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Abstract: The effect of triple helical grooves on the suppression of vortex-induced vibration (VIV) of
a circular cylinder was investigated experimentally in a wind tunnel over Reynolds number in the
range of 1 × 104 < Re < 4 × 104. It was found that the helical grooves were effective in suppressing
VIV with the peak amplitude reduction of approximately 36%. In addition, the lock-on region was
also reduced. To explore the mechanism for the suppression of VIV, experiments on flow structures
for a stationary grooved cylinder were also conducted in a wind tunnel at a free stream velocity
U∞ of 4.37 m/s, corresponding to a Reynolds number based on the bare cylinder diameter of about
3500. The data were then analyzed using the phase-averaged method to evaluate the coherent vortex
structures in the wakes. The results for the stationary grooved cylinder showed that the grooves
weakened vortex shedding in the near wake. In addition, the grooves also reduced the drag coefficient
by 6.6%. These results help explain the reduction of VIV using helical grooves.

Keywords: helical grooves; vortex-induced vibration; passive control; circular cylinder wake

1. Introduction

Vortex-induced vibration (VIV) is a phenomenon arising due to fluid-structure in-
teraction and may cause structural failure due to the large amplitude of the vibration.
Understanding the vorticity field and the mechanism of the vortex shedding behind bluff
bodies is crucial for the effective suppression of VIV. In the past decades, numerous investi-
gations have been conducted to understand the flow around a circular cylinder. Though
simple in cross-sectional geometry, the flow around a circular cylinder contains complex
interaction of shear layers, namely, boundary layer, free shear layers, and the wake of the
cylinder. The boundary layer separation over the surface of a cylinder leads to the alter-
nating von Kármán vortex street. These vortices further induce time-dependent dynamic
loads on the cylinder surface, and may cause both transverse and longitudinal vibrations
of the cylinder if the vortex shedding frequency matches the structural frequency [1]. This
is known as vortex-induced vibration. The vibration of the cylinder normally persists
over a range of flow velocity, or Reynolds number Re, which is defined as Re = U∞d/ν
with U∞ being the free stream velocity, d the diameter of the cylinder, and ν the kinematic
viscosity of the fluid. This range is also called the lock-on region. It is widely recognized
that VIV can cause fatigue failure of the structures and therefore a lot of methods have
been proposed to suppress vortex shedding and, hence, VIV, using both experimental and
numerical methods [2]. There are two ways to suppress VIV, namely, active and passive
methods, depending on whether external energy needed or only passive modifications of
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the geometry of the bluff structures. One of the advantages of the active method is that
the control system can sense the current flow-structure circumstances and adapt to the
real-time updated environmental conditions to mitigate the vibrations of the structure [3].
However, the continuous external energy supply and the complex feedback system make
the active method costly and impractical to use in most industrial applications. For its
manageable implementations and operations, the passive approaches have been widely
investigated and employed for practical purposes, including helical strakes, fairings and
splitter plates, cactus-inspired shapes, etc. As reviewed by Wang and Lin [4], while the
fairings and splitter plates can both suppress VIV and reduce the drag, the helical strakes
reduce the VIV amplitude with the cost of the increased drag coefficient. It should be
noted, however, that fairings and splitter plates may cause galloping with unwanted large
amplitudes of VIV under certain conditions. Therefore, the design of the passive devices as
well as the underlying VIV suppression mechanism should be carefully studied before the
engineering application. For offshore and wind engineering applications, helical strakes
are the most common and widely used passive device [4,5]. As revealed by Zhou et al. [6]
and Huang [7], the helical configuration can prevent the correlation of vortex shedding
along the spanwise direction and, therefore, the VIV suppression is independent of the
oncoming flow direction. Ishihara and Li [8] conducted the numerical simulations on VIV
suppression of a circular cylinder by helical wires for a large mass ratio of 248 and a small
damping ratio of 0.00257 over a range of Reynolds numbers 16,000 ≤ Re ≤ 24,500. The
numerical study found that the helical wires with a diameter of 0.1d effectively suppress the
amplitude of VIV by nearly 80% and avoid the “lock-on”. It is also found that the fluctuat-
ing lift forces and their spanwise correlation for the wired cylinder are significantly reduced
comparing with those for the bare cylinder, due to the enhancement of three-dimensional
disturbance to the wake caused by helical wires. Since the objective of studies on VIV is the
understanding, prediction, and prevention of VIV preferably without drag penalty, it is
necessary to develop an alternative helical design from a practical aspect [6,9].

Like helical strakes, the suppression mechanism of helical grooves can be expected in
two aspects: firstly, the grooves may destroy or suppress the interaction between two shear
layers, and secondly, grooves prevent the vortices from becoming correlated in the spanwise
direction. Huang [7] proposed that, instead of adding devices which protrude outwards
around the buoyancy modules of the deep-water marine risers and, hence, definitely cause
a significant increase in drag coefficient, it is possible to fabricate grooves to the riser
modules. Huang [7] carried out experimental investigations to examine the effects of triple-
starting helical grooves on the drag of a fixed circular cylinder and the vortex-induced
vibration of an elastically supported cylinder. For the elastically supported cylinder, the
Reynolds number varied over a range of 13,000–46,000, while for the fixed cylinder, it
was in the range of 31,000–375,000. It was found that the helical grooves were effective in
suppressing the vortex-induced cross-flow vibration amplitudes with the peak amplitude
being reduced by 64% compared with that of the smooth cylinder. Drag reductions of
up to 25% were also achieved in the sub-critical Reynolds number range tested for the
fixed cylinders. The grooves also eliminated the “drag crisis” region. Zhou et al. [10]
investigated the flow around a smooth cylinder and a rough cylinder with rectangular-
shaped grooves oriented in the longitudinal direction at various Reynolds numbers in the
subcritical regime (7430 ≤ Re ≤ 17,980). The flow fields in the near wake were measured
using PIV technique. It was found that the grooved surface is effective in modifying
the near-wake flow structure behind the cylinder. The ensemble-averaged flow fields
clearly show that the wake of the grooved cylinder is both more compact (in streamwise
direction) and narrower (in transverse direction) than that of the smooth cylinder at the
same Reynolds number (with the length of recirculation zone decreased by about 15–25%),
together with reduced magnitude of the turbulent kinetic energy, Reynolds shear, and
normal stresses. This is in accordance with the force measurement results that the grooved
cylinder demonstrates a significant reduction of the mean drag coefficient by about 18–28%,
as compared to the smooth cylinder at the same Reynolds number. Law and Jaiman [9]
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conducted a numerical study on the effect of spanwise grooves on the VIV suppression and
the reduction of drag force. They proposed a novel staggered groove configuration, whose
geometry was especially designed by offsetting the cross-sectional portion of the cylinder
continuously along the spanwise direction. The authors assessed the VIV responses of the
proposed staggered groove configuration against the helical grooves. The staggered and
helical groove configurations differed only in the arrangement of cross-section geometry
along the spanwise direction. Three-dimensional coupled fluid–structure simulations
were conducted at low mass and damping values with a moderate Reynolds number of
Re = 4800. The numerical results showed that the staggered groove configuration is effective
in suppressing VIV, wherein the net reductions of 37% in the peak transverse amplitude and
about 25% in the mean drag coefficient were observed in comparison to the plain cylinder
counterpart. To understand the three-dimensional flow characteristics of near-wake, Law
and Jaiman [9] also examined the force cross-correlations for both lift and drag coefficients
along the spanwise direction. They found that both the helical grooved cylinder and the
plain cylinder had similar frequency spectra of sectional lift and drag coefficients along the
spanwise direction, indicating the coherent vortex patterns induced in the wake region.
However, the frequency spectra of the staggered grooves have a larger variation along the
spanwise direction, leading to both lower amplitudes and the hydrodynamic forces on
the vibrating system. The three-dimensional instantaneous iso-surface of vorticity further
confirms their findings.

So far, there is a lack of systematic study on the dynamics and evolution of the
vortex structures in the wake of a circular cylinder with helical grooves. The experimental
investigations on the coherent and incoherent contributions to the time-averaged velocity
and Reynolds stresses in the downstream region are barely reported. Thus, this study aims
to investigate the effectiveness of helical grooves on vortex shedding and VIV suppression
of a grooved cylinder with a pitch length of 7.5d, a width of 0.19d, and a depth of 0.12d.
The phase-averaged velocities, vorticity, and contribution to Reynolds stresses at different
downstream locations of the wake are examined by comparing with that of a bare circular
cylinder wake. The results presented in this study should gain some new insight into the
wake vortex dynamics and serve to a better understand of the underlying physics for VIV
suppression using helical grooves.

2. Experimental Setup

Measurements of the cross-flow vibration of both the bare and the grooved cylinders
were conducted over a range of Reynolds numbers 1 × 104 < Re < 4 × 104 in the closed-
circuit wind tunnel with a test section of 1300 mm (width) × 1800 mm (height) to quantify
the effectiveness of helical grooves on the suppression of VIV. The cylinders have an external
diameter d of 60 mm and a length of 1290 mm. The aspect ratio L/d for both cylinders is 20.
The grooved cylinder was fabricated by adhering lengths of EPDM (Ethylene Propylene
Diene Monomer) rubber tape around a bare cylinder, resulting in a diameter d of 80 mm.
The grooves had a pith length of 7.5d, a width of 0.19d, and a depth of 0.12d. The mass of the
bare cylinder was 1.84 kg and the mass of the cylinder with grooves was 1.96 kg. The test
cylinders were flexibly mounted to a steel frame by four identical steel springs to suspend
the cylinder approximately 900 mm off the wind tunnel floor. The springs were selected
based on their stiffness and length. They must be stiff enough and long enough to remain
in tension when measuring the amplitude of vibrations. The four springs were made of
steel and had a stiffness of 1680 N/m with an original length of 260 mm. The stiffness
was measured by applying a known load to the springs and measuring the subsequent
deflection. Once the springs were attached to the cylinder, the top and bottom springs
were extended to a length of approximately 325 mm to ensure the system was in tension
throughout testing. The experimental setup for cylinder VIV is illustrated in Figure 1.
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Figure 1. Sketch of the experimental setup for VIV response of the elastically supported cylinders.

The amplitude of the vibrations was measured using a Linear Variable Differential
Transformer (LVDT) laser. The laser was cantilevered from the frame’s vertical member
approximately 190 mm below a white card fixed to the bottom of the cylinder and had
a range of ±110 mm. The vibration of the cylinder was digitized into a computer at an
interval of 3 ms for about 3 min. The natural frequencies f n of the bare cylinder and the
grooved cylinder (7.87 Hz and 8.06 Hz, respectively) are obtained from the free decay tests.
More details of the VIV experiments can be found in Sun et al. [11].

For the purpose of examining the spanwise cross-correlations, two X-wire probes
located at x/d = 10 and y/d = 0.5 were used with one probe fixed and the other moving
along the cylinder length direction. The separation between the two probes was in the
range of 30–460 mm with an increment of 10 mm for each measurement. The hot-wires
were operated with in-house constant temperature circuits at an overheat ratio of 1.5. Each
of the two wires in the X-wire probe had a diameter of 5 µm. The wire separation was
about 1 mm. The output signals from the anemometers were low-pass filtered through the
buck and gain circuits at a cut-off frequency fc = 2800 Hz, depending on the measurement
location and free stream velocity. In the present study, the sampling frequency is 5600 Hz.

To further investigate the wake characteristics of the cylinders and the mechanism
of VIV suppression of the grooved cylinder, fixed cylinder tests were undertaken in an
open-circuit wind tunnel with a test section of 380 mm (width) × 255 mm (height) and
1.8 m (length). The freestream velocity in the test section was uniform to 0.1%, and the
longitudinal turbulence intensity was less than 0.2%. Experiments were conducted in the
wakes of both a bare cylinder and a helically grooved cylinder. Both cylinders have an
external diameter d of approximately 12 mm and a length of 380 mm. The aspect ratio of
both cylinders is L/d = 32. The bare cylinder is used as a basis for comparison with the
grooved cylinder. The triple helical grooves have a pitch length of 7.5d, a width of 0.2d,
and a depth of 0.12d, which are the same as that used for VIV tests. All measurements
were performed at a free stream velocity U∞ of 4.37 m/s, corresponding to a Reynolds
number based on the bare cylinder diameter of about 3500, and at streamwise locations
of x* = 10, 20, and 40. Hereafter, a superscript asterisk denotes normalization by cylinder
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diameter and/or free stream velocity. Boundary layer flows at x* = 40 were also measured
both before and after the models were inserted in the wind tunnel to make sure that at
this streamwise location, the wake flows were not influenced by the tunnel boundaries.
To examine the streamwise evolution of the wakes, an X-type hot-wire probe was moved
across the wake in the y-direction to measure the longitudinal and transverse velocity
components, u and v, respectively. Another X-probe located at y* = 1~2 from the wake
centerline was fixed at the wake edge to provide a phase reference to the measured velocity
signals for conducting the phase-averaged analysis of the coherent structures in the wakes.
The separation between the two wires of the X-probe was about 1.0 mm. The hot-wires
were etched to a length of 1 mm from Wollaston (Pt−10% Rh) wires of 5 µm in diameter.
Angle calibration was performed over ±20◦. The hot-wires were operated with in-house
constant temperature circuits at an overheat ratio of 1.5. The output signals were low-pass
filtered at a frequency f c of 2800 Hz. The filtered signals were sampled at a frequency f s of
5600 Hz into a computer using a 16-bit A/D converter (National Instrument). The sampling
period Ts was 45 s. Experimental uncertainties were inferred from the errors in hot-wire
calibration as well as the scatter observed in repeating the experiments several times. The
uncertainty for the time-averaged velocity, U, was estimated to be about ±2%, while for
the root-mean-square (rms) values of the fluctuating velocities u and v and the Reynolds
shear stress 〈uv〉, the uncertainties were about ±5%, ±6% and ±8%, respectively. The tests
and flow conditions are summarized in Table 1.

Table 1. Summary of the experimental setup.

Main Particulars VIV Tests Fixed Cylinder Tests

Wind tunnel type closed-circuit open-circuit
Cylinder diameter (mm) 60 12
Cylinder aspect ratio (L/d) 20 32
Groove dimensions
(length × width × depth, mm) 7.5d × 0.19d × 0.12d 7.5d × 0.2d × 0.12d

Reynolds number (U∞d/ν) 1 × 104 < Re < 4 × 104 3500
X-wire probes locations (x/d) 10 10, 20, 40

3. Phase and Structural Averaging

At a certain range of flow velocities or Reynolds numbers, the periodic detachment
of pairs of alternate vortices from a bluff body forms an oscillating wake, namely, the von
Kármán vortex street, behind the cylinder leading to the fluctuating forces to be experienced
by the cylinder. The repeating pattern of swirling vortices and the regular vortex motion
are highly periodic. In order to capture and understand the properties of this periodicity
and pattern of vortex dynamics, a phase-averaged technique can be used. The phase-
averaging, triple decomposition, and structural averaging have been discussed in detail
previously [12–16]. Briefly, following Zhou et al. [16], the Q-signal (e.g., the velocity signal
measured by a movable hot-wire probe) and QR-signal (e.g., a reference signal measured
by a reference probe) were both digitally band-pass filtered with a central frequency of
the Kármán vortex shedding frequency, f 0. The two phases of particular interest were
identified on the filtered signal Qf, viz.

Phase A : Q f = 0 and
dQ f

dt
> 0 (1)

Phase B : Q f = 0 and
dQ f

dt
< 0 (2)

The two phases correspond to time tA,i and tB,i (measured from an arbitrary time
origin), respectively, in Figure 2. The phase Φ was then calculated from Qf, viz.

φ = π
t− tA,i

tB,i − tA,i
, tA,i ≤ t ≤ tB,i (3)
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The interval between phases A and B was made equal to 0.5/f0 by compression or
stretching; it was further divided into 30 equal intervals. The difference between the local
phase at each y-location of the vorticity probe and the reference phase of the fixed X-wire
was used to produce phase-averaged sectional streamlines and contours of coherent and
incoherent vorticities in the (Φ, y)-plane. The phase-average of an instantaneous quantity
Q is given by

< Q >j=
1
N

N

∑
i=1

Qj,i (4)

where N is the total number of available cycles and j represents different phases. For
convenience, the subscript j will be omitted hereinafter. In the present study, a total of 1800
periods are used for phase averaging in Equation (4). Using a triple decomposition [17],
the variable Q can be written as the sum of a time-averaged component Q, a coherent
fluctuation q̃, and a remainder qr, viz.

Q = Q + q̃ + qr (5)

where Q stands for instantaneous vorticity and the fluctuation q is given by

q = q̃ + qr (6)

The coherent fluctuation q̃ (≡< q >) reflects the effect from the large-scale coherent
structures while the remainder qr includes the incoherent structures. The phase-average of
the global Reynolds stresses, qs, can be obtained,

< qs >= q̃s̃+ < qrsr > (7)

where q and s can stand for either u or v. Once the coherent components of the q and s
fluctuations are extracted using the phase averaging technique, the coherent contributions
to the Reynolds stresses or vorticity variance can be estimated in terms of the structural
average. The phase-averaged structure begins at k1 samples before the detection instant
and ends at k2 samples after this instant. The structural average, denoted by a double over
bar, is defined by

q̃s̃ =
1

k1 + k2 + 1

k2

∑
−k1

q̃s̃ (8)

4. Results and Discussion
4.1. Vortex-Induced Vibration for the Bare and Grooved Cylinders

In order to validate the current experimental setup, the dynamic response of a single
bare cylinder is tested first. The response of the cylinder can be described in terms of the
vibration amplitude A/d versus the reduced velocity Vr, which is defined as Vr = U∞/f nd.
It was found that for each reduced velocity, the vibration increases for a period of approx-
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imately 100 s before it stabilizes at the maximum vibration amplitude, after which the
amplitude of vibration does not change. A test of about 120 s was recorded after stable
patterns of vibrations were observed. The amplitudes of vibration were determined by
averaging the 10% highest peaks recorded on the time history of the displacement after the
vibration becomes stable [10,18,19]. The vibration responses at different reduced velocities
were compiled and displayed in Figure 3 for the cylinders in the present study. It can be
seen that the maximum peak amplitude is about 0.62, occurring at a reduced velocity of
about 6.5, which is within the consensus range found in the literature that the lock-on region
occurs over Vr = 5–10 [1,20]. The present results for both bare and grooved cylinders are
also compared with the results by Huang [7] in which the elastically supported cylinders
were attached to a vertically cantilevered supporting rod and towed in a towing tank. Both
the in-line and cross-flow vibrations were permitted in Huang [7] over a range of Reynolds
numbers 13,000 ≤ Re ≤ 46,000. For the bare cylinder, there is a distinct amplitude peak for
both the present and Huang [7]. For the grooved cylinder, while there is no distinct peak in
Huang [7], but replaced by a plateau, the present results show a peak amplitude of about
0.41, occurring around Vr = 5.8. The lock-on region is reduced to Vr = 5–8. Therefore, the
present results show that the helical grooves were effective at suppressing VIV with the
peak amplitude reduction of approximately 36%.
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4.2. Vortex Shedding Frequency

Spectral analysis is conducted to determine the vortex shedding frequency based
on the transverse velocity components measured by an X-type hot-wire probe using Fast
Fourier Transforms (FFT). Figure 4 shows the spectra for both bare cylinder and grooved
cylinder wakes measured at y* = 1 for different streamwise locations, where the frequency
is normalized as f * = fD/U∞, and the peak frequency corresponds to the Strouhal number.
For the convenience of comparing the results, the spectra have been shifted down by a
factor of 10 compared with the last location. It can be seen that vortex shedding at each
downstream location is apparent at a singular frequency indicated by a sharp peak. This
peak frequency corresponds to f * = 0.21 for the bare cylinder and 0.20 for the grooved
cylinder. Both values agree well with the consensus results reported in the literature,
indicating that vortex shedding still exists in the wake of the helically grooved cylinder.
This result is apparently different from that for the straked cylinder wakes [6], where it was
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shown that vortex shedding had been suppressed successfully by the helical strakes, as
shown in Figure 4. The peak heights decrease quickly as evolving downstream, indicating
the decay of the vortices. At the downstream location of x* = 40 the peak height, relative to
its plateau, is far less noticeable, indicating that at this location, the vortices have nearly
decayed completely. When comparing the peak energy of the cylinders at the downstream
location of x* = 10, the bare cylinder displays a 5% higher peak energy response than that
of the grooved one, indicating that the grooves may disrupt the intensity of vortices.
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4.3. Cross-Correlations and Drag Coefficients of the Stationary Cylinder Wakes

In turbulent wakes, vortices are shed in cells whose averaged length scale is normally
termed as the correlation length [1]. It can be quantified by the spanwise cross-correlation
coefficients of two velocity signals, as defined below:

ρα1,α2(∆z) =
< α1(z)α2(z + ∆z) >

σα1 σα2

(9)

where α1 and α2 represent the velocity component u or v at two points separated in the
spanwise direction of the cylinder by a distance ∆z, and σ represents standard deviations
of α1 and α2. The correlation length is then calculated using the following integral [21]:

Lα1,α2 =
∫ L0

0
ρα1,α2(∆z)dz, (10)

where the integration upper limit L0 is at the location where the cross-correlation coefficient
first becomes zero.

The cross-correlation coefficients between v1 and v2 measured at x* = 10 and Re = 19,000
are shown in Figure 5. It can be seen that all the cross-correlation coefficients decrease
with the increase of probe separation, especially at small separations. The magnitude of
ρv1,v2(∆z) in the bare cylinder wake is much larger than that in the grooved cylinder wake,
indicating larger vortical structures for the former than the latter at this downstream loca-
tion. The correlation length Lv1,v2 evaluated using Equation (10) of the bare cylinder wake
is 0.35d, which is about 30% higher than that of the grooved cylinder wake (Lv1,v2 = 0.27d).
This result suggests that the helical grooves have successfully disrupted the vortical struc-
tures in the spanwise direction and thus enhancing the three-dimensionality of the flow. It
is in agreement with that proposed by Bearman and Branković [22], who suggested that the
strakes do not necessarily suppress vortex shedding, but they prevent the shedding from
becoming correlated along the span. The above values of the correlation length of the two
wakes are much smaller than those obtained at x* = 5 for bare and the straked cylinders [6],
indicating the quick decay of the vortical structures.
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Figure 5. Cross-correlation coefficients of the transverse velocity components for the bare and grooved
cylinder wakes obtained at x* = 10 for Re = 19,000.
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It is expected that helical grooves should modify the flow in the boundary layer, thus
affecting the vorticity dynamics and force coefficients of the cylinder. Previous studies
have shown that vortex suppression can be associated with drag reduction as strong vortex
shedding can cause increased steady drag on a structure [23]. The drag coefficient of the
cylinders was calculated using the method proposed by Antonia and Rajagopalan [24], via

Cd = 2
∫ ∞

−∞

U
U∞

(
U∞ −U

U∞

)
d(y∗) + 2

∫ ∞

−∞

(
v
′2 − u

′2

U2
∞

)
d(y∗) = I1 + I2 (11)

The above integral I1 is the drag contribution due to momentum thickness while I2
is the contribution due to Reynolds stresses. Table 2 lists the drag coefficients and the
contributions I1 and I2 for both cylinders at various downstream locations. The drag
coefficient for the bare cylinder is consistent with previous studies for cross flow in sub-
critical flow regimes [22]. The contribution from Reynolds stresses is more substantial in
the near wake region (x* = 10), where it represents 12.2% of the total drag for the bare
cylinder and 18.8% for the grooved cylinder. Further downstream, it decreases considerably
and appears insignificant at x* = 40. The loss in Reynolds shear stresses coincides with
the increase in the contribution due to momentum thickness. These results are consistent
with observations made by Antonia and Rajagopalan [24]. It is noted that the drag due
to Reynolds shear stresses is larger for the grooved cylinder at all downstream locations.
The averaged drag coefficient over the various downstream locations tested is 0.958 for
the grooved cylinder and 1.025 for the bare cylinder, representing a 6.6% reduction in total
drag as a result of surface modification by helical grooves. The present result is in line
with that reported by Huang [7], where it is concluded that the helical grooves reduce the
inherent drag loading on a bluff structure. The inherent drag reduction from Huang [7]
was approximately 25% over the sub-critical Reynolds number region for grooves with a
pitch of 6d, width 0.2d, and depth 0.15d. The reason for the improved reduction in drag
coefficient may be attributed to the different testing environments used and the dimensions
of grooves.

Table 2. Drag coefficients for the bare and grooved cylinders.

Bare Cylinder Grooved Cylinder

x* I1 I2 Cd x* I1 I2 Cd
10 0.88 0.122 1.002 10 0.76 0.176 0.936
20 0.96 0.043 1.003 20 0.88 0.055 0.935
40 1.07 0.0001 1.07 40 1 0.0036 1.0036

Averaged Cd 1.025 Averaged Cd 0.9582

4.4. Phase-Averaged Vorticity Field and Sectional Streamlines

The phase-averaged sectional streamlines, which are viewed at a reference frame
moving with the convection velocity at the vortex centre Uc, are shown in Figure 6, where
Uc is the convection velocity at the vortex center. The phase Φ, ranging from −2π to
+2π, can be inferred in terms of a streamwise distance with Φ = 2π corresponding to the
vortex wavelength λ. The same scales are used in the Φ- and y*- directions to avoid
distortion of the physical space. The foci and the saddle points are denoted by ‘+’ and ‘×’,
respectively. The thick dashed lines indicate the diverging separatrices that pass through
the saddles. The typical Kármán structures are identifiable in Figure 6 for both wakes. As
evolving downstream, the decay of the spanwise vortices is apparent, as reflected by the
gradual shrink in size and the movement away from the centreline. The iso-contours of the

phased-averaged spanwise vorticity ω̃z

(
=

∂(V+ṽ)
∂x − ∂(U+ũ)

∂y

)
obtained by using Taylor’s

hypothesis when evaluating the streamwise velocity derivative are shown in Figure 7 for
the two cylinder wakes. It can be seen that the vortex centers coincide well with the foci
identified from the sectional streamlines (Figure 6). For both wakes at x* = 10, the Kármán
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structures are distinctive with staggered positive and negative vortices penetrating to the
other side of the wake. Further downstream, the vortices become smaller and expand away
from the centerline. It can be seen that the ω̃∗z contours are consistent with the sectional
streamlines. The ω̃∗z contours at x* = 10 and 20 display the well-known von Kármán vortex
streets in both wakes, consistent with that revealed by Figure 6. The vortex streets appear to
decay significantly at x* = 40, where the maximum contour values of the coherent vorticities
are only about 7% of that at x* = 10. A careful comparison of the bare and grooved cylinder
results shows that the grooved cylinder generates a marginally smaller vorticity at x* = 10
and 20. The maximum contour values of ω̃∗z , i.e., 0.8 and 0.25 at x* = 10 and 20 for the
grooved cylinder are lower than their counterparts for the bare cylinder, i.e., 0.9 and 0.3, at
the corresponding locations, indicating a possible disrupted and weakened vortex shedding
for the grooved cylinder. This result coincides with the peak energy on the energy spectra
as shown in Figure 4. The difference in the peak energy on the energy spectra is, therefore,
attributed to differences in the spanwise vorticity of the wake.
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Figure 6. Phase-averaged sectional streamlines for the bare cylinder wake (a) at x* = 10; (b) at x* = 20;
and (c) at x* = 40; and the grooved cylinder wake (d) at x* = 10; (e) at x* = 20; and (f) at x* = 40.
The plus and the cross represent the foci and the saddle points, respectively. The thick dashed lines
indicate the diverging separatrices that pass through the saddles. The flow direction is from left
to right.
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Figure 7. Phase-averaged coherent vorticity, ω̃∗z , for the bare cylinder wake (a) at x* = 10, contour
interval = 0.1; (b) at x* = 20, 0.05; and (c) at x* = 40, 0.01; and the grooved cylinder wake (d) at x* = 10,
0.1; (e) at x* = 20, 0.05; and (f) at x* = 40, 0.01. The plus and the cross represent the foci and the saddle
points, respectively. The thick dashed lines indicate the diverging separatrices that pass through the
saddles. The flow direction is from left to right.

4.5. Phase-Averaged Velocity Fluctuations and Reynolds Shear Stress

Figures 8 and 9 shows the phase-averaged results for the coherent velocity ũ∗ and
ṽ∗. Due to the association with the shear layer vortices, the ũ∗ contours (Figure 8) dis-
play approximate up-down antisymmetry about the vortex center while the ṽ∗ contours
(Figure 9) display antisymmetry about φ = 0, which is consistent with that reported by
Wang et al. [25] and Zhou et al. [26]. For both wakes, the centers of the ũ∗ contours are in the
vicinity of y* = ±1, while those of the ṽ∗ contours are in the vicinity of y* = 0. Furthermore,
the maximum contours for both ũ∗ and ṽ∗ decrease monotonically as evolving downstream
due to vortex decay. The maximum contour value (i.e., 0.1) of ũ∗ at x* = 10 for the grooved
cylinder is about 20% lower than that of its counterparts (i.e., 0.12) in the bare cylinder wake,
indicating a reduction in vortex shedding strength. However, at the same downstream
location of x* = 10 the maximum contours of ṽ∗ in the bare cylinder wake remains at a
similar level as the grooved cylinders contradicting the observations by ũ∗. Moreover, for
x* = 20, the discrepancies in the maximum contours of both ũ∗ and ṽ∗ for the two wakes
are indiscernible. Further downstream at x* = 40, the maximum contour values of both
ũ∗ and ṽ∗ in the grooved cylinder wake are higher than those in the bare cylinder wake,
suggesting a slower decay rate in the former.
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Figure 8. Phase-averaged velocity, ũ∗, for the bare cylinder wake (a) at x* = 10, contour interval = 0.02;
(b) at x* = 20, 0.005; and (c) at x* = 40, 0.0005; and the grooved cylinder wake (d) at x* = 10, 0.02; (e) at
x* = 20, 0.005; and (f) at x* = 40, 0.001. The plus and the cross represent the foci and the saddle points,
respectively. The thick dashed lines indicate the diverging separatrices that pass through the saddles.
The flow direction is from left to right.

Figure 10 shows the contours of the coherent Reynolds shear stress ũ∗ṽ∗ for both
wakes. The grooved cylinder wake displays a well-established clover-leaf pattern about
the vortex center, as reported previously [27]. The maximum coherent contours of ũ∗ṽ∗

reveal a monotonic decreasing trend with the increase of x* in the two wakes, which is
the same as those shown in Figures 8 and 9. The maximum contour value of ũ∗ṽ∗, i.e.,
0.012, at x* = 10 for the grooved cylinder wake is smaller than its counterpart for the bare
cylinder wake, i.e., 0.016, indicating a weakened vortex shedding for the grooved cylinder
in the near wake. For x* = 20, the maximum contour values for both grooved cylinder and
bare cylinder are comparable. These results are in agreement with that revealed by the
coherent spanwise vorticity contours (Figure 7). However, for the grooved cylinder wake
at x* = 40, the maximum contour values of ṽ∗ (i.e., 0.012 in Figure 9) and the maximum
contour values of ũ∗ṽ∗ (i.e., 3 × 10−5 in Figure 10) are both higher than their counterparts
for the bare cylinder wake, i.e., 0.007 of ṽ∗ in Figure 9 and 2 × 10−5 of ũ∗ṽ∗ in Figure 10,
respectively. This observation seems to suggest that the vortices in the grooved cylinder
wake have less vigorous interaction across the wake centerline, resulting in a slower decay
rate of the vortices in the streamwise direction. A similar result was also found in screen
cylinder wakes [27], where vortices generated from the screen cylinder decay at a much
slower rate compared with those in the bare cylinder wake due to weak interaction of the
vortices across the wake centerline.
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Figure 9. Phase-averaged velocity, ṽ∗, for the bare cylinder wake (a) at x* = 10, contour interval = 0.04;
(b) at x* = 20, 0.01; and (c) at x* = 40, 0.001; and the grooved cylinder wake (d) at x* = 10, 0.04; (e) at
x* = 20, 0.01; and (f) at x* = 40, 0.002. The plus and the cross represent the foci and the saddle points,
respectively. The thick dashed lines indicate the diverging separatrices that pass through the saddles.
The flow direction is from left to right.
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Figure 10. Phase-averaged Reynolds shear stress, ũ∗ ṽ∗, for the bare cylinder wake (a) at x* = 10,
contour interval = 0.002; (b) at x* = 20, 0.0002; and (c) at x* = 40, 0.00001; and the grooved cylinder
wake (d) at x* = 10, 0.002; (e) at x* = 20, 0.0002; and (f) at x* = 40, 0.000005. The plus and the cross
represent the foci and the saddle points, respectively. The thick dashed lines indicate the diverging
separatrices that pass through the saddles. The flow direction is from left to right.
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4.6. Coherent and Incoherent Contributions to Reynolds Stresses

After the coherent components ũ∗, ṽ∗, and ũ∗ṽ∗ fluctuations are extracted using the
phase-averaged technique, the coherent contributions to the Reynolds stresses can be
evaluated in terms of the structural average (Equation (7)). Figures 11 and 12 show the
coherent and incoherent contributions to the time-averaged Reynolds stresses for both
wakes. The results for the bare cylinder wake (Figure 11) are in good agreement with those
reported previously [25], thus providing a validation of the present measurement. The
time-averaged Reynolds stresses are quite symmetrical about y* = 0 for both wakes. At
x* = 10, the maximum values of u∗2, v∗2, and u∗v∗ in the grooved cylinder wake are 0.025,
0.007, and 0.004, and, thus, 10%, 14.3%, and 25% lower than their counterparts of 0.0275,
0.008, and 0.005 in the bare cylinder wake, respectively, indicating that the grooves decrease

the intensity of coherent vortices. It is noted that
=

ũ∗2 shows a twin-peak distribution in
both wakes at x* = 10. This is consistent with the contour patterns shown in Figure 8.
At y* = ±0.75, the coherent component is approximately 35% of the incoherent one. It
is apparent that the coherent structures contribute more significantly to the v than the u
components at x* = 10 for both wakes, where its contribution is 62.5% by integrating the
area under the distributions, indicating a greater sensitivity to large, organized structures in
the lateral direction. These results coincide with those shown in Figures 8 and 9, where the
phase-averaged maximum contour values of ṽ∗ is 0.24 for the grooved cylinder while the
maximum values of ũ∗ is only 0.1. Further downstream, the results for the grooved cylinder
are almost identical to those of the bare cylinder in terms of coherent and incoherent
contributions to velocity variance, where there exists significant decay in both the coherent
and incoherent components.
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Figure 11. Coherent (#) and incoherent (∆) contributions to the time-averaged (•) Reynold stresses
for the bare cylinder wake. (a–c) Reynolds normal stress uu; (d–f) Reynolds normal stress vv; and
(g–i) Reynolds shear stress uv.
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Figure 12. Coherent (#) and incoherent (∆) contributions to the time-averaged (•) Reynold stresses
for the grooved cylinder wake. (a–c) Reynolds normal stress uu; (d–f) Reynolds normal stress vv; and
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The streamwise variation of the coherent contribution can also be quantified by exam-

ining the variation of the ratio
=

β̃γ̃/βγ in the streamwise direction, where β and γ represent

u and/or v. Since this ratio varies with y*, an averaged contribution
( =

β̃γ̃/βγ

)
m

from the

vortical structures across the wake at a given streamwise location is defined as:( =

β̃γ̃/βγ

)
m
=
∫ ∞

−∞

∣∣∣∣ =β̃γ̃

∣∣∣∣dy∗/
∫ ∞

−∞

∣∣βγ
∣∣dy∗ (12)

where the subscript m denotes the averaged value across the wake. The calculated values of( =

β̃γ̃/βγ

)
m

are given in Table 3. The values are internally consistent with the results for βγ,
=

β̃γ̃ and
〈

=
βrγr

〉
in Figures 11 and 12. It can be seen that at x* = 10,

( =

ũ2/u2
)

m
,
(=

ṽ2/v2
)

m

and
(

=
ũṽ/uv

)
m

for the grooved cylinder wake are about 12%, 6.8%, and 15% lower than

their counterparts in the bare cylinder wake. It is, therefore, obvious that the vortices in the
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bare cylinder wake contain more energy than that in the grooved cylinder wake. Further
downstream, the trend is the opposite, i.e., the values in the bare cylinder wake are smaller
than those in the grooved cylinder wake, indicating a faster decay of the coherent vortices
in the former wake. This is more evidenced in terms of the ratios between the coherent and

incoherent components,
( =

ũ2/
=

u2
r

)
m

and
(=

ṽ2/
=

v2
r

)
m

(Table 3), where a higher level of the

coherent contribution indicates a stronger coherent vortex in the wake. It is noted that the
coherent contribution decreases significantly in the streamwise direction, indicating the

weaker vortices with the increase of x*. For instance, from x* = 10,
(=

ṽ2/v2
)

m
drops by 49%

and 97% at x* = 20 and 40, respectively, in the grooved cylinder wake.

Table 3. Maximum values of the Reynolds stresses and averaged contributions from the coherent
motion to the Reynolds stresses and the ratios of the coherent to random motions.

Bare Cylinder

x* 10 20 40∣∣∣u∗2max

∣∣∣ 0.027 0.015 0.005∣∣∣v∗2max

∣∣∣ 0.008 0.025 0.005∣∣u∗v∗max
∣∣ 0.005 0.003 0.001( =

ũ2/u2
)

m
(%) 25 5 0.2

(=

ṽ2/v2
)

m
(%) 44 16 0.9

(
=
ũṽ/uv

)
m

(%) 27 7 0.3

( =

ũ2/
=

ur
2
)

m

0.33 0.05 0.002

(=

ṽ2/
=

vr
2
)

m

0.79 0.19 0.009

(
=
ũṽ/

=
urvr

)
m

0.37 0.08 0.003

Grooved Cylinder

x* 10 20 40∣∣∣u∗2max

∣∣∣ 0.025 0.014 0.006∣∣∣v∗2max
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5. Conclusions

The wake characteristics of a grooved cylinder have not been documented extensively
in the literature. In the present study, the effectiveness of three strand helical grooves
with a pitch of 7.5d, a width of 0.2d, and a depth of 0.12d on the suppression of VIV is
examined in a wind tunnel over reduced velocity Vr in the range of 3–11. It is found that
the helical grooves are effective in suppressing VIV with the peak amplitude reduction of
approximately 36%. In addition, the lock-on region is also reduced. The spectral analysis
shows that regular vortex shedding from the grooved cylinder is also apparent. The
peak energy at a downstream location of x* = 10 is higher in the bare cylinder wake than
that in the grooved counterpart, indicating that the grooves may help enhance the three-
dimensionality of the flow and consequently decrease the intensity of vortex shedding. This
result is supported by the cross-correlation coefficient of the transverse velocity components,
which reveals that the vortical structures in the wake of the bare cylinder are about 30%
larger than that in the grooved cylinder wake at x* = 10. The 6.6% lower drag coefficient of
the grooved cylinder than the bare cylinder is in line with that reported by Huang [7], where
it is concluded that the helical grooves reduce the inherent drag loading on the cylinder.
To further explore the fundamental mechanism of the grooves in reducing VIV response,
the vortex structures and turbulent characteristics of a circular cylinder wake, with and
without helical grooves, are also examined using a phase-averaged method at a Reynolds
number Re = 3500 over a streamwise range of x* = 10–40 in a wind tunnel. Phase-averaged
analysis shows that the grooved cylinder generates a marginally smaller coherent spanwise
vorticity at x* = 10 and 20 than that of a bare cylinder, indicating a possible disrupted and
weakened vortex shedding for the grooved cylinder wake. The maximum phase-averaged
contour values of the Reynolds stresses at x* = 10 for the grooved cylinder are smaller than
their counterparts for the bare cylinder, further supporting a weakened vortex shedding in
the near wake of a grooved cylinder.
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