contours in
Figure 8, are indeed not linked to the low resolution of spatial structures actually present
in the flow field at that specific time instant; instead, they are caused by the advection of
the starting vortices, which are transported to those regions in subsequent time instants.
These oscillations vanish when adding higher-order modes. Figure 9 shows the quantity
εdiff, in log scale, in the box t× Nm = [0, 0.03]× [2, 50]. As for the previous test case, no
common pattern can be identified in switching from one ROM to another over various
instants of time and number of modes used; therefore, details on that are not reported. From
the contours shown in Figure 9, it is apparent that the advantage of using the adaptive
framework (εdiff > 0) is more significant when using a small subset of modes, and as the
number of modes is increased, the improvement of the adaptive ROM over the single
ROM gradually diminishes. This trend can also be observed in Figure 7 by comparing the
integrals of the residuals. This is in agreement with the observations made for the NACA
test case, and an equivalent explanation can be provided here.

Figure 8. Volume reconstruction of density at time t = 0.0054 s for 6 modes (left) and 17 modes
(right), 30P30N test case. Black contours represent the CFD reference solution; red contours represent
the ROM reconstructed solution.
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Figure 9. The log10(εdiff) considering POD as the reference single ROM, versus the time and number
of modes, 30P30N test case. White regions correspond to εdiff = 0, i.e., the residual based adaptive
ROM selects POD.

To compare their performance, adaptive and POD-only ROMs were built both retain-
ing only 10 modes out of the 50 available, and a number of reconstructions were computed
to show the improvements of the adaptive ROM over POD. Figure 10 shows the conserva-
tive variable density field for four instants of time, comparing the adaptive ROM and POD
reconstructions to a reference CFD solution. In the very initial time window, some spurious
oscillations are present for both methods (first row in Figure 10), as a consequence of using
only a small subset of modes to describe the very strong initial transient. The second row
in Figure 10 still shows poor accuracy in resolving the starting vortex for both techniques,
but an overall improvement is observed using the adaptive ROM over pure POD. Finally,
for the last two instants represented (last two rows in Figure 10), the starting vortex is more
accurately resolved while propagating downstream with respect to a pure POD, which
instead reconstructs the structure highly stretched in the streamwise direction and loses
accuracy in resolution. The reconstruction with adaptive ROM also shows improvement
near the airfoil surfaces when compared to POD.
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Figure 10. Comparison of the volume solution in terms of ρ. Coloured lines show the ROM recon-
struction, while the black lines show the reference CFD solution. The left column shows the adaptive
reconstruction; the right columns shows the pure POD reconstruction.

6. Unsteady Dynamics of Vortices Past a Delta Wing

The flow past a delta wing configuration is now considered. The geometry and the
freestream flow conditions were taken from the literature [41] with the only difference
being the exclusion of the model sting present in the original configuration. The parameters
used for the unsteady simulation are summarised in Table 3.

Table 3. Delta wing simulation parameters.

Mach α (deg) Reynolds T∞ (K) Time (s) ∆tCFD (s) CFL

0.4 23 6× 106 288.0 0.021 10−4 0.5

A hybrid mesh with 10,834,270 elements and 2,319,893 grid points was considered.
A constant time step of ∆tCFD = 10−4 s was used. The Reynolds-averaged Navier–Stokes
equations were solved with a k−ω SST turbulence model, using a second-order finite vol-
ume discretisation for the fluxes (MUSCL approach) and a second-order dual-time stepping
scheme to deal with the unsteady part. With the specific setup used, a quasi-periodic be-
haviour was eventually established that showed a vortex breakdown phenomenon [42,43].
Figure 11 illustrates a few snapshots where the vortical structures originating from the lead-
ing edge are represented by means of the Q-criterion. The reduced model was built over
the time window [0; 0.021] s, during which the formation of the characteristic leading edge
vortices and their breakdown in proximity of the trailing edge were observed. A sampling
∆tsamp of 3× 10−4 s was used, which resulted in Ns = 70 snapshots equally spaced in time.
The time required for the database generation was approximately 10,500 core hours, with a
maximum of 1000 iterations for the dual-time stepping scheme.
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Figure 11. Contours of the Q-criterion Q = 800s−2 coloured with the velocity magnitude for different
time instants, delta wing test case.

Figure 12 reports εR,T for the adaptive ROM and the reference POD for the conservative
variables. It can be observed how the adaptive framework performs better overall than the
single POD for all the set of conservative variables. From the contours of εdiff reported in
Figure 13, it is evident how the adaptive framework introduces substantial improvements
with respect to a single POD approach in terms of residual error, especially when using
very few modes. High values of εdiff are in the region of a small number of modes, where
the adaptive framework shows superior performance for almost the entire time window
and especially in the second half, where the quasi-periodic vortex breakdown is established.
This can be linked to the ability of the RDMD basis in describing the dynamics of attractors
better than a POD basis [24]. Similar accuracy between the adaptive framework and single
POD was observed while increasing the number of modes. In fact, adding more modes to
the POD basis implies accounting for less energetic structures, resulting in an overall level
of accuracy that is comparable to the adaptive framework.

In terms of a global measure such as εR,T, the superiority of the adaptive framework
with respect to a single ROM might not be fully appreciated. However, when it comes to the
ability to resolve local flow features and flow dynamics using very few modes, the adaptive
framework leads to substantial improvements as illustrated in the following sections. To
carry out this analysis, 10 out of 70 modes were considered. With this specific setting,
the time required for the extraction of the set of features for the adaptive framework and
the computation of the residual database was approximately 18 h (most of the time was
required to extract the RDMD basis), while the extraction of the POD basis required less
than one minute (no residual database required), both on a single core. The time required
for one residual evaluation to generate the residual database is 700 s on a single core, as
opposed to the 50 core hours required to compute one additional CFD solution. Finally, the
online phase required only a few seconds to reconstruct the ROM solution at each desired
time for both the adaptive framework and pure POD.

A comparison between the adaptive framework and the single POD was made with
respect to the accuracy in reconstructing the entire flow field around the delta wing. Fig-
ure 14 reports the residual evaluation for the three methods in the adaptive framework (left
column) and the choice of these methods over the investigated time window (bar plot on
the right column). For the specific case of the main component of momentum ρU and the
two conservative variables ρ and ρE, RDMD performed better in the description of an at-
tractor that is now quasi-periodic, namely the occurrence of the vortex breakdown once the
initial transient due to the impulsive start vanishes. The observed oscillations at the border,
usually appearing for the RDMD, are a consequence of the varying dynamics of the modes,
associated with the quasi-periodic dynamics dictated by the vortex breakdown. The better
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performance of the adaptive framework is clearly visible in terms of reconstruction of the
entire flow field in Figure 15, where a slice on the symmetry plane is reported and contours
of the adaptive and POD techniques are compared against the contours of the reference
CFD solution, for the density and for different instants of time. It can be noticed from this
figure how the details of the trailing edge vortex transported downstream are completely
lost with the POD reconstruction, while they are captured by the adaptive technique.

Figure 12. The log10(εR,T) varying the number of modes, for adaptive ROM and POD, delta wing
test case.

Figure 13. The log10(εdiff) considering POD only single ROM, versus the time and number of modes,
delta wing test case. White regions correspond to εdiff = 0, i.e., the adaptive ROM selects POD.



Fluids 2022, 7, 130 19 of 30

Figure 14. Volume residual evaluation (left column) and choice of methods (right columns) for all the
conservative variables (excluding turbulence), fixed number of modes Nm = 10, delta wing test case.

Figure 15. Comparison of volume solution in terms of ρ for the delta wing test case. The black
contours report the CFD reference solution; the coloured contour lines show the ROM reconstruc-
tion. The left column shows the adaptive reconstruction; the right column shows the pure POD
reconstruction. Number of modes fixed, Nm = 10.
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Analysis of the Vortex Breakdown over a Delta Wing

The capabilities of the adaptive ROM were assessed in terms of the ability to address
the vortex breakdown mechanism. A different time window was now considered to build
the adaptive ROM, which was [0.0111; 0.0213] s, and the initial time instant of the interval
corresponded to a flow field where the leading edge vortices are almost fully developed
and a clear breakdown station can be identified. In this time window, Ns = 36 equally
spaced in time snapshots were considered, which corresponds to a sampling frequency of
∆tsamp = 3× 10−4 s. There were 300 ROM solutions computed within the time window
considered to enrich the description of the dynamics, as opposed to the 36 CFD solutions
available within the same time window.

The criterion for the identification of the x coordinate of the breakdown point goes
through three steps:

(1) Computation of the velocity vector from the reconstructed conserved quantities;
(2) Extraction of vortex core lines from the velocity volume solution;
(3) Identification of the streamwise coordinate xb where the vortex core line associated

with the main leading edge vortex is interrupted.

The interruption of the main vortex core line was assumed to be the point of break-
down onset of the leading edge vortex. The vortex cores tool available in Paraview 5.9.0
was used. The tool extracts vortex cores using the parallel vectors method [44,45], applied
to the velocity vector field. According to the literature [46], a reduced velocity ṽ is defined
that represents the actual flow field velocity v minus its component in the direction of the
real eigenvector of its Jacobian J (only regions with complex eigenvalues are considered).
Points where ṽ is zero are identified as points belonging to a vortex core line. The following
eigenvalue problem was solved,

Jv = λv (16)

and points were searched that satisfy the equation for the real eigenvalue λ.
Figure 16 reports the delta wing 3D view with the vortex core lines associated with

the two main leading edge vortices. It can be noted how the vortex lines have a spatial
behaviour that is almost linear until a specific streamwise station of the delta wing. After
that, the abrupt change in the vortices’ structures linked to the breakdown onset inter-
rupts the lines. This might be linked to the specific resolution of the mesh used for the
present study to describe the complex irregular structure of the earlier stages of the vortex
breakdown, which resorts to a more organised spiralling motion at the station further
downstream of the delta wing. Nevertheless, the interruption of the line can still be used as
an indicator for the point of vortex breakdown onset, as it is still related to abrupt changes
in the characteristics of the vortex. This also clarifies the definition of the coordinate of
breakdown xb that will be used for the analysis below.

It is also worth noting that other vortex core lines were extracted, which are linked
to the additional vortices forming near the surface of the body [47–49] and other spurious
vortex lines. Therefore, the lines reported in Figure 16 are the ones resulting from the
extraction procedure restricted only to the region of interest, i.e., a box containing the
main leading edge vortices. Figure 17 reports the x coordinate (streamwise) of the vortex
breakdown location in time, within the entire investigated time window. It can be noted
how the adaptive ROM is able to catch with CFD-like accuracy the dynamics of the vortex
breakdown position within the training points. Indeed, the three blue circles on the plot,
the test points computed by means of CFD, fall almost exactly on the black line, which
represents instead the ROM reconstructed solution. The training points are also reported
on the plot, and they are highlighted with red circles. Since the adaptive ROM retains all
the snapshots’ information (all modes are retained), the black line passes exactly through
the training points. This would not be the case when a further reduction is forced and a
subset of modes is used instead of all the ones available.
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Figure 16. Vortex core lines associated with the main leading edge vortices, extracted through the
vortex core tool of Paraview 5.9.0. Surface contours represent surface pressure.

Figure 17. Displacement of vortex breakdown station within the investigated time window. The
continuous line represents the ROM; the red circles are the training snapshots; the blue circles
represent the test points.

The jumps on the vortex breakdown station are not linked to the specific adaptive
ROM implemented. This is supported by the additional CFD test points placed on the ROM
curve in Figure 17 and also from the time evolution of conservative variables reported in
Figure 18, which are the quantities directly reconstructed by the adaptive ROM. The first
column in Figure 18 reports the ROM reconstructed solution for all the conservative variables
(continuous blue line), together with training points (points in red) and a set of test points
(points in black); the second column reports the specific method selected by the adaptive
framework. It can be noted how the adaptive ROM is able to reconstruct the different variables
continuously in time, also within time sub-intervals where there is a switching of methods.
The jumps are therefore mainly related to the extraction technique used and the mesh
resolution achievable with the computational resources available for the present work.
Nevertheless, the results reported support an important capability of the adaptive ROM,
which is reconstructing with CFD-like accuracy the dynamics of complex flow fields, such
as the one associated with the vortex breakdown over a delta wing, with a finer resolution
in time with respect to the one provided by the original set of available snapshots.
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Figure 18. Evolution of the conserved quantities (left column) and methods selected by the adaptive
framework (right column), within the time window investigated for the vortex breakdown in the delta
wing test case. The continuous line represents the ROM; the red points are the training snapshots; the
black points are the test points.

7. Vortex Dynamics for Delta Wings in a Formation Flight

A configuration of three delta wings in a formation flight was considered as the last
application of the adaptive ROM. Each delta wing had the same geometry as the one
used for the delta wing test case presented in Section 6. The configuration was symmetric,
with one leader and two followers symmetrically positioned with respect to the leader
longitudinal axis, next to the leader’s wake. There was no relative rotation among the
different bodies, which therefore exhibited the same angle of attack with respect to the
free stream direction. The parameters used for the unsteady simulation are summarised in
Table 4.

Table 4. Formation flight simulation parameters.

Mach α (deg) Reynolds T∞ (K) Time (s) ∆tCFD (s) CFL

0.4 15 6× 106 288.0 0.021 10−4 1

A hybrid mesh with 15,911,216 elements and 3,824,705 grid points was used with a
refinement in the region of the leader’s wake and near the interaction with the follower
delta wing. A constant time step, ∆tCFD = 10−4 s was used. The Reynolds-averaged Navier–
Stokes equations were solved with a k− ω SST turbulence model, using a second-order
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finite volume discretisation for the fluxes (MUSCL approach) and a second-order dual-time
stepping scheme to deal with the unsteady part. A few snapshots are reported in Figure 19
that describe the time evolution of the flow field in terms of Q-criterion isosurfaces.

Figure 19. Contours of the Q-criterion Q = 800 s−2 coloured with the velocity magnitude (m/s) for
different time instants, formation flight test case.

The sampling to build the reduced model was performed on the time window
[0; 0.03] s, which contains both the strong initial transient and the dynamics linked to
the interaction of the leading edge vortex detaching from the leader with the leading edge
vortex forming on the followers’ geometries. Within this time frame, a sampling ∆tsamp of
3× 10−4 s was used, which resulted in a number of snapshots Ns = 100 equally spaced in
time. The time required for the database generation was approximately 18,000 core hours.

Figure 20 reports the quantity εR,T for the adaptive ROM in red and POD in black.
For this last test case also, it can be observed how the adaptive framework performed
better overall than a single POD in terms of εR,T, especially when using very few modes.
Figure 21 reports the contours of εdiff, and conclusions similar to the ones reported for the
previous test cases can be drawn. In particular, it can be noticed from these contours how
the adaptive framework introduced major improvements in terms of residual error, when
a small subset of modes is used, in the region where the interaction of trailing vortices is
happening, namely the yellow-coloured regions in Figure 21.

In order to assess the actual improvement of the adaptive framework with respect to
a single ROM, 15 modes out of 100 were retained to build the adaptive ROM. With this
number of modes, the time required for the extraction of the set of features for the adaptive
framework and the computation of the residual database was approximately 20 h (most of
the time was required to extract the RDMD basis), while the extraction of the POD basis
required less than one minute (no residual database required), both on a single core. The
time required for one residual evaluation to generate the residual database was 103 s on
a single core, as opposed to the 60 core hours required to compute one additional CFD
solution. Finally, the online phase required for both the adaptive framework and the single
POD a few seconds to reconstruct the ROM solution at each desired time.
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Figure 20. The log10(εR,T) varying the number of modes, for adaptive ROM and POD, formation
flight test case.

Figure 21. The log10(εdiff) considering POD as the reference single ROM, versus time and number
of modes, formation flight test case. White regions correspond to εdiff = 0, i.e., the model based
adaptive ROM selects POD.

Figure 22 reports the residual evaluation in time for the entire set of conservative
variables (excluding turbulence), for the three methods in the adaptive framework (left
column) and the choice of these methods over the investigated time window (bar plot
in the right column). It is observed how RDMD performs better for almost the entire set
of conservative variables in the second half of the investigated time window, where the
interaction of vortices is happening. Only for the specific case of the Z component of
momentum ρW, the different methods within the adaptive framework are almost equally
chosen across the entire time interval shown. The steep increase in the RDMD residual at
the end of the time window can still be linked to the interpolation issues of the RBF at the
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border, due to the slowly varying dynamics of the RDMD modes. The slightly increasing
trend of the POD and DMD residual towards the end of the time window can be instead
linked to the specific dynamics considered. The first half of the time window (t < 0.017 s)
contains the dynamics associated with the propagation of the trailing edge vortices and the
main interaction of the trailing edge vortex of the leader with the two trailing edge vortices
of the follower. The few POD and DMD modes retained mainly describe such dynamics,
whereas they resolve with less accuracy the dynamics happening after the main interaction,
which represents a less energetic dynamics for POD, which is also dumped by the DMD
eigenvalues as time increases.

Figure 22. Volume residual evaluation (left column) and choice of methods (right columns) for all
the conservative variables (excluding turbulence), fixed number of modes Nm = 15, formation flight
test case.

The major improvements of the RDMD, and therefore of the adaptive framework, in
describing the dynamics of interacting vortices can be observed in Figure 23, where the
contours of the CFD reference solutions are compared with the contours of the adaptive
and pure POD reconstruction on a specific slice, taken at 0.45 m from the symmetry plane.
A few instants of time are shown where the interaction of vortices is happening. Superior
accuracy is observed almost everywhere over the shown slice and for the various time
instants. In particular, the details of the interaction region are reported in Figure 24, where
it is still clearly visible how the adaptive ROM is able to resolve better the dynamics
of the interaction. The improvements are measured locally in terms of how close the
contours of the ROM solution are to the reference CFD solution and in integral terms using
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the residuals reported in Figure 22. Even if single POD appears to be good enough for
some time instants, the adaptive framework is still able to introduce more details in the
description of the dynamics, which is believed to be important when problems related to
flow control or the design of aerodynamic surfaces is addressed.

Figure 23. Comparison of the volume solution in terms of ρ for the formation flight test case.
The black contours report the CFD reference solution; the coloured contour lines show the ROM
reconstruction. The left column shows the adaptive reconstruction; the right column shows the pure
POD reconstruction. Slice taken at 0.45 m from the plane of symmetry. Number of modes fixed,
Nm = 15.

Figure 24. Detail of the volume solution in the region of vortices’ interaction, in terms of ρ for the
formation flight test case. The black contours report the CFD reference solution; the coloured contour
lines show the ROM reconstruction. The left column shows the adaptive reconstruction; the right
column shows the pure POD reconstruction. Slice taken at 0.45 m from the plane of symmetry.
Number of modes fixed, Nm = 15.
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8. Conclusions

The present work introduced both a mathematical and numerical formulation of
a data-driven adaptive ROM approach employing a residual error metric to drive the
selection of the set of basis functions when the solution at untried instants of time is
needed. Additional residual metrics were also introduced to investigate the performance
of the adaptive framework with respect to a single ROM as the number of modes is
varied. Two two-dimensional unsteady test cases, namely NACA0009 and 30P30N, were
used to demonstrate key elements of the adaptive framework, and two three-dimensional
cases were introduced to illustrate the performance of the adaptive approach in resolving
the dynamics of three-dimensional vortices generated by delta wing configurations. We
discussed how the adaptive framework overall outperforms a single ROM (specifically
POD) and that substantial improvements can be achieved with respect to the single ROM
when using very few modes among the ones available. An explanation of the nonmonotonic
behaviour with the number of modes appearing in the plots of εR,T was also provided
looking at some flow field reconstructions (see Figures 3 and 8). From these reconstructions,
it emerged that resolving only for very large spatial structures, i.e., when using very few
modes, produces a residual error from Equation (12) that is comparable with a case where
other modes are added. Indeed, in the former case, a solution was obtained that solves only
for large spatial features, while in the former case, the reconstructed solution solves for
more spatial structures, namely the smaller ones, but also introduces spurious oscillation in
the flow field. These spurious oscillations are not only due to the low resolution of existing
spatial structures, but they are also linked to the advective nature of the problems, as is
clearly visible from Figure 8, left, where spurious spatial oscillations appear in regions
where physical quantities are transported. In addition to the above remarks, there is also a
common behaviour observed in Figures 9, 13, and 21, while in Figure 4, the trend is different.
This is worthwhile to discuss as a relation can be uncovered between the performance of
the framework and the type of flow considered, due to the properties of ROMs in this work.
Most apparent in the 30P30N test case, it can be observed in Figure 9 that for the initial time
steps, POD performs best, especially as the number of modes is increased, but at later time
instants, DMD and RDMD start performing better even when all modes are used. From
Figure 6, it follows that the initial phase is highly nonlinear; however, as time progresses,
the flow becomes almost steady near the airfoil, and the vortex is propagated downstream.
As such, DMD and RDMD perform better where the time evolution is more linear since
they are able to leverage the temporal correlation hidden in the snapshots, whereas POD is
better able to approximate the highly nonlinear phase. In contrast to this, for the NACA0009
case, this state is never reached, since vortices are generated and shed continuously, as
seen in Figure 1. At some time instants, the flow presents more nonlinearities, whereas at
some other time instants, it is more linear. A similar behaviour is observed in Figure 4, i.e.,
at some time instants, POD is best, whereas at others, DMD and RDMD perform better.
The above remarks indicate a potential avenue of future development, specifically the
assessment of the behaviour of different ROM methods for certain types of flows.

Considering the whole analysis reported, the following conclusions can be drawn:

- The residual error metric represents a relevant measure to use in order to build the
adaptive ROM, since it has shown enough consistency in terms of providing the
best accuracy of the final flow field reconstructions among the methods available in
the framework;

- A significant reduction of the problem (Nm < Ns � NDOF) can be achieved through
the adaptive framework, while retaining good consistency and accuracy with the
physics of unsteady vortex-dominated flows. In particular, it was shown that, using a
small subset of the entire set of modes that can in principle be extracted from the origi-
nal snapshots, the adaptive ROM is capable of providing major improvements with
respect to a single ROM based on the classical POD method. Indeed, the truncation
procedure, i.e., the number of modes finally retained, which is the fundamental step
to promote dimensionality reduction, is the main aspect responsible in POD for the
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lack of dynamic information, as the energy ranking might hide the dynamics of some
low-energy spatial structures. The more detailed description of the flow field provided
by the adaptive ROM is believed to be an advantage for problems that require more
refined solutions, e.g., flow control and design problems;

- The adaptive ROM is able to enrich the time dynamics. It was shown, indeed, how the
model is able to provide a CFD-like description of the vortex breakdown displacement
for the delta wing test case also outside of the training points.
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