
Citation: Kakinuma, T. A Numerical

Study on Distant Tsunami

Propagation Considering the Strong

Nonlinearity and Strong Dispersion

of Waves, or the Plate Elasticity and

Mantle Fluidity of Earth. Fluids 2022,

7, 150. https://doi.org/10.3390/

fluids7050150

Academic Editors: Giuliano De

Stefano and Mehrdad Massoudi

Received: 31 December 2021

Accepted: 20 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

A Numerical Study on Distant Tsunami Propagation
Considering the Strong Nonlinearity and Strong Dispersion of
Waves, or the Plate Elasticity and Mantle Fluidity of Earth
Taro Kakinuma

Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan;
taro@oce.kagoshima-u.ac.jp

Abstract: Numerical simulations were generated to investigate the propagation processes of distant
tsunamis, using a set of wave equations based on the variational principle considering both the
strong nonlinearity and strong dispersion of waves. First, we proposed estimate formulae for the
time variations of the tsunami height and wavelength of the first distant tsunami, by assuming that
the initial tsunami profile was a long crest in a uniform bathymetry. Second, we considered the
plate elasticity and upper-mantle fluidity of Earth, to examine their effects on the distant tsunami
propagation. When the plate and upper mantle meet certain conditions with both a large depth and
moderately large density of the upper mantle, the internal-mode tsunamis with a significant tsunami
height propagated slower than the tsunamis in the corresponding one-layer problems, leading to the
delay of the arrival time observed in distant tsunamis from that evaluated by the one-layer calculation.
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1. Introduction

The 2011 mega East Japan earthquake triggered huge tsunamis that caused enormous
damage mainly to the eastern coasts of Japan, as reported by the field surveys (e.g., [1]).
The tsunamis generated by the seabed rise or subsidence due to the submarine earthquakes
had wavelengths as long as the fault widths, to the extent that they also arrived all the
way to the north coasts of Australia and the west coasts of North America. Such large
distant tsunamis can be affected by not only wave nonlinearity but also wave dispersion
during their propagation. Therefore, when applying wave equations to reproduce distant
tsunamis, appropriate dispersion terms should be considered [2–7].

Moreover, when the tsunamis due to the 1960 Chile earthquake and 2010 Chile Maule
earthquake spread widely to the Pacific Rim regions, the arrival time of the distant tsunamis
on Japanese coasts was later than the estimated arrival time through the numerical cal-
culations with the shallow water equations [8]; there were several beaches on which the
arrival-time difference was more than an hour. Although the effect of density stratification
in the ocean on the propagation of long tsunamis was not as large as expected [9], it was
revealed that considering both the seawater compressibility and Earth elasticity improves
the estimated arrival time of distant tsunamis [10–15]. In the 2011 Tohoku tsunami case,
the effects of weak dispersion, seawater density stratification, elastic loading, and grav-
itational potential change were considered in the numerical calculation for the tsunami
propagation [16]. However, these factors alone cannot explain the arrival-time difference of
around one hour in transoceanic propagation of tsunamis in other several cases.

In the present study, we first numerically simulated distant tsunamis using a set of
wave equations based on a variational principle considering both the strong nonlinearity
and strong dispersion of waves, and proposed formulae for estimating the time variations
of the tsunami height and wavelength of the first wave. In the computation, we assumed
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that the initial tsunami profile was a sinusoidal crest with a relatively long wavelength,
and the still seawater depth was uniform, for simplicity.

Second, we investigated the effects of the plate and upper mantle of Earth on the
phase velocity of distant tsunamis, by assuming that the plate under the sea was an elastic
body, and the upper layer of the mantle under the plate behaved like a fluid, to consider
the motion of the plate and upper mantle. Although a tsunami generated as the first wave
may be delayed or extinguished based on the effects of refraction, reflection, dispersion, etc.
during transoceanic travel, the cause of the travel-time delay of the first tsunami without
these effects was assumed to be the mantle motion. The state of mantle has not been
elucidated, so it is undeniable that the hot mantle, which behaves like a fluid even in a
limited area, affects tsunami propagation. We tried several thought experiments in which
the mantle behavior was considered throughout the tsunami propagation process.

2. Numerical Calculation Method
2.1. Governing Equations

Figure 1 depicts our schematic for a system consisting of multilayer fluids and thin
plates, where the fluid layers and thin plates are represented as the i-layers and i-plates
(i = 1, 2, . . . , I) from top to bottom, respectively. The method of deriving the present
governing equations is described below. It was assumed that none of the fluids mixed
even in motion without plates, and the density ρi (ρ1 < ρ2 < . . . < ρI) of the i-layer was
spatially uniform and temporally constant. The thickness of the i-layer was hi(x) in the
stationary state, where x was the coordinate in the horizontal plane, i.e., (x, y). The origin
of the vertical axis z was located at the top surface of the system in the stationary state,
and the positive direction of z was vertically upward. The elevations of the lower and
upper interfaces of the i-layer were expressed by z = ηi,0 (x, t) and z = ηi,1 (x, t), respectively,
and the pressures at the lower and upper interfaces of the i-layer were denoted by pi,0 (x, t)
and pi,1 (x, t), respectively.
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Figure 1. Schematic for a system consisting of multilayer fluids and thin plates.

The thin plate touching the upper interface of the i-layer is called the i-plate. The den-
sity and vertical width of the i-plate were mi and δi, respectively. When mi, δi, and the
flexural rigidity of the i-plate are zero, the plate yielded no resistance to fluid motion,
where two immiscible fluids touched each other directly without any plate. Both surface
tension and capillary action were ignored. Although the friction was also ignored for
simplicity in the present study, the seabed friction affected tsunami propagation in various
stages, including propagation and run-up, e.g., [17–19], so the terms regarding bottom
friction should be introduced in the governing equations in future.

Fluid motion was assumed to be inviscid, incompressible, and irrotational, resulting
in the existence of velocity potential φi, which was expanded into a power series of z with
weightings fi,α as

φi(x, z, t) =
N−1

∑
α=0

[ fi,α(x, t)·zα]. (1)
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In the i-layer, when both the displacement of one interface, z = ηi,1−j(x, t) (j = 0 or 1),
and the pressure on the other interface, pi,j(x, t), are known, the unknown variables were
the velocity potential φi(x, z, t) and interface displacement ηi,j(x, t). Then, the definition of
the functional for the variational problem in the i-layer, Fi, was as follows [20]:

Fi
[
φi, ηi,j

]
=
∫ t1

t0

s
A
∫ ηi,1

ηi,0

[
∂φi
∂t + 1

2 (∇φi)
2 + 1

2

(
∂φi
∂z

)2
+ gz +

pi,j+Pi+Wi
ρi

]
dz dA dt, (2)

where the gravitational acceleration g was assumed to be constant at 9.8 m/s2 regardless of
latitude in this study, and ∇ = (∂/∂x, ∂/∂y) was a horizontal partial differential operator.
The plane A which was the orthogonal projection of the object domain on to the x-y plane
was assumed to be independent of time. The Coriolis force is ignored for simplicity along
the paths of one-dimensional tsunami propagation in this paper, although it is an important
factor for transoceanic tsunamis [6].

In comparison with the functional referred to in [21] for the rotational motion of a
fluid, Equation (2) introduced an additional term of the integral of (pi,j + Pi + Wi)/ρi as an
interfacial-pressure term, without the terms related to vorticity. Using the functional of [21],
after omitting the vorticity terms, the set of nonlinear equations for one-layer problems
without thin plates was derived by [22].

Pi and Wi in Equation (2) were expressed by

Pi = ∑i−1
k=1[(ρi − ρk)ghk], (3)

Wi = ∑i
k=1(−mkgδk), (4)

respectively.
After substituting the velocity potential φi expanded in Equation (1) into Equation (2),

the Euler-Lagrange equations on fi,α and ηi,α were derived as

ηα
i,1

∂ηi,1
∂t − ηα

i,0
∂ηi,0

∂t +∇
[(

η
α+β+1
i,1 − η

α+β+1
i,0

)
∇ fi,β

]
− αβ

α+β−1

(
η

α+β−1
i,1 − η

α+β−1
i,0

)
fi,β = 0, (5)

η
β
i,j

∂ fi,β
∂t + 1

2 η
β+γ
i,j ∇ fi,β∇ fi,γ + 1

2 βγη
β+γ−2
i,j fi,β fi,γ + gηi,j +

pi,j+Pi+Wi
ρi

= 0 (j = 0 or 1), (6)

where the sum rule of product was adopted for subscripts β and γ. For example, f 2,3 was
the weighting of z3 in the 2nd layer.

In the derivation process of the equations, no assumption was used for the wave non-
linearity and dispersion of fluids without viscosity and compressibility, so the application
of this model is expected to be theoretically free from limitations concerning the relative
thickness of fluid layers or the frequency band of surface/internal waves. For long surface
waves in one-layer problems without thin plates, the accuracy of the above equations was
investigated by [23]: when the maximum order of equations is 2n, the order of error in the
set of Equations (5) and (6) was σ4n + 2, where σ was the representative ratio of water depth
to wavelength. Conversely, the order of error in the extended Green-Naghdi equation [24]
was σ2n + 2. Therefore, especially when O(σ)� 1, the accuracy of the former is significantly
higher than that of the latter for n ≥ 1.

Regarding the i-plate, the horizontal length scale was assumed to be much larger than
the thickness of the thin plate, so the differences in curvature between the upper surface,
neutral plane, and lower surface of the thin plate were ignored. Therefore, the governing
equation of motion for the i-plate was the following classical equation to describe the
oscillation of an elastic thin plate:

miδi
∂2ηi,1

∂t2 + Bi∇2∇2ηi,1 + migδi + pi−1,0 − pi,1 = 0, (7)

where Bi was the flexural rigidity of the i-plate. Both the plate density mi and vertical width
δi were assumed to be constant throughout the i-plate, for simplicity.
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When the representative values of wave height, wavelength, fluid depth, and density
are H, l, d, and ρ, respectively, the dimensionless quantities were

x∗ = x
l , t∗ =

√
gd
l t, ∇∗ = l∇, ∂

∂t∗ =
(

∂
∂t

)∗
= l√

gd
∂
∂t ,

η∗i,e =
ηi,e
H , δ∗i = δi

H , m∗i = mi
ρ , B∗i = Bi

ρgl4 , p∗i,e =
pi,e
ρgd

, (8)

where e = 0 and 1.
We substituted Equation (8) into Equation (7), and obtained

ε2σ2m∗i δ∗i
∂2η∗i,1
∂t∗2

+ εB∗i ∇∗2∇∗2η∗i,1 + εm∗i δ∗i + p∗i−1,0 − p∗i,1 = 0, (9)

where ε = H/d and σ = d/l were the representative ratio of wave height to water depth,
and that of water depth to wavelength, respectively. In the manner similar to that of [25],
each layer was assumed to be relatively shallow, such that O(ε) = O(σ2)� 1. Thus, the first
term on the left-hand side of Equation (9) could be ignored. Without this term, we obtained
the i-plate equation for the dimensional quantities as

Bi∇2∇2ηi,1 + migδi + pi−1,0 − pi,1 = 0. (10)

In this study, we consider the one-dimensional propagation problems of waves in the
x-axis direction.

2.2. Numerical Method

The governing equations, namely Equations (5), (6) and (10), were transformed to finite-
difference equations, and solved to study the interaction of fluid layers with thin plates in
the vertical two dimensions, by applying the implicit scheme, which was developed by [26]
for internal waves, to the present equations including the terms regarding surface and
interface displacements. In the initial state at t = 0 s, the weighting coefficients f i,α(x, 0 s) of
the expanded velocity potential in Equation (1) were all zero, so the initial velocity was
zero everywhere. In this paper, the values are written without considering significant digits,
although the calculation was conducted using 64-bit floating-point numbers.

The numerical model was verified by [27], in which the numerical results of the surface
displacements were in good agreement with the existing experimental data obtained by [28]
for the disintegration of the incident solitary wave due to a floating thin plate. Based on the
results, the generation of the preceding short waves were simulated successfully when the
number of terms for the velocity potential expanded as in Equation (1), N, is two, where both
the linear vertical distribution of horizontal velocity ui and the uniform vertical distribution
of vertical velocity wi were considered, with the balance between the nonlinearity and
dispersion of the waves.

3. Estimate Formulae for the Time Variations of Tsunami Height and Wavelength in
Distant Tsunami Propagation
3.1. Estimate Formula for the Time Variation of Tsunami Height in Distant Tsunami Propagation

We focused on one-layer fluid problems without thin plates, to obtain a formula for
estimating the tsunami height of distant tsunamis, based on the information on the initial
water surface profile in a tsunami source area, namely the initial tsunami profile. In order to
consider the dispersion of distant tsunamis, the number of terms for the velocity potential
expanded as in Equation (1), N, was two, so the velocity potential φ(x, z, t) was represented
by f 0(x, t) + z·f 1(x, t). We assumed that the initial tsunami profile was a relatively long crest
caused by an uplift of the seabed. The perfect reflection was assumed as the boundary
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condition at x = 0 km, and the initial tsunami profile, namely z = η1,1(x, t) = ζ(x, t) at t = 0 s,
was given by

ζ(x, 0 s)/a0 =

{
1 + cos[2π(x/L0)] when 0 km ≤ x < L0/2

0 when x ≥ L0/2
, (11)

where the initial tsunami height a0 was 1 m, and L0 was the initial tsunami wavelength.
The initial water surface profile of a submarine-earthquake tsunami is determined by
seabed uplift and subsidence, so a sinusoidal curve as described in Equation (11) was
assumed regardless of the nonlinearity of the computational framework.

It should be noted that even if a crest is generated in the tsunami source area, when the
wavelength is not sufficiently long, the crest will disappear based on the wave dispersion,
creating a trough behind it, as described by [4]. Thus, in the present computation, L0 was
on the order of tens to hundreds of kilometers. The grid size ∆x was 1.0 km and the time
interval ∆t was 0.05 s.

For simplicity, the bathymetry was uniform, where the still seawater depth h was
uniformly 4000 m, similar to the average depth of the Pacific Ocean. Figure 2 depicts
the numerical calculation results for the relative tsunami height of the leading wave,
namely the first wave, where the tsunami height is defined by the maximum water surface
displacement ζmax at each location x. In the calculations, the initial tsunami wavelength
L0 was of 20 km, 30 km, 60 km, 120 km, and 200 km, although earthquakes may excite
wavelengths longer than 200 km. Figure 2 indicates that the reduction rate of the tsunami
height ζmax of the first wave increased, as the initial tsunami wavelength L0 was decreased.
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Figure 2. Numerical results for the time variation of the relative tsunami height ζmax/a0 of the first
wave, for different values of the initial tsunami wavelength L0, when the still seawater depth h is
4000 m.

Based on the calculation results, we created an estimate formula for the time variation
of tsunami height. In any curve of the log-log graph depicted in Figure 2, the reduction
rate was almost constant after a certain propagation time of the tsunamis, so we deter-
mined both the intercept k1 on the vertical axis and the slope k2 of the almost straight line.
Then, we evaluated the general forms of k1 and k2 with respect to the ratio of still seawater
depth to initial tsunami wavelength, h/L0, and obtained the estimate formula for the time
variation of the relative tsunami height of the first wave as

ζmax/a0 = 10k1
(
t
√

gh/L0
)k2 ,

k1 = 101.24(h/L0)
3 − 35.77(h/L0)

2 + 2.10(h/L0) + 0.22,
k2 = −97.56(h/L0)

3 + 41.13(h/L0)
2 − 5.67(h/L0)− 0.07

. (12)

In Figure 3, we compare the relative tsunami height ζmax/a0 estimated by Equation
(12) with that obtained using the numerical model, to verify the accuracy of Equation (12),
for each value of L0. When L0 is 120 km and 200 km, the accuracy of the estimated values
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was good for t > 4 h and 12 h, respectively, where the tsunamis were generated at t = 0 h,
although the accuracy was reduced near the tsunami source.
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Figure 3. Comparison between the time variation of the relative tsunami height ζmax/a0 of the first
wave estimated by Equation (12) and that obtained using the numerical model, for each value of the
initial tsunami wavelength L0, when the still seawater depth h is 4000 m.

Equation (12) is an estimate formula obtained using the values of k1 and k2 when the
initial tsunami wavelengths L0 are 20 km, 30 km, 60 km, 120 km, and 200 km. When L0
is 80 km, which is different from these values, we compare the estimated value and the
corresponding numerical result in Figure 4. This figure indicates that when L0 is 80 km,
the accuracy of the estimated tsunami height was good for t > 2.5 h.
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tsunami wavelength L0 is 80 km, and the still seawater depth h is 4000 m.

Furthermore, although Equation (12) was obtained when the still seawater depth h is
4000 m, the formula is described for the nondimensional values. In Figure 5, we compare
the time variation of the relative tsunami height ζmax/a0 estimated by Equation (12) and
the corresponding numerical result when h is 2000 m and L0 is 60 km. Based on this figure,
the formula was applicable for t > 3 h. When applying the estimate formula in the ocean
with a distribution of still seawater depth h, it is recommended to use the most accurate
mean of h possible, along tsunami propagation.
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Figure 5. Comparison between the time variation of the relative tsunami height ζmax/a0 of the first
wave estimated by Equation (12) and that obtained using the numerical model when the initial
tsunami wavelength L0 is 60 km, and the still seawater depth h is 2000 m.

In the above discussion, the initial tsunami profile consisted of only one crest. If the
initial tsunami profile includes both a long crest and a trough, several crests and troughs
can be generated in the wave-transformation process with wave disintegration, so the
crest generated from the initial long crest may overlap the crests generated from the initial
trough, resulting in an increase in tsunami height. When the perfect reflection is assumed
as the boundary condition at x = 0 km, and the initial tsunami profile z = ζ(x, 0 s) is given by

ζ(x, 0 s)/a0 =


1 + cos[2π(x/L0)] when 0 km ≤ x < L0/2

−1 + cos[2π(x/L0)− π] when L0/2 ≤ x < 3L0/2
0 when 3L0/2 ≤ x

, (13)

the time variation of the relative tsunami height ζmax/a0 is presented in Figure 6, with the
corresponding result using Equation (11), where a0 was 1 m, the initial tsunami wavelength
L0 was 60 km, and the still seawater depth h was 4000 m. In this case, the long crest
generated from the initial crest overlapped the preceding long crest generated from the
initial trough, and the tsunami height increased when 0.7 h < t < 2.1 h. Therefore, it should
be noted that the tsunami height estimated using Equation (12) is valid when the long crest
generated from the initial crest continues to precede other waves, or after it overtakes all
the other waves that were ahead of it.
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Figure 6. Numerical results for the time variation of the relative tsunami height ζmax/a0 of the first
wave, when the initial tsunami profile is given by Equations (11) and (13), in which a0 was 1 m and
the perfect reflection was assumed at x = 0 km. The initial tsunami wavelength L0 was 60 km, and the
still seawater depth h was 4000 m.
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3.2. Estimate Formula for the Time Variation of Wavelength in Distant Tsunami Propagation

We considered one-layer fluid problems without thin plates in order to obtain a
formula for estimating the wavelength of distant tsunamis, using the information on the
initial tsunami profile consisting only of a relatively long crest. The perfect reflection was
assumed as the boundary condition at x = 0 km, and the initial tsunami profile was given
by Equation (11), in which a0 was 1 m.

Figure 7 depicts the numerical calculation results for the relative half wavelength
(xcrest − xtrough)/L0 of the first wave, for various values of the initial tsunami wavelength
L0, when the still seawater depth h is 4000 m. The half wavelength is defined by the
horizontal interval between the locations of the highest and lowest water levels at each
time, namely xcrest and xtrough, respectively, of the first wave.
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of the first wave, for different values of the initial tsunami wavelength L0, where xcrest and xtrough

were the locations of the highest and lowest water levels of the first wave, respectively. The still
seawater depth h was 4000 m.

Based on Figure 7, the estimate formula expressing the time variation of the relative
half wavelength of the first wave was obtained as(

xcrest − xtrough

)
/L0 = k3

(
t
√

gh/L0
)k4 ,

k3 = −191.77(h/L0)
3 + 78.43(h/L0)

2 − 8.33(h/L0) + 0.71,
k4 = 133.28(h/L0)

3 − 59.68(h/L0)
2 + 8.87(h/L0)− 0.13

. (14)

In Figure 8, we compare the time variation of the relative half wavelength (xcrest − xtrough)/L0
of the first wave estimated by Equation (14) with the corresponding numerical result
depicted in Figure 7, for each value of the initial tsunami wavelength L0. This figure
indicates that when t > 4.5 h, the relative half wavelength increased, as h/L0 was increased,
because of the stronger dispersion of waves. In particular, when L0 is 200 km, the formula
is applicable for a longer propagation distance of tsunamis.
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4. Effects of the Upper-Mantle and Plate Motion on Distant Tsunami Propagation
4.1. Structural Model of Earth

When the propagation distance of tsunamis is very large, the difference in propagation
distance due to the difference in phase velocity appears greatly between calculated and
measured values, even if both the nonlinearity and dispersion of tsunamis are considered
as in Section 3. To consider the cause, the effects of the seawater compressibility and
Earth elasticity on tsunami propagation have been examined in the numerical calculations,
as mentioned in Section 1, with reference to the theoretical studies including [29–31].
However, there are still unknowns about the internal structure of Earth, and there is room
for investigation to clarify the cause. In this study, we analyzed the effects of the upper-
mantle and plate motion on the propagation processes of distant tsunamis. The present
model of the internal structure near Earth surface is illustrated in Figure 9, in which under
the bottom of seawater, namely the seabed, there is a plate consisting of a crust and a rigid
surface layer of mantle, under which the upper mantle exists.
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In the model, the assumptions are as follows:

(1) The plate is an elastic body with a large horizontal scale, so the plate movement
is considered at the neutral plane, regardless of the plate thickness. In the present
computation, the discontinuity between multiple plates was ignored, and the flexural
rigidity of the plate, B, was uniform.

(2) The upper mantle under the plate behaves like a fluid, although it is a substantial ideal-
ization in the modeling. We have not proved that the upper mantle has fluid properties
on the tsunami time scale, but there is no proof that it does not, because seismic-wave
data on the surface of Earth alone do not clarify both the mechanism and accurate
paths of seismic-wave propagation in the deeper part of Earth, and the internal struc-
ture of Earth has not been revealed. Although it is unclear whether molten mantle is
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under the entire plate, we consider that the areas of fluid mantle are connected under
the paths of tsunamis in the present study.

(3) The part below the upper mantle is less likely to affect tsunami propagation, and the
upper-mantle bottom in a very deep position is a fixed horizontal plane.

Therefore, from bottom to top in the initial state of computation, on a fixed horizontal
plane, there was a fluid corresponding to the upper mantle with a uniform depth of hm;
on this fluid, a thin plate representing a plate was lying; on this thin plate, the seawater with
a uniform depth of hw existed. The upper surface of the seawater was a free water surface,
and the densities of the seawater and upper mantle, ρw and ρm, respectively, were assumed
to be constant.

In the numerical model, the multilayer fluids were not viscous, so the viscosity of
the upper mantle could not be considered. Therefore, instead of the unclear liquidity and
movement range of the upper mantle, various values were used for both its density ρm and
initial depth hm. For example, when the upper mantle is difficult to move, the value of ρm
was set to be large.

4.2. Effects of the Upper-Mantle and Plate Motion on Distant Tsunami Propagation

The seawater surface profile and seabed shape were expressed as z = η1,1 = η and
z = η1,0 + hw = b + hw, respectively, using the displacements η and b from z = 0 m, respectively.
The perfect reflection was assumed as the boundary condition at x = 0 km, and the initial
water surface profile at t = 0 s was given by

η(x, 0 s)/a0 =

{
1 + cos[2π(x/L0)] when 0 km ≤ x < L0/2

0 when x ≥ L0/2
, (15)

where a0 was 5 m, and the initial tsunami wavelength L0 was 200 km.
In fluid motion, to consider both the nonlinearity and dispersion of waves, the number

of terms for the velocity potential expanded as in Equation (1), N, was three,
so φi(x, z, t) = fi,0(x, t) + z·fi,1(x, t) + z2·fi,2(x, t) (i = 1 and 2).

We assumed that the seawater density ρw was 1000 kg/m3 and the still seawater depth
hw was uniformly 4000 m. Then, the remaining parameters were the upper-mantle density
ρm, upper-mantle initial depth hm, and plate flexural rigidity B. Assuming the values of
these unclear parameters ρm, hm, and B, several examples of the numerical calculation
results for the water surface profile z = η and seabed shape z = b + hw at t = 2000 s are
presented in Figures 10–13. In the figures, the water surface profiles of the corresponding
tsunamis traveling in a one-layer problem without the motion of the upper mantle and
plate are also depicted for comparison, where the one layer was the seawater layer with a
density of ρw and an initial depth of hw.
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Figure 10. Water surface profiles η and seabed shapes b + hw at t = 2000 s, for different values of the
upper-mantle initial depth hm. The upper-mantle density ρm was 3300 kg/m3, and the plate flexural
rigidity B was 0 Nm2. The initial water surface profile was given by Equation (15), in which a0 was
5 m and L0 was 200 km.
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those in the corresponding one-layer problem. 

Figure 11. Water surface profile η and seabed shape b + hw at t = 2000 s, when the upper-mantle
initial depth hm is 196,000 m, the upper-mantle density ρm is 3300 kg/m3, and the plate flexural
rigidity B is 3.43 × 1010 Nm2. The initial water surface profile was given by Equation (15), in which
a0 was 5 m and L0 was 200 km.
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Figure 12. Water surface profile η and seabed shape b + hw at t = 2000 s, when the upper-mantle
initial depth hm is 196,000 m, the upper-mantle density ρm is 3300 kg/m3, and the plate flexural
rigidity B is 3.43 × 1020 Nm2. The initial water surface profile was given by Equation (15), in which
a0 was 5 m and L0 was 200 km.
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3.43 × 1020 0.58 8 h 57 min - x 

33,000 

0 4.9 1 h 16 min - S 
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330,000 
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3.43 × 1010 3.2 4 h 57 min Figure 11 x 

3.43 × 1020 3.2 4 h 57 min Figure 12 x 
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0 12.3 1 h 49 min - x 

3.43 × 1010 12.3 1 h 49 min - x 

Figure 13. Water surface profile η and seabed shape b + hw at t = 2000 s, when the upper-mantle
initial depth hm is 196,000 m, the upper-mantle density ρm is 33,000 kg/m3, and the plate flexural
rigidity B is 3.43 × 1010 Nm2. The initial water surface profile was given by Equation (15), in which
a0 was 5 m and L0 was 200 km.

Depicted in Figure 10 are the numerical results at t = 2000 s, where the initial depth
of the upper mantle, hm, was of 1000 m, 6000 m, and 196,000 m, and the flexural rigidity
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of the plate, B, was 0 Nm2. The density of the upper mantle, ρm, was 3300 kg/m3, which
was determined with reference to [32]. Figure 10 indicates the propagation of both the
surface-mode and internal-mode tsunamis in the two layers, in which the upper and lower
layers consisted of the seawater and upper mantle, respectively. In the surface mode,
the water surface profile and seabed shape were in phase, whereas in the internal mode,
they were in opposite phase.

When the initial depth of the upper mantle, hm, is 1000 m, the leading crest was the
first crest in a surface mode, and appeared around x = 800 km at t = 2000 s. The phase
velocities of the crests in surface modes were larger than that of the corresponding tsunami
in the one-layer problem, because the total depth in the surface modes included the depths
of both the seawater and upper mantle, and was larger than the total depth, which was the
seawater depth, in the one-layer problem. At t = 2000 s, the location of the first crest peak
in the surface mode, xpeak, was 550 km when hm is 6000 m, and xpeak was 412 km when hm
is 1000 m, the latter of which was close to the location of the first peak in the corresponding
one-layer problem because the upper mantle with a shallow depth was not effective.

Conversely, the phase velocities in the internal modes were slower than that in the
corresponding one-layer problem, regardless of the values of the upper-mantle depth hm,
as indicated in Figure 10. As hm was increased, both the phase velocity and tsunami height
in the internal modes increased, where the tsunami height is defined by the maximum
value of water surface displacement η in each mode at each location. When hm is 196,000 m,
the tsunami height in the internal mode was larger than that in the surface mode, whereas
when hm is 6000 m, the reverse was true.

Figure 11 depicts the numerical results at t = 2000 s, where hm = 196,000 m, ρm = 3300 kg/m3,
and B = 3.43 × 1010 Nm2. Comparing the results in Figure 11 with the results for the case
in which hm = 196,000 m, ρm = 3300 kg/m3, and B = 0 Nm2 in Figure 10, there was almost
no difference, so the plate flexural rigidity B with an order of 1010 Nm2 hardly affected the
tsunami height and phase velocity in both the surface and internal modes.

Figure 12 presents the numerical results at t = 2000 s, where hm = 196,000 m, ρm = 3300 kg/m3,
and B = 3.43 × 1020 Nm2. The phase velocity of the second peak in the surface mode was
approximately 407 m/s in Figure 12, whereas 397 m/s in Figure 11, in which hm = 196,000 m,
ρm = 3300 kg/m3, and B = 3.43 × 1010 Nm2, so the phase velocity in the surface mode was
affected by the plate flexural rigidity with an order of 1020 Nm2. However, the effect of the
difference in the plate flexural rigidity was hardly observed in the internal modes depicted
in Figures 11 and 12.

Figure 13 depicts the numerical results at t = 2000 s, where hm = 196,000 m, ρm = 33,000 kg/m3,
and B = 3.43 × 1010 Nm2. Based on the figure, the tsunami height in the surface mode was
remarkably reduced owing to the large upper-mantle density ρm. Conversely, both the
tsunami height and phase velocity in the internal mode were increased and closer to those
in the corresponding one-layer problem.

We specifically consider the cases in which tsunamis generated near a Chilean coast
reach a Japanese coast, assuming that the distance between the two coasts is 17,000 km,
and the still seawater depth hw is uniformly 4000 m. Table 1 describes the numerical results
of the tsunami height ratio near the Japanese coast, (ηI)max/(ηS)max, where (ηI)max and
(ηS)max are the tsunami heights in the internal and surface modes, respectively, near the
Japanese coast. Table 1 also describes ∆tChile, which represents the difference between the
arrival time on the Japanese coast of the first crest with a significant tsunami height in the
internal mode and that of the tsunami with a phase velocity of

√
ghw.
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Table 1. Tsunami height ratio (ηI)max/(ηS)max and arrival-time delay ∆tChile, where (ηI)max and
(ηS)max are the tsunami heights in the internal and surface modes, respectively, near a Japanese coast,
and ∆tChile represents the difference between the arrival time on the Japanese coast of the first crest
with a significant tsunami height in the internal mode and that of the tsunami with a phase velocity of√

ghw. It was assumed that the distance from the tsunami source near a Chilean coast to the Japanese
coast was 17,000 km, and the initial depth hw and density ρw of seawater were uniformly 4000 m and
1000 kg/m3, respectively. The initial depth and density of the upper mantle are represented by hm

and ρm, respectively, and B is the flexural rigidity of the plate. The initial water surface profile was
given by Equation (15), in which a0 was 5 m and L0 was 200 km.

Upper-Mantle
Initial Depth

hm (m)

Upper-Mantle
Density

ρm (kg/m3)

Plate Flexural
Rigidity
B (Nm2)

Tsunami
Height Ratio

(ηI)max/(ηS)max

Arrival-Time
Delay
∆tChile

Figure Category *

1000 3300
0 - - Figure 10 xx

3.43 × 1018 - - - xx

6000

3300
0 0.54 8 h 57 min Figure 10 x

3.43 × 1020 0.58 8 h 57 min - x

33,000
0 4.9 1 h 16 min - S

3.43 × 1016 3.9 45 min - S

3.43 × 1020 4.0 45 min - S

330,000
0 - 15 min - x

3.43 × 1010 - 15 min - x

196,000

3300
0 3.2 4 h 57 min Figure 10 x

3.43 × 1010 3.2 4 h 57 min Figure 11 x

3.43 × 1020 3.2 4 h 57 min Figure 12 x

9900
0 12.3 1 h 49 min - x

3.43 × 1010 12.3 1 h 49 min - x

13,200
0 16.9 1 h 16 min - SI

3.43 × 1010 18.2 1 h 16 min - SI

33,000
0 43.5 45 min - I

3.43 × 1010 48.0 45 min Figure 13 I

3.43 × 1020 48.0 45 min - I

330,000
0 450 15 min - x

3.43 × 1020 450 15 min - x

* The categories are as follows: xx: The internal-mode tsunami height is not significant. x: The internal-mode
tsunami height is significant, but the arrival-time delay in the internal mode is not within the range of 30 min
to 1 h 30 min. S: The arrival-time delay in the internal mode is within the range of 30 min to 1 h 30 min, but the
surface-mode tsunami height is significantly large. SI: The arrival-time delay in the internal mode is within the
range of 30 min to 1 h 30 min, but the surface-mode tsunami may be observed, although its tsunami height is not
as large as in category S. I: The arrival-time delay in the internal mode is within the range of 30 min to 1 h 30 min,
and the tsunami height is significant only in the internal mode.

In Table 1, the velocity
√

ghw, which is the phase velocity of linear waves in shallow
water, is used as a traveling speed to be compared, because the arrival time of tsunamis is
often evaluated using a map created with

√
ghw based on the bathymetry of the ocean.

For example, the internal-mode tsunami depicted in Figure 13 propagated at a phase
velocity of approximately 192 m/s, slower than the one-layer tsunami with a phase velocity
of
√

ghw ' 198 m/s. Thus, in this case, a tsunami generated near the Chilean coast will
reach the Japanese coast approximately 45 min later than the tsunami with a phase velocity
of
√

ghw. However, when the upper-mantle density ρm is 330,000 kg/m3, the effect of the
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mantle fluidity is reduced, so the arrival-time delay ∆tChile will not be so large, namely
approximately 15 min, as indicated in Table 1.

Therefore, under certain conditions of the upper mantle and plate, internal-mode
tsunamis with a significant wave height can propagate slower than the corresponding
one-layer tsunamis. As reported in [8], at several Japanese coasts, the arrival time of the
first wave due to 2010 Chile Maule earthquake was 30 min to 1 h 30 min later than that
evaluated using the linear shallow water model. Based on the obtained arrival-time delay
∆tChile, the cases in Table 1 are divided into five categories, including categories “S,” “SI,”
and “I,” in which ∆tChile of the first internal-mode tsunami with a significant tsunami
height is 30 min to 1 h 30 min.

In category S, the tsunami height in the surface mode is significantly large, so the
surface-mode tsunami with a phase velocity larger than that of the corresponding one-layer
tsunami will be observed as the first tsunami at the Japanese coast.

In category SI, although the tsunami height in the surface mode is not as large as that
in category S, the surface-mode tsunami may be first observed at the Japanese coast.

Conversely, in category I, when the upper-mantle initial depth hm is large, namely
196,000 m, and the upper-mantle density ρm is moderately large, namely 33,000 kg/m3,
the tsunami height ratio (ηI)max/(ηS)max is 43.5 or 48.0, which means that the internal-
mode tsunami height is remarkably larger than the surface-mode tsunami height, so the
internal-mode surface wave with a phase velocity slower than

√
ghw will be recognized

as the first tsunami at the Japanese coast. In this case, the arrival-time delay ∆tChile of the
internal-mode surface wave from the arrival time of the tsunami with a phase velocity of√

ghw is approximately 45 min.
When the initial total depth hw + hm, upper-mantle density ρm, and plate flexural

rigidity B are 200,000 m, 33,000 kg/m3, and 0 Nm2, respectively, Figure 14 depicts the
traveling-velocity difference ∆C =

√
ghw − CI for different still seawater depth hw, where CI

is the average value of the phase velocity in the internal mode for 0 s ≤ t ≤ 2000 s. In this
case, ∆C becomes maximal when hw is 4250 m, as indicated in Figure 14.
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Figure 14. Relationship between ∆C =
√

ghw − CI and the still seawater depth hw, where CI was
the average value of the phase velocity in the internal mode for 0 s ≤ t ≤ 2000 s. The initial total
depth hw + hm was 200,000 m, the upper-mantle density ρm was 33,000 kg/m3, and the plate flexural
rigidity B was 0 Nm2. The initial water surface profile was given by Equation (15), in which a0 was
5 m and L0 was 200 km.

Furthermore, the initial water surface profile at t = 0 s was given by Equation (15),
in which the perfect reflection was assumed as the boundary condition at x = 0 km, a0 was
5 m, and the initial tsunami wavelength L0 was 60 km. When the still seawater depth hw is
4000 m and the seawater density ρw is 1000 kg/m3, Figure 15 presents the velocity ratios
CS/Cone for various values of the parameters hm, ρm, and B, where CS is the phase velocity
in the surface mode, and Cone is that obtained using the present numerical model in the
corresponding one-layer problem. It should be noted that Cone may not be

√
ghw. Figure 15

indicates that the phase velocity CS was larger than Cone, and the velocity ratio CS/Cone
increased, as the upper-mantle initial depth hm increased and the upper-mantle density ρm
decreased. The velocity ratio CS/Cone was almost unaffected by the plate flexural rigidity B
when B ≤ 3.43 × 1016 Nm2.
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Figure 15. Velocity ratios CS/Cone for different values of the upper-mantle initial depth hm, upper-
mantle density ρm, and plate flexural rigidity B, where CS was the phase velocity in the surface
mode, and Cone was that in the corresponding one-layer problem. The distance on the horizontal axis
does not represent the magnitude of B. The initial water surface profile was given by Equation (15),
in which a0 was 5 m and L0 was 60 km.

Conversely, Figure 16 depicts the velocity ratios CI/Cone, where CI was the phase
velocity in the internal mode. Based on the figure, CI was slower than Cone, and CI/Cone
increased as hm and ρm increased. The velocity ratio CI/Cone was almost independent of
B when ρm/ρw = 330 and when ρm/ρw = 33 and hm/hw = 0.25, because the upper mantle
was relatively difficult to move.
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Figure 16. Velocity ratios CI/Cone for different values of the upper-mantle initial depth hm, upper-
mantle density ρm, and plate flexural rigidity B, where CI was the phase velocity in the internal
mode, and Cone was that in the corresponding one-layer problem. The distance on the horizontal axis
does not represent the magnitude of B. The initial water surface profile was given by Equation (15),
in which a0 was 5 m and L0 was 60 km.

5. Conclusions

The numerical simulations were generated to investigate the propagation processes
of distant tsunamis, using the set of wave equations based on the variational principle
considering both the strong nonlinearity and strong dispersion of waves.

First, we proposed the estimate formulae for the time variations of the tsunami height
and wavelength of the first distant tsunami with a uniform initial seawater depth, assuming
the initial tsunami profile as a relatively long crest. The accuracy of the estimated tsunami
height was good except near the tsunami source. The proposed estimate formulae were
obtained on the assumption that the still seawater depth was constant, so the average
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water depth along the tsunami propagation path will be used in application. Furthermore,
it should be noted that the effects of reflection and refraction caused by the spatial change
of topography were not considered. Moreover, wave deformation due to shallowing on
continental slopes and shelves was not considered, so the application range of the estimate
formulae is limited to before tsunamis reach a continental slope.

Second, we considered the plate elasticity and upper-mantle fluidity of Earth, to ex-
amine their effects on distant tsunami propagation. When the plate and upper mantle
meet certain conditions, in which the upper-mantle depth is large and the upper-mantle
density is moderately large, internal-mode tsunamis with a significant tsunami height will
propagate slower than the tsunamis in the corresponding one-layer problems.

Future work is required to improve the present model, based on information updated
by the observations of distant tsunami propagation and investigations of Earth’s internal
structure. Especially regarding the assumption of Earth’s internal structure, it is necessary
to compare the results obtained through this model with those of other studies from various
perspectives to deepen the discussion.
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