Advances in the Prediction of the Statistical Properties of Wall-Pressure Fluctuations under Turbulent Boundary Layers
Abstract
:1. Introduction
2. Theoretical Background
3. Study of the Controlled-Diffusion Airfoil Test Case
3.1. Large Eddy Simulation of the Flow around a Controlled-Diffusion Airfoil
3.2. Boundary Layer Profiles Close to the Trailing Edge of the Airfoil
3.3. Turbulence Statistics
3.3.1. Streamwise and Transverse Velocity Correlation Coefficient
3.3.2. Integral Length Scale and Anisotropy Coefficient
4. Direct Computation and Empirical Modeling of Wall-Pressure Statistics
5. Prediction of Wall-Pressure Statistics with the Analytical Model Based on the Poisson Equation
5.1. Single-Point Statistics
5.2. Multi-Point Statistics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willmarth, W.W. Pressure Fluctuations Beneath Turbulent Boundary Layers. Annu. Rev. Fluid Mech. 1975, 7, 13–36. [Google Scholar] [CrossRef]
- Roger, M.; Moreau, S. Back-Scattering Correction and Further Extensions of Amiet’s Trailing-Edge Noise Model. Part 1: Theory. J. Sound Vib. 2005, 286, 477–506. [Google Scholar] [CrossRef]
- Thomson, N.; Rocha, J. Comparison of Semi-Empirical Single Point Wall Pressure Spectrum Models with Experimental Data. Fluids 2021, 6, 270. [Google Scholar] [CrossRef]
- Lee, S. Empirical Wall-Pressure Spectral Modeling for Zero and Adverse Pressure Gradient Flows. AIAA J. 2018, 56, 1818–1829. [Google Scholar] [CrossRef]
- Peltier, L.J.; Hambric, S.A. Estimating turbulent-boundary-layer wall-pressure spectra from CFD RANS solutions. J. Fluids Struct. 2007, 23, 920–937. [Google Scholar] [CrossRef]
- Slama, M.; Leblond, C.; Sagaut, P. A Kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum. J. Fluid Mech. 2018, 840, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Gerolymos, G.A.; Sénéchal, D.; Vallet, I. Wall effects on pressure fluctuations in turbulent channel flow. J. Fluid Mech. 2013, 720, 15–65. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; Lutz, T.; Würz, W.; Shen, W.Z.; Zhu, W.J.; Hansen, M.O.L.; Bertagnolio, F.; Madsen, H.A. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data. Wind Energy 2012, 15, 45–61. [Google Scholar] [CrossRef]
- Bertagnolio, F.; Fischer, A.; Zhu, W.J. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling. J. Sound Vib. 2014, 333, 991–1010. [Google Scholar] [CrossRef]
- Lysak, P.D. Modeling the Wall Pressure Spectrum in Turbulent Pipe Flows. J. Fluids Eng. 2005, 128, 216–222. Available online: https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/128/2/216/5645536/216_1.pdf (accessed on 20 February 2022). [CrossRef]
- Panton, R.L.; Linebarger, J.H. Wall Pressure Spectra Calculations for Equilibrium Boundary Layers. J. Fluid Mech. 1974, 65, 261–287. [Google Scholar] [CrossRef] [Green Version]
- Remmler, S.; Christophe, J.; Anthoine, J.; Moreau, S. Computation of Wall-Pressure Spectra from Steady Flow Data for Noise Prediction. AIAA J. 2010, 48, 1997–2007. [Google Scholar] [CrossRef]
- Fischer, A.; Bertagnolio, F.; Madsen, H.A. Improvement of TNO type trailing edge noise models. Eur. J. Mech.-B/Fluids 2017, 61, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ayton, L.; Bertagnolio, F.; Moreau, S.; Chong, T.P.; Joseph, P. Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application. Prog. Aerosp. Sci. 2021, 126, 100737. [Google Scholar] [CrossRef]
- Grasso, G.; Jaiswal, P.; Wu, H.; Moreau, S.; Roger, M. Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient. J. Fluid Mech. 2019, 877, 1007–1062. [Google Scholar] [CrossRef]
- Wu, H.; Moreau, S.; Sandberg, R. Effects of pressure gradient on the evolution of velocity gradient tensor invariant dynamics on a controlled-diffusion aerofoil at Rec = 150,000. J. Fluid Mech. 2019, 868, 584–610. [Google Scholar] [CrossRef]
- Jaiswal, P.; Moreau, S.; Avallone, F.; Ragni, D.; Pröbsting, S. On the use of two-point velocity correlation in wall-pressure models for turbulent flow past a trailing edge under adverse pressure gradient. Phys. Fluids 2020, 32, 105105. [Google Scholar] [CrossRef]
- Moreau, S. Symposium on the CD Airfoil. 2016. Available online: https://www.researchgate.net/publication/304582435_CD-day_S-Moreau (accessed on 20 February 2022). [CrossRef]
- Grasso, G.; Wu, H.; Orestano, S.; Sanjosé, M.; Moreau, S.; Roger, M. CFD-based prediction of wall-pressure spectra under a turbulent boundary layer with adverse pressure gradient. CEAS Aeronaut. J. 2021, 12, 125–133. [Google Scholar] [CrossRef]
- Boukharfane, R.; Bodart, J.; Jacob, M.C.; Joly, L.; Bridel-Bertomeu, T.; Node-Langlois, T. Characterization of the pressure fluctuations within a Controlled-Diffusion airfoil boundary layer at large Reynolds numbers. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019; Available online: https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2722 (accessed on 20 February 2022). [CrossRef] [Green Version]
- Boukharfane, R.; Parsani, M.; Bodart, J. Characterization of pressure fluctuations within a controlled-diffusion blade boundary layer using the equilibrium wall-modelled LES. Sci. Rep. 2020, 10, 12735. [Google Scholar] [CrossRef]
- Amiet, R.K. Noise Due to Turbulent Flow Past a Trailing Edge. J. Sound Vib. 1976, 4, 387–393. [Google Scholar] [CrossRef]
- Amiet, R. Effect of the incident surface pressure field on noise due to turbulent flow past a trailing edge. J. Sound Vib. 1978, 57, 305–306. [Google Scholar] [CrossRef]
- Moreau, S.; Roger, M. Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part II: Application. J. Sound Vib. 2009, 323, 397–425. [Google Scholar] [CrossRef]
- Roger, M.; Moreau, S. Addendum to the back-scattering correction of Amiet’s trailing-edge noise model. J. Sound Vib. 2012, 331, 5383–5385. [Google Scholar] [CrossRef]
- Grasso, G.; Roger, M.; Moreau, S. Analytical model of the source and radiation of sound from the trailing edge of a swept airfoil. J. Sound Vib. 2021, 493, 115838. [Google Scholar] [CrossRef]
- Morkovin, M.V. Effects of compressibility on turbulent flows. In Mécanique de la Turbulence; Favre, A., Ed.; CNRS: Paris, France, 1962; pp. 365–380. [Google Scholar]
- Kraichnan, R.H. Pressure fluctuations in turbulent flow over a flat plate. J. Acoust. Soc. Am. 1956, 28, 378–390. [Google Scholar] [CrossRef]
- Hodgson, T.H. Pressure Fluctuations in Shear Flow Turbulence. Ph.D. Thesis, The College of Aeronautics, Cranfield, UK, 1961. [Google Scholar]
- Bailly, C.; Comte-Bellot, G. Turbulence; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Wilson, D.K. Three-Dimensional Correlation and Spectral Functions for Turbulent Velocities in Homogeneous and Surface-Blocked Boundary Layers; Technical Report; Army Research Laboratory: Adelphi, MD, USA, 1997. [Google Scholar]
- Wilson, D.K. Turbulence Models and the Synthesis of Random Fields for Acoustic Wave Propagation Calculations; Technical Report; Army Research Laboratory: Adelphi, MD, USA, 1998. [Google Scholar]
- Von Kármán, T. Progress in the statistical theory of turbulence. Proc. Nat. Acad. Sci. USA 1948, 34, 530–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liepmann, H.W.; Laufer, J.; Liepmann, K. On the Spectrum of Isotropic Turbulence; Technical Report; National Advisory Committee for Aeronautics: Washington, DC, USA, 1951. [Google Scholar]
- Hunt, J.C.R. A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 1973, 61, 625–706. [Google Scholar] [CrossRef]
- Schlinker, R.; Amiet, R.K. Helicopter Trailing Edge Noise; Technical Report; NASA: Washington, DC, USA, 1981. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Magnaudet, J. High-Reynolds-number turbulence in a shear-free boundary layer: Revisiting the Hunt–Graham theory. J. Fluid Mech. 2003, 484, 167–196. [Google Scholar] [CrossRef]
- Parchen, R. Progress Report DRAW: A Prediction Scheme for Trailing-Edge Noise Based on Detailed Boundary Layer Characteristics; Technical Report; TNO Institute of Applied Physics: The Hague, The Netherlands, 1998. [Google Scholar]
- Salze, E.; Bailly, C.; Marsden, O.; Jondeau, E.; Juve, D. An experimental characterisation of wall pressure wavevector-frequency spectra in the presence of pressure gradients. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 16–20 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Smol’yakov, A.V. A new model for the cross spectrum and wavenumber-frequency spectrum of turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 2006, 52, 331–337. [Google Scholar] [CrossRef]
- Roger, M. Broadband noise from lifting surfaces, analytical modeling and experimental validation. In Noise Sources in Turbulent Shear Flows: Fundamentals and Applications; CISM Series 545; Camussi, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 289–344. [Google Scholar]
- Grasso, G.; Jaiswal, P.; Moreau, S. Monte-Carlo computation of wall-pressure spectra under turbulent boundary layers for trailing-edge noise prediction. In Proceedings of the 28th ISMA/USD Conference, Leuven, Belgium; Katholieke Universiteit Leuven: Leuven, Belgium, 2018. [Google Scholar]
- Buignon, P. Scikit-Monaco Documentation. 2013. Available online: http://scikit-monaco.readthedocs.io/en/latest/ (accessed on 20 February 2022).
- Experimental Characterization of Turbulent Pressure Fluctuations on Realistic Contra-Rotating Open Rotor (CROR) 2D Airfoil in Representative High Subsonic Mach Number. Available online: https://cordis.europa.eu/project/id/715070 (accessed on 31 January 2022).
- Blake, W.K. Mechanics of Flow-Induced Sound and Vibration; Academic Press Inc.: Cambridge, MA, USA, 1986; Volumes I and II. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, G.; Roger, M.; Moreau, S. Advances in the Prediction of the Statistical Properties of Wall-Pressure Fluctuations under Turbulent Boundary Layers. Fluids 2022, 7, 161. https://doi.org/10.3390/fluids7050161
Grasso G, Roger M, Moreau S. Advances in the Prediction of the Statistical Properties of Wall-Pressure Fluctuations under Turbulent Boundary Layers. Fluids. 2022; 7(5):161. https://doi.org/10.3390/fluids7050161
Chicago/Turabian StyleGrasso, Gabriele, Michel Roger, and Stéphane Moreau. 2022. "Advances in the Prediction of the Statistical Properties of Wall-Pressure Fluctuations under Turbulent Boundary Layers" Fluids 7, no. 5: 161. https://doi.org/10.3390/fluids7050161
APA StyleGrasso, G., Roger, M., & Moreau, S. (2022). Advances in the Prediction of the Statistical Properties of Wall-Pressure Fluctuations under Turbulent Boundary Layers. Fluids, 7(5), 161. https://doi.org/10.3390/fluids7050161