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Abstract: This study examines the hydrodynamic parameters of a unique geometry that could be
used effectively for wave energy extraction applications. In particular, we are concerned with the
oblate spheroidal geometry that provides the advantage of a wider impact area on waves, closer to
the free surface where the hydrodynamic pressure is higher. In addition, the problem is formulated
and solved analytically via a method that is robust and most importantly very fast. In particular, we
develop an analytical formulation for the radiation problem of a fully submerged oblate spheroid in
a liquid field of finite water depth. The axisymmetric configuration of the spheroid is considered, i.e.,
the axis of symmetry is perpendicular to the undisturbed free surface. In order to solve the problem,
the method of the image singularities system is employed. This method allows for the expansion
of the velocity potential in a series of oblate spheroidal harmonics and the derivation of analytical
expressions for the hydrodynamic coefficients for the translational degrees of freedom of the body.
Numerical simulations and validations are presented taking into account the slenderness ratio of
the spheroid, the immersion below the free surface and the water depth. The validations ensure
the correctness and the accuracy of the proposed method. Utilizing the same approach, the whole
process is implemented for a disc as well, given that a disc is the limiting case of an oblate spheroid
since its semi-minor axis approaches zero.

Keywords: image singularities; Miloh’s theorem; radiation; added mass; damping coefficient; finite
depth; oblate spheroid; disc

1. Introduction

The method of the Image Singularities System for an oblate spheroid relies on the
distribution of singularities on the disk of the spheroid. Mathematically, the method is
represented by Miloh’s oblate spheroid theorem. The proof of this theorem was given
recently in the book of Chatjigeorgiou [1]. This method allows for the expression of the
fundamental solution of the Laplace equation in terms of spheroidal harmonics and enables
the employment of the hydrodynamic analysis with respect to the associated coordinate
system. A similar method can be applied for a prolate spheroid. In that case, the method
relies on the uniform distribution of singularities along the major axis of the prolate spheroid
between the two foci. The relevant proof was rigorously obtained by Miloh [2].

Conducting a review of the literature, it is seen that the method of the image singular-
ities system has been applied mainly to prolate spheroids. The pioneer who established
this method was Havelock [3,4]. In the former study, he considered the moment on a fully
submerged moving prolate spheroid, while in the latter study he extended his work in
order to investigate the forces and the moments acting on a moving body under waves.
Chatjigeorgiou and Miloh [5–9] studied all the hydrodynamic problems, namely, the diffrac-
tion, radiation and wave resistance problem for a submerged prolate spheroid assuming
both finite and infinite water depth. They investigated both the axisymmetric and the

Fluids 2022, 7, 133. https://doi.org/10.3390/fluids7040133 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids7040133
https://doi.org/10.3390/fluids7040133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-9900-4372
https://doi.org/10.3390/fluids7040133
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids7040133?type=check_update&version=2


Fluids 2022, 7, 133 2 of 15

non-axisymmetric configuration, i.e., the symmetrical axis parallel and perpendicular to
the undisturbed free surface, respectively.

So far, the method of the Image Singularities System for oblate spheroids has been used
in [10–13]. Chatjigeorgiou et al. [10], and Anastasiou and Chatjigeorgiou [11], investigated
the solution of the diffraction problem when the oblate spheroid was situated in a liquid
field of infinite [10] and finite water depth [11]. Anastasiou et al. [12,13] solved the radiation
problem for an oblate spheroid assuming infinite water depth. In all these studies [10–13],
the axisymmetric case of the spheroid was considered, namely, the symmetrical axis being
perpendicular to the free surface.

The present study is an extension of the previous efforts aiming to tackle the radiation
problem in fixed, finite water depth. The oblate spheroid is considered to perform small
amplitude oscillations in the three translational modes of motion. To solve the problem,
the governing boundary value problem is first formulated. Accordingly, a suitable Green’s
function is determined following Wehausen and Laitone [14], which, originally, is expressed
in Cartesian coordinates. The system of the Image Singularities is next employed in order
to convert the Green’s function into a series of spheroidal harmonics. Thus, the velocity
potential for each mode of motion is expressed as a series of multipoles, which is properly
truncated, leading to a semi-analytical solution. The efficacy of the present method is
ensured by comparing the associated results with the results of the respected Boundary
Integral Equation (BIEM) code WAMIT [15]. The present study takes a step further and
simulates the oblate spheroid as a disc, studying the radiation problem. The geometries are
treated separately, and numerical simulations are presented for both geometries.

This paper is organized as follows: Section 2 formulates the governing boundary
value problem. In Section 3, the Green’s function is defined in oblate spheroidal harmonics,
and analytical expressions for the hydrodynamic coefficients are obtained. Section 4 is
dedicated to the numerical results obtained for the radiation problem of an oblate spheroid.
In Section 5, the formulation of the disc’s geometry is discussed and relevant results are
presented. Finally, Section 6 includes a discussion and the summary of the present study.

2. The Boundary Value Problem

The oblate spheroid is assumed to be immersed at a distance f under the undisturbed
free surface and above a flat bottom of finite depth h. The axis of symmetry (z) is per-
pendicular to the free surface defining the “axisymmetric” configuration. In the present
study, two Cartesian coordinate systems are used. The global (x, y, z) system is fixed on the
undisturbed free surface with its vertical z-axis pointing downwards, while the second co-
ordinate system (x, y, z∗) is fixed at the center of the body, with its vertical axis z∗ pointing
upwards so that z = −z∗ + f (Figure 1).

The expressions that transform the oblate spheroidal coordinates to Cartesian are

x = c cos hu sin θ cos ψ (1)

y = c cos hu sin θ sin ψ (2)

z ∗ = c sin hu cos θ (3)

where 0 ≤ u ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π. Additionally, c denotes the half distance
between the foci given by c =

√
(a2 − b2), while a, b are the semi-major and the semi-minor

axis, respectively. Using ξ = sin hu and µ = cos θ, the transformation formulas are cast into

x = c
√

1 + ξ2
√

1− µ2 cos ψ (4)

y = c
√

1 + ξ2
√

1− µ2 sin ψ (5)

z∗ = cξµ (6)
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In the sequel, the hydrodynamic boundary value problem for spheroid that is fully
immersed in a liquid field of finite water depth is considered. The spheroid undergoes
small amplitude oscillations qj, in surge, sway and heave. Accordingly, the velocity and the
pressure fields are determined by the velocity potential Φ(x, y, z, t) = Re

[
ϕ(x, y, z,)e−iωt],

where i =
√
−1, ω is the frequency of the body’s oscillation, t is the time and ϕ is the

spatial complex total radiation potential. The latter is decomposed into the sum of the
unit-amplitude radiation potentials, i.e.,

ϕ = −iω
3

∑
j=1

qj ϕj (7)

where ϕj, j = 1, . . . , 3 refer to the unit-amplitude individual radiation potentials. Each of
these potentials must satisfy the Laplace equation (Equation (8)) in the entire liquid field,
the combined linearized boundary condition (kinematic and dynamic) (Equation (9)) on
the free surface, z = 0, the kinematic condition (Equation (10)) on the flat bottom, z = h,
and the body boundary condition (Equation (11)):

∇2 ϕj = 0, (8)

Kϕj +
∂ϕj

∂z
= 0 (9)

∂ϕj

∂z
= 0 (10)

∂ϕj

∂n
= nj (11)

where K = ω2/g, g is the gravitational acceleration and n = (n1, n2, n3) is the unit vector
normal to the boundary of the body. Finally, the radiation potentials should comply with
the far-field radiation condition for outgoing waves at infinity.
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Figure 1. (a) A 3D image of an axisymmetric oblate spheroid; (b) A 2D schematic of the problem in
the x− z plane.

3. Definition of the Radiation Potential for the Oblate Spheroid

The jth velocity potential is obtained from the following expression

ϕj =
∞

∑
n=0

n

∑
m=0

Am
n Gm

n (iξ, µ, ψ), (12)
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where Am
n are the unknown coefficients and Gm

n is the auxiliary Green’s function ex-
pressed into a series of spheroidal harmonics, which will be called the multipoles of
the Green’s function.

The multipoles of the Green’s function Gm
n (x, y, z) are obtained by defining the Green’s

function and then employing the method of the Image Singularities system. According to
the boundary value problem for the radiation problem described in the previous section, the
Green’s function satisfies Equations (8)–(10) and is in accord with the radiation condition
reads [14]

G(x− x′, y− y′, z)

= 1√
(x−x′)2+(y−y′)2+(z− f )2

+ 1√
(x−x′)2+(y−y′)2+(z+ f−2h)2

+ 1
π PV

∫ ∞
0

∫ π
−π Q(k, h) cos hk(h− z) eik[(x−x′) cos α+(y−y′) sin α]dadk

+i
∫ π
−π Q0(k0, h) cos hk0(h− z)eik0[(x−x′) cos α+(y−y′) sin α]da,

(13)

while

Q(k, h) =
(K + k)e−kh cos hk(h− f )

k sin hkh− K cos hkh
, (14)

Q0(k0, h) =
(K + k0)e−k0h cos hk0(h− f ) sin hk0h

Kh + sin h2k0h
. (15)

Assuming h → ∞ , the Green’s function (Equation (13)) leads to the expression related
to the infinite water depth (see e.g., [12]).

Here, (x, y, z− f ) denote the coordinates of the source point and (x′, y′, 0) denote the
coordinates of the field point, the acronym PV denotes the Cauchy Principal Value Integral
and k0 is the positive root of the dispersion equation K = k0 tan hk0h.

According to Miloh’s theorem for the Image Singularity System, an oblate spheroidal
harmonic is obtained by [1].

Pm
n (µ)Qm

n (iξ) cos mψ =
(−1)m

2πPm
n (i0)

(n + m)!
(n−m)!

∫ 2π

0

∫ 1

0

Pm
n (µ′) cos mψ′√

(x− x′)2 + (y− y′)2 + (z− f )2
dµ′dψ′. (16)

Note that z− f is the center of the spheroid. Clearly, the flow around the body is sym-
metrical, and accordingly only the symmetrical, cosine, and harmonics Pm

n (µ)Qm
n (iξ) cos mψ

are retained, where Pm
n and Qm

n denote the nth degree and mth order of the associated
Legendre functions of the first and the second kind, respectively.

Hence, the auxiliary potentials Gm
n will be given by

Gm
n (x, y, z) =

(−1)m

2πPm
n (i0)

(n + m)!
(n−m)!

∫ 2π

0

∫ 1

0
Pm

n
(
µ′
)

cos mψ′G
(
x− x′, y− y′, z

)
dµ′dψ′. (17)

Next, using Equations (13), (16) and (17) yields

Gm
n (x, y, z) = Pm

n (µ)Qm
n (iξ) cos mψ

+ (−1)m

2πPm
n (i0)

(n+m)!
(n−m)!

∫ 2π
0

∫ 1
0

Pm
n (µ′) cos mψ′√

(x−x′)2+(y−y′)2+(z+ f−2h)2
dµ′dψ′

+ (−1)m

2π2Pm
n (i0)

(n+m)!
(n−m)! PV

∫ ∞
0

∫ π
−π

∫ 1
0

∫ 2π
0 cos mψ′Pm

n (µ′)Q(k, h) cos hk(h + z)

×eik[(x−x′) cos a+(y−y′) sin a]dψ′dµ′dadk

+i (−1)m

2πPm
n (i0)

(n+m)!
(n−m)!

∫ π
−π

∫ 2π
0

∫ 1
0 Pm

n (µ′) cos mψ′Q0(k0, h)

× cos hk0(h− z)eik0[(x−x′) cos a+(y−y′) sin a]dµ′dψ′da.

(18)
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In order to express Equation (18) in oblate spheroidal coordinates, more manipulations
need to be performed. The integral terms in Equation (18) are denoted by I1, I2 and I3,
respectively. Each of these integrals is treated separately. The analysis starts with I1. Hence,

I1 =
(−1)m

2πPm
n (i0)

(n + m)!
(n−m)!

∫ 2π

0

∫ 1

0

Pm
n (µ′) cos mψ′√

(x− x′)2 + (y− y′)2 + (z + f − 2h)2
dµ′dψ′. (19)

Equation (19) is treated using the Fourier transform of the inverse square root [1] (p. 246).

1√
(x− x′)2 + (y− y′)2 + (z + f − 2h)2

=
1

2π

∫ ∞

0

∫ π

−π
e−k(2h−z− f )+ik[(x−x′) cos a+(y−y′) sin a]dadk. (20)

Introducing Equation (20) into Equation (19) gives

I1 =
(−1)m

(2π)2Pm
n (i0)

(n + m)!
(n−m)!

∫ 2π

0

∫ 1

0

∫ ∞

0

∫ π

−π
Pm

n
(
µ′
)

cos mψ′e−k(2h−z− f )+ik[(x−x′) cos a+(y−y′) sin a]dadkdµ′dψ, (21)

I1 can be expressed in “axisymmetric” oblate spheroidal coordinates using the following
expression for the exponential term [10]:

ekz∗+ik(x cos a+y sin a) =
∞

∑
s=0

s

∑
t=0

Et
s(cos tψ cos ta + sin tψ sin ta)Pt

s (µ)Pt
s (iξ), (22)

where

Et
s = (−1)sis−tεt(2s + 1)

(s− t)!
(s + t)!

√
π

2kc
Js+1/2(kc). (23)

Here, ε0 = 1; εt = 2, t = 1, 2, . . .; and Js+1/2 make up the Bessel function of the
first kind with fractional order s + 1/2. Note that the coordinate system that is used on
the left-hand side term of Equation (22) concerns the body-fixed system (x, y, z∗), while
z = −z∗ + f (Figure 1b). According to Equation (22), one can write

ekz∗−ik(x cos a+y sin a) =
∞

∑
s=0

s

∑
t=0

(−1)tEt
s(cos tψ cos ta + sin tψ sin ta)Pt

s (µ)Pt
s (iξ). (24)

Therefore, the complex integral term I1 takes the form, after laborious mathematical
manipulations,

I1 =
∞

∑
s=0

s

∑
t=0

Hmt
ns Pt

s (µ)Pt
s (iξ) cos tψ, (25)

where

Hmt
ns =

(−1)n+t

4c
in−m+s−t (n + m)!

(n−m)!
(s− t)!
(s + t)!

(2s + 1)
2π

εm
εtδtm

∫ ∞

0

e−2k(h− f )

k
Jn+1/2(kc)Js+1/2(kc)dk. (26)

using the same reasoning and denoting

I2 =
(−1)m

2π2Pm
n (i0)

(n + m)!
(n−m)!

PV
∫ ∞

0

∫ π

−π

∫ 1

0

∫ 2π

0
cos mψ′Pm

n
(
µ′
)
Q(k, h) cos hk(h + z)eik[(x−x′) cos a+(y−y′) sin a]dψ′dµ′dadk (27)

I3 = i
(−1)m

2πPm
n (i0)

(n + m)!
(n−m)!

∫ π

−π

∫ 2π

0

∫ 1

0
Pm

n
(
µ′
)

cos mψ′Q0(k0, h)× cos hk0(h− z)eik0[(x−x′) cos a+(y−y′) sin a]dµ′dψ′da. (28)
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The aforementioned components are elaborated with the aid of Equations (22) and
(24) and carrying out the integrations. The relevant expansions in spheroidal harmonics
obtain the following form:

I2 =
∞

∑
s=0

s

∑
t=0

Dmt
ns Pt

s (µ)Pt
s (iξ) cos tψ (29a)

I3 =
∞

∑
s=0

s

∑
t=0

Lmt
ns Pt

s (µ)Pt
s (iξ) cos tψ (29b)

where

Dmt
ns = (−1)n

4c in−m+s−t (n+m)!
(n−m)!

(s−t)!
(s+t)! (2s + 1)εt

2π
εm

δtm(
(−1)sPV

∫ ∞
0 Q(k, h) ek(h− f )

k Jn+1/2(kc)Js+1/2(kc)dk + (−1)tPV
∫ ∞

0 Q(k, h) e−k(h− f )

k Jn+1/2(kc)Js+1/2(kc)dk
) (30)

and
Lmt

ns = (−1)n

4c in−m+s−t+1εt
2π2

εm
δtm

(n+m)!
(n−m)!

(s−t)!
(s+t)! (2s + 1)

×Q0(k0,h)
k0

Jn+1/2(kc)Js+1/2(kc)
(
(−1)sek0(h− f ) + (−1)te−k0(h− f )

)
.

(31)

The final relation that expresses the multipoles of the Green’s function as a series of
spheroidal harmonics is

Gm
n (iξ, µ, ψ) = Pm

n (µ)Qm
n (iξ) cos mψ +

∞

∑
s=0

s

∑
t=0

Cmt
ns Pt

s (µ)Pt
s (iξ) cos tψ, (32)

while
Cmt

ns = Hmt
ns + Dmt

ns + Lmt
ns . (33)

The individual radiation potentials can now be written as

ϕj =
∞

∑
n=0

n

∑
m=0

Am
n Pm

n (µ)Qm
n (iξ) cos mψ +

∞

∑
n=0

n

∑
m=0

Am
n

∞

∑
s=0

s

∑
t=0

Cmt
ns Pt

s (µ)Pt
s (iξ) cos tψ, (34)

where Am
n are unknown expansion coefficients to be obtained by utilizing the body bound-

ary conditions for each mode of motion, namely,

∂φ1

∂ξ

∣∣∣∣
ξ=ξ0

= n1, ξ = ξ0 = tan h−1(b/a), (35)

∂φ3

∂ξ

∣∣∣∣
ξ=ξ0

= n3, ξ = ξ0 = tan h−1(b/a) (36)

where

n1 = −
bP1

1 (µ) cos ψ(
ξ2

0 + µ2
)1/2 , (37)

n3 =
αP0

1 (µ)(
ξ2

0 + µ2
)1/2 . (38)

It is worth mentioning that due to the axisymmetric configuration of the spheroid, the
surge and the sway oscillations are identical. Hence, only the surge (j = 1) and the heave
(j = 3) modes of motion are considered.
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Therefore, taking into account Equations (37) and (38) and utilizing the orthogonality
relations of the trigonometric and the associated Legendre functions [16], the following lin-
ear systems are obtained for the unknown expansion coefficients of the radiation potentials

Ar
l +

∞

∑
n=0

n

∑
m=0

ar
l Am

n Cmr
nl = i

b
a

δ1rδ1l
.

Q
r
l (iξ0)

, (39)

Ar
l +

∞

∑
n=0

n

∑
m=0

ar
l Am

n Cmr
nl = −i

δ0rδ1l
.

Q
r
l (iξ0)

, (40)

where ar
l =

.
P

r
l (iξ0) /

.
Q

r
l (iξ0) and the upper dot denotes differentiation with respect to the

argument. Equations (39) and (40) represent a complex linear system that can be solved
effectively using standard matrix techniques. The system must be truncated to a finite
number of modes that suffice to ensure convergence of the calculations.

The calculation of the unknown coefficients Am
n completes the solution of the radiation

problem in each mode of motion and allows for the derivation of the hydrodynamic added
mass and the damping coefficient via the surface integral

µij −
i
ω

λij = −ρ
∫

S
φinjdS (41)

where µij and λij, i, j = 1, and 3 denotes the added mass and hydrodynamic damping
coefficients, respectively, while ρ is the water density. The integration is performed on the
wetted surface S of the spheroid.

The differential area of the spheroid reads

dS = c2a
(

ξ2
0 + µ2

)1/2
dµdψ. (42)

The final expressions that calculate the hydrodynamic added masses and damping
coefficients in the surge and heave modes of motion are

µ11 −
i
ω

λ11 =
1

a
.
P

1
1(iξ0)

(
i b P1

1 (iξ0)

a
+

2A1
1

ξ2
0 + 1

)
, (43)

µ33 −
i
ω

λ33 =
1

b
.
P

0
1(iξ0)

(
i P0

1 (iξ0) +
A0

1
ξ2

0 + 1

)
. (44)

The added mass and the damping coefficients have been normalized by 4/3πρba2

and 4/3πρba2ω, respectively.

4. Numerical Results

In this section, the accuracy and robustness of the developed semi-analytical solution
are represented. In order to achieve this task, the results obtained using the present
method are compared with the numerical predictions of the WAMIT code [15], which is
based on the well-known Boundary Integral Equation Method (BIEM). The corresponding
results are shown in Figures 2–4. Figures 2–4 show the hydrodynamic added mass and
damping coefficient in the surge and the heave directions when the water depth is equal
to h = 20a, 10a and 5a. Practically speaking, h = 20a, 10a and 5a represent the infinite,
intermediate and shallow water depth cases, respectively. These Figures show an oblate
spheroid of slenderness ratio a/b = 1.25. For h = 20a and h = 10a, the immersion depth
is equal to f = 1.5a, while for h = 5a the immersion depth is equal to f = 1.1a. The
abbreviation ISS “Image Singularity System” corresponds to the present semi-analytical
solution. Figures 2–4 manifest an excellent agreement with the results obtained using
WAMIT [15].
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The numerical results that appear in Figures 2–4 have been obtained by truncating the
infinite series. In order to achieve a convergence up to the fourth decimal digit, n = 5 modes
(in the semi-analytical formulation) have been employed (Tables 1 and 2). Tables 1 and 2
present the hydrodynamic coefficients in the surge and the heave motion for an oblate
spheroid with slenderness ratio a/b = 1.25, immersion f = 1.5a and water depth h = 10a.

Table 1. Convergence sequence of the normalized surge added mass and damping coefficients for
several numbers of modes (oblate spheroid with a/b = 1.25, immersion f = 1.5a and water depth
h = 10a).

Ka
n = 2 n = 5 n = 8

a11 b11 a11 b11 a11 b11

0.00 0.45299 0.00000 0.45301 0.00000 0.45301 0.00000
0.10 0.46103 0.00149 0.46106 0.00149 0.46106 0.00149
0.20 0.47088 0.00759 0.47092 0.00759 0.47092 0.00759
0.30 0.47799 0.01973 0.47804 0.01973 0.47804 0.01973
0.40 0.47986 0.03519 0.47994 0.03521 0.47994 0.03521
0.50 0.47598 0.05071 0.47609 0.05076 0.47609 0.05076
0.60 0.46723 0.06393 0.46736 0.06404 0.46736 0.06404
0.70 0.45525 0.07349 0.45537 0.07368 0.45537 0.07368
0.80 0.44178 0.07897 0.44185 0.07923 0.44185 0.07923
0.90 0.42830 0.08061 0.42829 0.08094 0.42829 0.08094
1.00 0.41585 0.07907 0.41574 0.07943 0.41574 0.07943
2.00 0.37896 0.02194 0.37871 0.02154 0.37871 0.02154
3.00 0.39452 0.00249 0.39471 0.00231 0.39471 0.00231
4.00 0.40311 0.00016 0.40324 0.00014 0.40324 0.00014
5.00 0.40685 0.00001 0.40692 0.00001 0.40693 0.00001

Table 2. Convergence sequence of the normalized heave added mass and damping coefficients for
several numbers of modes (oblate spheroid with a/b = 1.25, immersion f = 1.5a and water depth
h = 10a).

Ka
n = 2 n = 5 n = 8

a33 b33 a33 b33 a33 b33

0.00 0.70259 0.00000 0.70265 0.00000 0.70265 0.00000
0.10 0.72488 0.00415 0.72498 0.00415 0.72498 0.00415
0.20 0.75257 0.02159 0.75271 0.02160 0.75271 0.02160
0.30 0.77211 0.05691 0.77232 0.05694 0.77232 0.05694
0.40 0.77531 0.10195 0.77560 0.10205 0.77560 0.10205
0.50 0.76051 0.14588 0.76088 0.14612 0.76088 0.14612
0.60 0.73150 0.18087 0.73189 0.18133 0.73189 0.18133
0.70 0.69456 0.20319 0.69487 0.20389 0.69487 0.20389
0.80 0.65572 0.21272 0.65583 0.21365 0.65583 0.21365
0.90 0.61929 0.21154 0.61910 0.21261 0.61910 0.21261
1.00 0.58770 0.20251 0.58715 0.20360 0.58715 0.20360
2.00 0.51163 0.05132 0.51098 0.05004 0.51098 0.05004
3.00 0.55082 0.00593 0.55142 0.00540 0.55142 0.00540
4.00 0.57193 0.00040 0.57233 0.00033 0.57233 0.00033
5.00 0.58123 0.00002 0.58147 0.00001 0.58147 0.00001

The results that are obtained from the present method are compared against the results
reported in [12], which concern the infinite water depth case. Here, the infinite water depth
was simulated using h = 50a. The associated numerical predictions are shown in Figure 5.
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Figures 6 and 7 show the hydrodynamic added mass and damping coefficients in
the heave and the surge modes of motion of an oblate spheroid with slenderness ratio
a/b = 1.25, immersion f = 1.01a and water depth h = 5a. By comparing the results shown
in Figures 6 and 7 with those given in Figure 4, it is seen that when the water depth is
constant, equal to h = 5a, and the immersion depth changes, the damping coefficient
increases with the decrease of the immersion below the free surface. It is clearly seen that
larger immersion depths lead to a smoother variation of the added mass for both modes
of motion.

Further, the discussion is extended to the effect of the immersion below the free
surface on the surge and the heave hydrodynamic coefficients. The model is a spheroid
with slenderness ratio a/b = 1.1, in a liquid field of h = 10a. Three different immersions,
f, are examined, i.e., 1.01a, 1.5a, and 3a (Figures 8 and 9). In fact, the conclusions drawn
previously for the a/b = 1.25 apply for a/b = 1.1, as well.
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Finally, Figures 10 and 11 investigate an extreme situation where the spheroid nearly
touches the bottom. This case is simulated assuming f = 9a, h = 10a and slenderness
ratio a/b = 1.1. It is clearly evident that the added mass is practically constant with the
oscillation frequency, while the hydrodynamic damping is negligible.
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5. The Special Case of a Disc

The approach taken in the aforementioned sections can be successfully employed
for a fully submerged disc since an oblate spheroid can simulate a disc by assuming
that the semi-minor axis of the spheroid tends to zero ( b→ 0). Therefore, the semi-focal
distance asymptotes to the semi-major axis, c→ a , ξ0 → 0 . The schematic of the problem
is depicted in Figure 12.
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The whole formulation described in the aforementioned sections remains the same.
Nevertheless, the limiting case ξ0 → 0 provides the following closed form expressions for
the associate Legendre functions, i.e., [16].

Pm
n (iξ0) =

2m(−1)−1/2m√π
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1
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1
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)
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Qm
n (iξ0) = eimππ

1
2 2m

(
(iξ0)

2 − 1
)− 1

2 m Γ
(

1
2 + n

2 + m
2

)
2Γ
(
1 + n

2 −
m
2
) e±

i1
2 π F

(
−n

2
− m

2
,

1
2
+

n
2
− m

2
;

1
2

; (iξ0)
2
)

, ξ0 → 0 (46)

where Γ is the gamma function and F stands for the hypergeometric function.
Apparently for the disc case, only the heaving oscillations are important. The disc is

fully immersed, and the axis of symmetry is perpendicular to the undisturbed free surface.
Two immersions depths are studied ( f = 1.5a and f = 3a), and the water depth was
assumed to be infinite. The relevant results are shown in Figure 13. The added mass and
the damping coefficients have been normalized by 4/3πρa3 and 4/3πρa3ω, respectively.
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6. Conclusions

The present study developed an efficient method for the calculation of the hydro-
dynamic coefficients of oblate spheroids with vertical axis of symmetry. The motivation
behind the analysis conducted is focused on the rigorous computation of added masses and
damping coefficients of the spheroids, given that the concerned geometry is very promising
for the hydrodynamic interaction of point absorbers for wave energy extraction.

The method of image singularities is used in order to solve the radiation problem of
an immersed axisymmetric oblate spheroid in a liquid field of fixed, finite water depth.
This method is a powerful tool as it effectively transforms the governing Green’s function
into a series of spheroidal harmonics. The latter are assumed to compose the radiation
potential. Simple, analytical formulas for the hydrodynamic added mass and damping
coefficients are obtained. The numerical results of the present method are validated against
the results obtained from a well-known BIEM code. The excellent agreement ensured
the accuracy, reliability and robustness of the developed semi-analytical formulation. In
addition, numerical simulations have been performed taking into account the immersion
depth, the water depth and the slenderness ratio of the spheroid. The obtained results of
the study showed that these parameters have a direct impact on the hydrodynamic added
mass and the damping coefficients. Finally, a fully submerged disc was investigated, which
was simulated by assuming an oblate spheroid of zero semi-minor axis. The calculations
were carried out by using the asymptotic expansions of the associate Legendre functions.
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