Nonlinear Waves Passing over Rectangular Obstacles: Multimodal Method and Experimental Validation
Abstract
:1. Introduction
2. Multimodal Model
2.1. Statement of the Problem
Solution of First Order
2.2. Second Order Problem
2.2.1. Statement of the Problem
2.2.2. Second-Order Particular Solution
2.2.3. Second-Order Homogeneous Solution
2.2.4. Construction of the Complete Second-Order Solution
3. Numerical Calculation
3.1. Solution of the First-Order Problem
3.2. Solution of the Second-Order Problem
4. Experimental Measurements
4.1. Experimental Set-Up
4.2. Space-Time Spectra
4.3. Amplitude and Phase of Free and Bound Waves
4.4. Beating Length and the Influence of the Surface Tension
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. First Order
Appendix A.1. Solution of the System
Appendix B. Second Order
Appendix B.1. Constants
Appendix B.2. Solution of the System
References
- Li, Y.; Draycott, S.; Zheng, Y.; Lin, Z.; Adcock, T.A.; Van Den Bremer, T.S. Why rogue waves occur atop abrupt depth transitions. J. Fluid Mech. 2021, 919, R5. [Google Scholar] [CrossRef]
- Mei, C.C.; Black, J.L. Scattering of surface waves by rectagular obstacles in waters of finite depth. J. Fluid Mech. 1969, 38, 499–511. [Google Scholar] [CrossRef]
- Miles, J.W. Surface-wave scattering matrix for a shelf. J. Fluid Mech. 1967, 28, 755–767. [Google Scholar] [CrossRef]
- Newman, J. Propagation of water waves over an infinite step. J. Fluid Mech. 1965, 23, 399–415. [Google Scholar] [CrossRef]
- Grue, J. Nonlinear water waves at a submerged obstacle or bottom topography. J. Fluid Mech. 1992, 244, 455–476. [Google Scholar] [CrossRef] [Green Version]
- Massel, S.R. Harmonic generation by waves propagating over submerged step. Coast. Eng. 1983, 7, 357–380. [Google Scholar] [CrossRef]
- Belibassakis, K.A.; Athanassoulis, G.A. Extension of second-order Stokes theory to variable bathymetry. J. Fluids Mech. 2002, 464, 35–80. [Google Scholar] [CrossRef] [Green Version]
- Belibassakis, K.A.; Athanassoulis, G.A. A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions. Coast. Eng. 2011, 58, 337–350. [Google Scholar] [CrossRef]
- Athanassoulis, G.A.; Belibassakis, K.A. A consistent coupled-mode theory for the propagation of small amplitude water waves over variable bathymetry regions. J. Fluids Mech. 1999, 389, 275–301. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.P. On the transmission of water waves over a shelf. Appl. Ocean Res. 1997, 19, 161–169. [Google Scholar] [CrossRef]
- Porter, R.; Porter, D. Approximations to the scattering of water waves by steep topography. J. Fluids Mech. 2006, 562, 279–302. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Lin, Z.; Adcock, T.A.; van den Bremer, T.S. Surface wavepackets subject to an abrupt depth change. Part 1. Second-order theory. J. Fluid Mech. 2021, 915, A71. [Google Scholar] [CrossRef]
- Ducrozet, G.; Slunyaev, A.; Stepanyants, Y. Transformation of envelope solitons on a bottom step. Phys. Fluids 2021, 33, 066606. [Google Scholar] [CrossRef]
- Bryant, P.J. Periodic waves in shallow water. J. Fluid Mech. 1972, 59, 625–644. [Google Scholar] [CrossRef]
- Huang, C.J.; Dong, C.M. Wave deformation and vortex generation in water waves propagating over a submerged dike. Coast. Eng. 1999, 37, 123–148. [Google Scholar] [CrossRef]
- Chapalain, G.; Cointe, R.; Temperville, A. Observed and modeled resonantly interacting progressive water-waves. Coast. Eng. 1992, 16, 267–300. [Google Scholar] [CrossRef]
- Beji, S.; Battjes, J.A. Experimental investigation of wave propagation over a bar. Coast. Eng. 1992, 19, 151–162. [Google Scholar] [CrossRef]
- Li, F.; Ting, C. Separation of free and bound harmonics in waves. Coast. Eng. 2012, 67, 29–40. [Google Scholar] [CrossRef]
- Benoit, M.; Raoult, C.; Yates, M. Fully nonlinear and dispersive modeling of surf zone waves: Non-breaking tests. Coast. Eng. Proc. 2014, 1, 15. [Google Scholar] [CrossRef]
- Ohyama, T.; Nadaoka, K. Transformation of a nonlinear wave train passing over a submerged shelf without breaking. Coast. Eng. 1993, 24, 1–22. [Google Scholar] [CrossRef]
- Brossard, J.; Chagdali, M. Experimental investigation of the harmonic generation by waves over a submerged plate. Coast. Eng. 2001, 42, 277–290. [Google Scholar] [CrossRef]
- Brossard, J.; Perret, G.; Blonce, L.; Diedhiou, A. Higher harmonics induced induced by a submerged horizontal plate and a submerged rectangular step in a wave flume. Coast. Eng. 2009, 56, 11–22. [Google Scholar] [CrossRef]
- Ting, C.L.; Chao, W.T.; Young, C.C. Experimental investigation of nonliear regular waves transformation over submerged step: Harmonic generation and wave height modulation. Coast. Eng. 2016, 117, 19–31. [Google Scholar] [CrossRef]
- Ohyama, T.; Kioka, W.; Tada, A. Applicability of numerical models to nonlinear dispersive waves. Coast. Eng. 1995, 24, 297–313. [Google Scholar] [CrossRef]
- Takeda, M.; Ina, H.; Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JosA 1982, 72, 156–160. [Google Scholar] [CrossRef]
- Takeda, M.; Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 1983, 22, 3977–3982. [Google Scholar] [CrossRef] [PubMed]
- Cobelli, P.; Maurel, A.; Pagneux, V.; Petitjeans, P. Global measurement on water waves by Fourier transform profilometry. Exp. Fluids 2009, 46, 1037–1047. [Google Scholar] [CrossRef]
- Hsu, J.R.C.; Tsuchiya, Y.; Silvester, R. Third order approximation to short crested waves. J. Fluids Mech. 1979, 90, 179–196. [Google Scholar] [CrossRef]
- Mei, C.C.; Stiassnie, M.; Yue, D.K.P. Theory and Applications of Ocean Surface Waves. Part 1: Linear Aspects; World Scientific: Singapore, 2005; Volume 23. [Google Scholar]
- Sommerfeld, A. Partial Differential Equations in Physics; Academic Press: Cambridge, MA, USA, 1949; Volume 1. [Google Scholar]
- Przadka, A.; Cabane, B.; Pagneux, V.; Maurel, A.; Petitjeans, P. Fourier transform profilometry for water waves: How to achieve clean water attenuation with diffusive reflection at the water surface? Exp. Fluids 2012, 52, 519–527. [Google Scholar] [CrossRef]
- Monsalve, E.; Maurel, A.; Petitjeans, P.; Pagneux, V. Perfect absorption of water waves by linear or nonlinear critical coupling. Appl. Phys. Lett. 2019, 114, 013901. [Google Scholar] [CrossRef] [Green Version]
- Monsalve, E.; Maurel, A.; Pagneux, V.; Petitjeans, P. Space-time-resolved measurements of the effect of pinned contact line on the dispersion relation of water waves. Phys. Rev. Fluids 2022, 7, 014802. [Google Scholar] [CrossRef]
- Stokes, G.G. On the theory of the oscillatory waves. Trans. Camb. Phil. Soc. 1847, 8, 441–455. [Google Scholar]
- Alippi, A.; Bettucci, A.; Germano, M. Model and experiments for resonant generation of second harmonic capillary–gravity waves. Phys. D Nonlinear Phenom. 2019, 396, 12–17. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monsalve, E.; Maurel, A.; Pagneux, V.; Petitjeans, P. Nonlinear Waves Passing over Rectangular Obstacles: Multimodal Method and Experimental Validation. Fluids 2022, 7, 145. https://doi.org/10.3390/fluids7050145
Monsalve E, Maurel A, Pagneux V, Petitjeans P. Nonlinear Waves Passing over Rectangular Obstacles: Multimodal Method and Experimental Validation. Fluids. 2022; 7(5):145. https://doi.org/10.3390/fluids7050145
Chicago/Turabian StyleMonsalve, Eduardo, Agnès Maurel, Vincent Pagneux, and Philippe Petitjeans. 2022. "Nonlinear Waves Passing over Rectangular Obstacles: Multimodal Method and Experimental Validation" Fluids 7, no. 5: 145. https://doi.org/10.3390/fluids7050145
APA StyleMonsalve, E., Maurel, A., Pagneux, V., & Petitjeans, P. (2022). Nonlinear Waves Passing over Rectangular Obstacles: Multimodal Method and Experimental Validation. Fluids, 7(5), 145. https://doi.org/10.3390/fluids7050145