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Abstract: The main purpose of engineering applications for fluid with natural and mixed convection
is to control or enhance the flow motion and the heat transfer. In this paper, we use mathematical
tools based on optimal control theory to show the possibility of systematically controlling natural
and mixed convection flows. We consider different control mechanisms such as distributed, Dirichlet,
and Neumann boundary controls. We introduce mathematical tools such as functional spaces and
their norms together with bilinear and trilinear forms that are used to express the weak formulation
of the partial differential equations. For each of the three different control mechanisms, we aim to
study the optimal control problem from a mathematical and numerical point of view. To do so, we
present the weak form of the boundary value problem in order to assure the existence of solutions.
We state the optimization problem using the method of Lagrange multipliers. In this paper, we show
and compare the numerical results obtained by considering these different control mechanisms with
different objectives.

Keywords: optimal control; natural convection; mixed convection; Lagrange multipliers method;
Boussinesq equations

1. Introduction

The optimization of complex systems in engineering is a crucial aspect that encourages
and promotes research in the optimal control field. Optimization problems have three
main ingredients: objectives, controls, and constraints. The first ingredient is the objective
of interest in engineering applications, namely, flow matching, drag minimization, and
enhancing or reducing turbulence. A quadratic functional minimization usually defines
this objective. The controls can be chosen for large classes of design parameters. Examples
are boundary controls such as injection or suction of fluid [1] and heating or cooling
temperature controls [2–4], distributed controls such as heat sources or magnetic fields [5],
and shape controls such as geometric domains [6]. Finally, a specific set of partial differential
equations for the state variables defines the constraints. A typical optimization problem
consists of finding state and control variables that minimize the objective functional and
satisfy the imposed constraints [7]. In [7], the interested reader can find time-dependent
and stochastic (input data polluted by random noise) analyses of optimal control theory
that broaden the perspective of this work, here limited to stationary equations. Of course,
the stochastic and optimal control time-dependent approach requires larger computational
resources that severely limit real-life applications.

In this paper, we focus on engineering applications where fluid natural convection
plays a main role. In these cases, buoyancy forces have a strong influence on the flow. Ap-
plications for natural convection optimal design are crucial in many contexts, ranging from
semiconductor production processes, where buoyancy forces can control the crystal growth,
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to thermal hydraulics of lead-cooled fast reactors (LFR), where emergency cooling is guar-
anteed by natural convection. In the design of engineering devices such as heat exchangers,
nuclear cores, and primary or secondary circuit pipes, optimization techniques can be used
to achieve specified objectives such as desired wall temperatures or wall-normal heat fluxes,
target mean temperatures, velocity profiles, or turbulence enhancements/reductions. The
thermodynamic properties of lead allow a high level of natural circulation cooling in the
primary system of an LFR. For core cooling, LFR design enhances strong natural circulation
during plant operations and shutdown conditions [8]. Within this framework, we aim to
study optimal control problems for mixed and natural convection.

In the past few years, the mathematical analysis of the optimal control of Navier–
Stokes and energy equations has made considerable progress. The optimization of the
heat transfer in forced convection flows can be found in many studies, mainly where
the coupling between the Navier–Stokes and energy equations ignores density variations
(see for example [2,4] and citations therein). In the case of natural or mixed convection
flows, several authors have studied the mathematical analysis of the optimal control for the
Oberbeck–Boussinesq system, focusing on stationary distributed and boundary thermal
controls (see for example [3,5,9–12]). The solvability of the stationary boundary control
problem for the Boussinesq equation is studied in [13,14], considering as boundary
controls the velocity, the temperature, and the heat flux. Recently, new approaches to the
study of the optimal control of Boussinesq equations have been proposed [15–17]. In [15],
the solvability of an optimal control problem for steady non-isothermal incompressible
creeping flows was proven. The temperature and the pressure in a flat portion of the local
Lipschitz boundary played the role of controls. In [16], the optimal Neumann control
problem for non-isothermal steady flows in low-concentration aqueous polymer solutions
was considered, and sufficient conditions for the existence of optimal solutions were
established. The problem of the optimal start control for unsteady Boussinesq equations
was investigated in [17] to prove their solvability.

The main aim of this paper is to show the possibility of systematically controlling
natural and mixed convection flows using mathematical tools based on optimal control
theory. We consider three different control mechanisms: distributed, Dirichlet, and Neu-
mann boundary controls. The solvability of the stationary optimal control problem for the
Boussinesq equations has already been widely investigated in previous studies, considering
as controls the forces and heat sources acting on the domain, together with the velocity,
pressure, heat flux, and temperature on a portion of the boundary [3,5,9–17]. However,
only a few studies show the numerical results of the optimal control problem for the
Boussinesq equation and consider only a single control mechanism [2,11,14]. Thus, while
the theoretical analysis of these control problems has been widely presented in previous
studies, the implementation through an efficient numerical algorithm in a finite element
code of the obtained optimality systems represents the novelty of this work. This paper
aims to review the main thermal control mechanisms, showing and comparing the nu-
merical results obtained for the different control mechanisms, objectives, and penalization
parameters.

In Section 2, we first introduce the required mathematical tools such as functional
spaces and their norms together with bilinear and trilinear forms that are used to express
the weak formulation of the partial differential equations. In Section 3, the general forms
of the optimal control problem and of the objective functional are presented. For each of
the three different control mechanisms, we aim to study the optimal control problem from
a mathematical point of view. To do so, we present the weak form of the boundary value
problem, in order to prove the existence of solutions. We state the optimization problem
and the existence of its solution using the method of Lagrange multipliers. Moreover,
we present a numerical algorithm for each control type, in order to successfully solve the
optimization system arising from the optimization problem. Numerical results are then
presented in Section 4 , considering the three thermal control mechanisms with different
objectives for the temperature and velocity fields. The importance of the choice of the
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penalization parameter λ is taken into account, and the results are discussed for different
values of the penalization parameter.

2. Notation

We use the standard notation Hs(O) for a Sobolev space of order s with respect to
the set O, which can be the flow domain Ω ⊂ Rn, with n = 2, 3, or its boundary Γ. We
remark that H0(O) = L2(O). Corresponding Sobolev spaces of vector-valued functions
are denoted by Hs(O). In particular, we denote the space H1(Ω) by {vi ∈ L2(Ω)|∂vi/∂xj ∈
L2(Ω) for i, j = 1, . . . , n} and the subspace H1

Γj
(Ω) by

{
v ∈ H1(Ω)|v = 0 on Γj

}
, where

Γj is a subset of Γ. In addition, we write H1
0(Ω) = H1

Γ(Ω). The dual space of H1
Γs
(Ω) is

denoted by H1∗
Γs
(Ω). In particular, the dual spaces of H1(Ω) and H1

0(Ω) are H1∗(Ω) and
H−1(Ω), respectively. We define the space of square integrable functions having zero mean
over Ω as

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣ ∫
Ω

qdx = 0
}

,

and the solenoidal spaces as

V = {v ∈ H1(Ω) | ∇ · v = 0} , V0 = {v ∈ H1
0(Ω) | ∇ · v = 0} .

The norms of the functions belonging to Hm(O) are denoted by ‖ · ‖m,O . For ( f g) ∈
L1(O) and (u · v) ∈ L1(O), we define the scalar product as

( f , g)O =
∫
O

f gdx , (u, v)O =
∫
O

u · vdx .

Whenever possible, we will neglect the domain label. Thus, the inner product in
L2(Ω) and L2(Ω) are both denoted by (·, ·). This notation will also be employed to denote
pairings between Sobolev spaces and their duals.

For the description of the Boussinesq system, we use the bilinear forms

a(u, v) =
∫

Ω
∇u : ∇vdx ∀u, v ∈ H1(Ω) , (1)

a(T, θ) =
∫

Ω
∇T · ∇θdx ∀T, θ ∈ H1(Ω) , (2)

b(u, q) = −
∫

Ω
q∇ · udx ∀q ∈ L2

0(Ω), ∀u ∈ H1(Ω) , (3)

and the trilinear forms

c(w, u, v) =
∫

Ω
w · ∇u · vdx ∀w, u, v ∈ H1(Ω) , (4)

c(w, T, θ) =
∫

Ω
w · ∇Tθdx ∀w ∈ H1(Ω), ∀T, θ ∈ H1(Ω) . (5)

These forms are continuous [18]. Note that, for all u ∈ V, v ∈ H1(Ω) and T ∈ H1(Ω),
we have c(u, v, v) = 0 and c(u, T, T) = 0.

3. Optimal Control of Boussinesq Equations

In this paper, we study optimal control problems for stationary incompressible flows
in mixed or natural convection regimes. In these engineering applications, the dependence
on the temperature field cannot be neglected in the Navier–Stokes equation. Thus, the
temperature and velocity fields are mutually dependent through buoyancy forces and
advection. These flows are defined by the following Boussinesq equations:
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∇ · u = 0 in Ω , (6)

u · ∇u +∇p− ν∆u = f− βgT in Ω , (7)

u · ∇T − α∆T = Q in Ω , (8)

where Ω is a bounded open set in Rd, d = 2 or 3 with smoothing as necessary at boundary Γ.
The operator ∆ defines the Laplace operator∇ ·∇ = ∇2 = ∆. In (6)–(8), u, p, and T denote
the velocity, pressure, and temperature fields, while f is a body force, Q is a heat source,
and g is the gravitational acceleration. The fluid thermal diffusivity, kinematic viscosity,
and coefficient of expansion are defined by α, ν, and β, respectively. The system (6)–(8)
is closed, with appropriate boundary conditions on ∂Ω. For the velocity, we set Dirichlet
boundary conditions, while for the temperature field we consider a mixed boundary
condition defined as

u = w on ∂Ω ,

T = gt on Γd ,

α∇T · n = gt,n on Γn .

(9)

We denote by Γd and Γn the boundaries where Dirichlet and Neumann boundary
conditions are applied, with Γd ∪ Γn = Γ = ∂Ω.

We formulate this control problem as a constrained minimization of the following
objective functional:

T (u, T) =
αu

2

∫
Ωd

|u− ud|2dx +
αT
2

∫
Ωd

|T − Td|2dx , (10)

subject to the Boussinesq Equations (6)–(8) imposed as constraints. In (10), the functions
ud and Td are the given desired velocity and temperature distributions. The terms in the
functional (10) measure the L2(Ω) distance between the velocity u and the target field
ud and/or between the temperature T and the target field Td. The non-negative penalty
parameters αu and αT can be used to change the relative importance of the terms appearing
in the definition of the functional. If αu = 0, we have as the objective a temperature
matching case; if αT = 0, we consider a velocity matching case.

The control can be a volumetric heat source, a boundary temperature, or a heat flux.
In all these cases, the control has to be limited to avoid unbounded solutions. To do so, we
can add a constraint limiting the value of the admissible control, or we can penalize the
objective functional T by adding a regularization term. With this second approach, we do
not need to impose any a priori constraints on the size of the control. Let c be the control
belonging to a Hilbert space Hs(O). We can then define a cost functional

J (u, T, c) =
αu

2

∫
Ωd

|u− ud|2dx +
αT
2

∫
Ωd

|T − Td|2dx + λ||c||Hs(O) , (11)

where the last term contains the Hs(O)-norm of the control c penalized with a parameter λ.
The value of the parameter λ is used to change the relative importance of the objective and
cost terms.

3.1. Dirichlet Boundary Control

In a Dirichlet boundary control problem, we aim to control the fluid state acting on
the temperature on a portion of the boundary Γc ⊆ Γd. The boundary condition reported
in (9) can be written in this case as

u = w on ∂Ω , T = gt on Γi , T = gt + Tc on Γc , α∇T · n = gt,n on Γn , (12)

where Γi = Γd r Γc. In (12), gt, gt,n, and w are given functions, while Tc is the control.
Thus, Γc and Γi denote the portions of Γd where temperature control is and is not applied,
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respectively. By considering Equation (11) with s = 1, the cost functional is given as
follows:

J (u, T, Tc) =
αu

2

∫
Ωd

|u− ud|2dx +
αT
2

∫
Ωd

|T − Td|2dx +
λ

2

∫
Γc
(|Tc|2 + |∇sTc|2)dx , (13)

where ∇s denotes the surface gradient operator, i.e., ∇s f := ∇ f − n(n · ∇ f ). The cost
contribution measures the H1(Γc)-norm of the control Tc.

3.1.1. Weak Formulation and Lagrange Multiplier Approach

The weak form of the boundary value problem (6)–(8) and (12) is given as follows:
find (u, p, T) ∈ H1(Ω)× L2

0(Ω)× H1(Ω) such that

νa(u, v) + c(u, u, v) + b(v, p) = (f, v)− β(gT, v) ∀v ∈ H1
0(Ω) ,

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,

αa(T, ϕ) + c(u, T, ϕ) = (Q, ϕ) + (gt,n, ϕ)Γn ∀ϕ ∈ H1
Γd
(Ω) ,

(T, sT)Γd = (gt, sT)Γd + (Tc, sT)Γc ∀sT ∈ H−1/2(Γd) .

(14)

The existence of the solution of the system (14) has been proved in [3]. Note that the
normal heat flux on Γd can be computed from T as

qn = −α∇T · n|Γd . (15)

Now, we state the optimal control problem. We look for a (u, p, T, Tc) ∈ H1(Ω)×
L2

0(Ω) × H1(Ω) × H1
0(Γc) such that the cost functional (13) is minimized subject to the

constraints (14). The admissible set of states and controls is

Uad = {(u, p, T, Tc) ∈ H1(Ω)× L2
0(Ω)× H1(Ω)× H1

0(Γc) :

J (u, T, Tc) < ∞ and (14) is satified.}
(16)

Then, (û, p̂, T̂, T̂c) ∈ Uad is called an optimal solution if there exists ε > 0 such that

J (û, p̂, T̂, T̂c, ) ≤ J (u, p, T, Tc) ∀(u, p, T, Tc) ∈ Uad satisfying

‖u− û‖1 + ‖p− p̂‖0 + ‖T − T̂‖1 + ‖Tc − T̂c‖1,Γc < ε
(17)

The existence of at least one optimal solution (û, p̂, T̂, T̂c) ∈ Uad was proven in [3].
We use the method of Lagrange multipliers to turn the constrained optimization

problem (16) into an unconstrained one. We first show that suitable Lagrange multipliers
exist. We summarize all the equations and the functional in two mappings and study their
differential properties. It is convenient to define the following functional spaces:

B1 = H1(Ω)× L2
0(Ω)× H1(Ω)× H1

0(Γc)× H−
1
2 (Γd) , (18)

B2 = H−1(Ω)× L2
0(Ω)× H1∗

Γi
(Ω)× H

1
2 (Γd) , (19)

B3 = H1
0(Ω)× L2

0(Ω)× H1(Ω)× H1
0(Γc)× H−

1
2 (Γd) . (20)

Let M : B1 → B2 denote the generalized constraint equations, namely, M(z) = l for
z = (u, p, T, Tc, qn) ∈ B1 and l = (l1, l2, l3, l4) ∈ B2 if and only if

νa(u, v) + c(u, u, v) + b(v, p)− (f, v) + β(gT, v) = (l1, v) ∀v ∈ H1
0(Ω) ,

b(u, q) = (l2, q) ∀q ∈ L2
0(Ω) ,

αa(T, ϕ) + c(u, T, ϕ)− (Q, ϕ)− (gt,n, ϕ)Γn − (qn, ϕ)Γc = (l3, ϕ) ∀ϕ ∈ H1
Γi
(Ω) ,

(T, sT)Γd − (gt, sT)Γd − (Tc, sT)Γc = (l4, sT)Γd ∀sT ∈ H−1/2(Γd) .

(21)
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Thus, the constraint (14) can be expressed as M(z) = 0. Let (û, p̂, T̂, T̂c) ∈ H1(Ω)×
L2

0(Ω)× H1(Ω)× H1
0(Γc) denote an optimal solution in the sense of (17). Then, consider

the nonlinear operator N : B1 → R× B2 defined by

N(u, p, T, Tc, qn) =

( J (u, T, Tc)−J (û, T̂, T̂c)
M(u, p, T, Tc, qn)

)
. (22)

Given z = (u, p, T, Tc, qn) ∈ B1, the operator M′(z) : B3 → B2 may be defined as
M′(z) · z̃ = l̃ for z̃ = (ũ, p̃, T̃, T̃c, q̃n) ∈ B3 and l̃ = (̃l1, l̃2, l̃3, l̃4) ∈ B2 if and only if

νa(ũ, v) + c(ũ, u, v) + c(u, ũ, v) + b(v, p̃) + β(gT̃, v) = (̃l1, v) ∀v ∈ H1
0(Ω) ,

b(ũ, q) = (l̃2, q) ∀q ∈ L2
0(Ω) ,

αa(T̃, ϕ) + c(ũ, T, ϕ) + c(u, T̃, ϕ)− (q̃n, ϕ)Γc = (l̃3, ϕ) ∀ϕ ∈ H1
Γi
(Ω) ,

(T̃, sT)Γd − (T̃c, sT)Γc = (l̃4, sT)Γd ∀sT ∈ H−1/2(Γd) .

(23)

The operator N′(z) : B3 → R× B2 may be defined as N′(z) · z̃ = (ã, l̃) for ã ∈ R if
and only if

αu(u− ud, ũ)Ωd + αT(T − Td, T̃)Ωd + λ(Tc, T̃c)Γc+

+ λ(∇sTc,∇sT̃c)Γc = ã

νa(ũ, v) + c(ũ, u, v) + c(u, ũ, v) + b(v, p̃) + β(gT̃, v) = (̃l1, v) ∀v ∈ H1
0(Ω) ,

b(ũ, q) = (l̃2, q) ∀q ∈ L2
0(Ω) ,

αa(T̃, ϕ) + c(ũ, T, ϕ) + c(u, T̃, ϕ)− (q̃n, ϕ)Γc = (l̃3, ϕ) ∀ϕ ∈ H1
Γi
(Ω) ,

(T̃, sT)Γd − (T̃c, sT)Γc = (l̃4, sT)Γd ∀sT ∈ H−1/2(Γd) .

The differential operator M′ is characterized by non-coercive elliptic equations. The
advection terms in these equations are driven by the velocity field u ∈ H1(Ω). Thus,
the existence result for this class of equations is not trivial and cannot be obtained in the
Lax–Milgram setting. However, by using a Leray–Schauder topological degree argument,
we can introduce the following statements.

Let Ω ⊂ Rn be a bounded open subset with boundary Γ. Let Γd ⊂ Γ be a set with
positive measure and Γn ⊆ Γ r Γd. Consider

−∇ · (AT∇y) + (u · ∇)y + by = f in Ω ,

y = y1 on Γd ,

AT∇y · n = yn on Γn ,

(24)

with b ∈ Ln∗/2(Ω), b ≥ 0 a.e. on Ω, u ∈ Ln∗(Ω), and f ∈ H1∗
ΓD

(Ω), where n∗ = n when
n ≥ 3, n∗ ∈]2, ∞[ when n = 2. Based on the Leray–Schauder topological degree argument
in [19], if A is a function which satisfies these two properties and:

1. ∃ αA > 0 such that A(x)ξ · ξ ≥ αA|ξ|2 for a.e. x ∈ Ω and for all ξ ∈ Rn;
2. ∃ΛA > 0 such that |A(x)| ≤ ΛA for a.e. x ∈ Ω;

then, there exists a unique solution y ∈ H1(Ω) of (24).
Furthermore, let z0 ∈ B1. Then we have that the operator M′(z0) has closed range

in B2 and the operator N′(z0) has closed range but is not in R× B2. This allows us to
find the Lagrange multipliers and the final optimality system. Let ẑ = (û, p̂, T̂, T̂c, q̂n) ∈
H1(Ω)× L2

0(Ω)× H1(Ω)× H1
0(Γc)× H−1/2(Γc) denote an optimal solution in the sense

of (17). Then, there exists a nonzero Lagrange multiplier (Λ, ûa, p̂a, T̂a, q̂a) ∈ R × B∗2
satisfying the Euler equations

ΛJ ′(û, T̂, T̂c) · z̃ + 〈(ûa, p̂a, T̂a, q̂a), M′(ẑ) · z̃〉 = 0 , ∀z̃ ∈ B3 , (25)
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where 〈·, ·〉 denotes the duality pairing between B2 and B∗2 . For details on all the theoretical
procedure regarding the existence of the Lagrange multipliers, the interested reader can
consult [20].

3.1.2. The Optimality System

Now, we derive the optimality system using (25), and we drop the (̂·) notation for the
optimal solution. The Euler Equation (25) are equivalent to

αuΛ(u− ud, ũ)Ωd + αTΛ(T − Td, T̃)Ωd + Λλ(Tc, T̃c)Γc + Λλ(∇sTc,∇sT̃c)Γc+

+ b(ũ, pa) + νa(ũ, ua) + c(ũ, u, ua) + b(ua, p̃) + c(u, ũ, ua) + β(gT̃, ua)+

+ αa(T̃, Ta) + c(ũ, T, Ta) + c(u, T̃, Ta)− (q̃n, Ta)Γc + (T̃, qa)Γd − (T̃c, qa)Γc = 0 .

(26)

By extracting the terms involved in the same variation and setting Λ = −1, we obtain
the following equations:

νa(ũ, ua) + c(u, ũ, ua) + c(ũ, u, ua) + b(ũ, pa) =

= αu(u− ud, ũ)Ωd − c(ũ; T, Ta) ∀ũ ∈ H1
0(Ω) ,

b(ua, p̃) = 0 ∀ p̃ ∈ L2
0(Ω) ,

αa(T̃, Ta) + c(u, T̃, Ta) + (T̃, qa)Γc =

= −(βgT̃, ua) + αT(T − Td, T̃)Ωd ∀T̃ ∈ H1
Γi
(Ω) ,

(Ta, q̃n)Γc = 0 , ∀q̃n ∈ H−1/2(Γc) ,

(27)

and the control equation

λ(Tc, T̃c)Γc + λ(∇sTc,∇sT̃c)Γc + (qa, T̃c)Γc = 0 ∀T̃c ∈ H1
0(Γc) , (28)

with qa = −α∇Ta · n|Γc on Γc. The necessary conditions for an optimum are that
Equations (14) and (27) are satisfied. This system of equations is called the optimality
system. By applying integration by parts, it is easy to show that the system constitutes a
weak formulation of the boundary value problem for the state equations

u · ∇u +∇p− ν∆u = f− βgT ,

∇ · u = 0 ,

u · ∇T − α∆T = Q ,

u = w on Γ , α∇T · n|Γn = gt,n on Γn , T = gt on Γi , T = gt + Tc on Γc ,

(29)

the adjoint equations

ua · (∇u)T − u · ∇ua +∇pa − ν∆ua = −T∇Ta + αu(u− ud) ,

∇ · ua = 0 ,

− α∆Ta − u · ∇Ta = −βg · ua + αT(T − Td) ,

ua = 0 on Γ , ∇Ta · n|Γn = 0 on Γn , Ta = 0 on Γd ,

(30)

and the control equation

− ∆sTc + Tc −
α∇Ta · n|Γc

λ
= 0 on Γc ,

Tc = 0 on ∂Γc ,
(31)

where ∆s denotes the surface Laplacian. The optimality system in the strong form consists
of the Boussinesq system (29), the adjoint of the Boussinesq Equation (30), and the control
Equation (31).
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3.1.3. Numerical Algorithm

The optimality system consists of three groups of equations: the state Equation (14), the
adjoint state Equation (27), and the optimality conditions for Tc (28). Due to the nonlinearity
and large dimension of this system, a one-shot solver cannot be implemented. We may
construct an iterative method to iterate among the three groups of equations so that at each
iteration we are dealing with a smaller-sized system of equations. We consider a gradient
method for the solution of the optimality problem, and the gradient of the functional is
determined with the help of the solution of the adjoint system.

Let us consider the gradient method for the following minimization problem: find
Tc ∈ H1

0(Γc) such that F (Tc) := J (u(Tc), T(Tc), Tc) is minimized. Given T(0)
c , we can

define the sequence

T(n+1)
c = T(n)

c − ρ(n)
dF (T(n)

c )

dT(n)
c

, (32)

recursively, where ρ(n) is a variable step size. Let T̂c be a solution of the minimization
problem. Thus, the following necessary condition holds

dF (T̂c)

dT̂c
=

dJ (u(T̂c), T(T̂c), T̂c)

dT̂c
= 0 , (33)

and at the optimum state the equality T(n+1)
c = T(n)

c holds. For each fixed Tc, the Gâteaux
derivative (dF (Tc)/dTc) · T̃c for every direction T̃c ∈ H1(Γc) may be computed as

dF (Tc)

dTc
· T̃c = λ(∇sTc,∇sT̃c)Γc + λ(Tc, T̃c)Γc + (T̃c, qa)Γc , (34)

or

dF (Tc)

dTc
= −λ∆sTc + λTc + qa . (35)

Therefore, by combining (32) and (35), we implemented the following optimization
algorithm.

(a) Initial step:

1. choose tolerance τ and T(0)
c ; set n = 0 and ρ(0) = 1;

2. solve for (u(0), p(0), T(0)) from (14) with Tc = T(0)
c ;

3. evaluate J (0) = J (u(0), T(0), T(0)
c ) using (13).

(b) Main loop:

1. set n = n + 1;

2. solve for (u(n)
a , p(n)a , T(n)

a ) from (27);

3. solve for T(n)
c from

T(n)
c = T(n−1)

c − ρ(n)
(
− ∆sT(n−1)

c + T(n−1)
c +

α

λ
∇T(n)

a · n|Γc

)
, (36)

or

−∆sT(n)
c + T(n)

c =− ∆sT(n−1)
c + T(n−1)

c − ρ(n)
(
− ∆sT(n−1)

c + T(n−1)
c +

+
α

λ
∇T(n)

a · n|Γc

)
;

(37)

4. solve for (u(n), p(n), T(n)) from (14) with Tc = T(n)
c ;

5. evaluate J (n) = J (u(n), T(n), T(n)
c ) using (13);
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(i) if J (n) > J (n−1), set ρ(n) = 0.5ρ(n) and go to step (b) 3. ;
(ii) if J (n) < J (n−1), set ρ(n+1) = 1 and go to step (b) 1. ;
(iii) if |J (n) −J (n−1)|/|J (n)| < τ stop.

In this algorithm, we propose two different methods, given by (36) and (37), for the
control update. With the method in (37), we enforce the belonging of Tc to H1

0(Γc) and
we give more regularity to the control. The convergence of the algorithm was proven
in [3]. The finite element discretization of the optimality system and an estimation of the
approximation error were analyzed in [11].

3.2. Neumann Boundary Control

In a Neumann boundary control problem, we aim to control the state by acting on the
heat flux on a portion of the boundary Γc ⊆ Γn. The general boundary conditions reported
in (9) can be written in this case as

u = w on ∂Ω , T = gt on Γd , α∇T · n = gt,n on Γi , α∇T · n = h on Γc , (38)

where Γi = Γn r Γc. In (12), gt, gt,n, and w are given functions, while h is the control. Thus,
Γi and Γc denote the portions of Γn where the control is applied or not, respectively.

The cost functional is given as follows:

J (u, T, h) =
αu

2

∫
Ωd

|u− ud|2dx +
αT
2

∫
Ωd

|T − Td|2dx +
λ

2

∫
Γc
|h|2dx . (39)

The cost contribution measures the L2(Γc)-norm of the control h.

3.2.1. Weak Formulation and Lagrange Multiplier Approach

The weak form of the boundary value problem (6)–(8) and (38) is given as follows:
find (u, p, T) ∈ H1(Ω)× L2

0(Ω)× H1(Ω) such that

νa(u, v) + c(u, u, v) + b(v, p) = (f, v)− β(gT, v) ∀v ∈ H1
0(Ω) ,

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,

αa(T, ϕ) + c(u, T, ϕ) = (Q, ϕ) + (gt,n, ϕ)Γi + (h, ϕ)Γc ∀ϕ ∈ H1
Γd
(Ω) .

(40)

The existence of the solution of the system (40) was proved in [9] (see Preposition 2.3).
Now, we state the optimal control problem: we look for a (u, p, T, h) ∈ H1(Ω) ×

L2
0(Ω) × H1(Ω) × L2(Γc) such that the cost functional (39) is minimized subject to the

constraints (40). The admissible set of states and controls is

Uad = {(u, p, T, h) ∈ H1(Ω)× L2
0(Ω)× H1(Ω)× L2(Γc) :

J (u, T, h) < ∞ and (40) is satified.}
(41)

Then, (û, p̂, T̂, ĥ) ∈ Uad is called an optimal solution if there exists ε > 0 such that

J (û, p̂, T̂, ĥ) ≤ J (u, p, T, h) ∀(u, p, T, h) ∈ Uad satisfying

‖u− û‖1 + ‖p− p̂‖0 + ‖T − T̂‖1 + ‖h− ĥ‖0,Γc < ε .
(42)

The existence of at least one optimal solution (û, p̂, T̂, ĥ) ∈ Uad was proved in [9].
In addition, for the Neumann control, we consider all the constraint equations and the

functional to study their differential properties. We define the following functional spaces:

B1 = H1(Ω)× L2
0(Ω)× H1(Ω)× L2(Γc) , (43)

B2 = H−1(Ω)× L2
0(Ω)× H1∗

Γd
(Ω) , (44)

B3 = H1
0(Ω)× L2

0(Ω)× H1
Γd
(Ω)× L2(Γc) . (45)



Fluids 2022, 7, 203 10 of 27

Let M : B1 → B2 denote the generalized constraint equations, namely, M(z) = l for
z = (u, p, T, h) ∈ B1 and l = (l1, l2, l3) ∈ B2 if and only if

νa(u, v) + c(u, u, v) + b(v, p)− (f, v) + β(gT, v) = (l1, v) ∀v ∈ H1
0(Ω) ,

b(u, q) = (l2, q) ∀q ∈ L2
0(Ω) ,

αa(T, ϕ) + c(u, T, ϕ)− (Q, ϕ)− (gt,n, ϕ)Γi − (h, ϕ)Γc = (l3, ϕ) ∀ϕ ∈ H1
Γd
(Ω) .

(46)

Thus, the constraints (40) can be expressed as M(z) = 0. Let (û, p̂, T̂, ĥ) ∈ H1(Ω)×
L2

0(Ω)× H1(Ω)× L2(Γc) denote an optimal solution in the sense of (42). Then, consider
the nonlinear operator N : B1 → R× B2 defined by

N(u, p, T, h) =
( J (u, T, h)−J (û, T̂, ĥ)

M(u, p, T, h)

)
. (47)

Given z = (u, p, T, h) ∈ B1, the operator M′(z) : B3 → B2 may be defined as
M′(z) · z̃ = l̃ for z̃ = (ũ, p̃, T̃, h̃) ∈ B3 and l̃ = (̃l1, l̃2, l̃3) ∈ B2 if and only if

νa(ũ, v) + c(ũ, u, v) + c(u, ũ, v) + b(v, p̃) + β(gT̃, v) = (̃l1, v) ∀v ∈ H1
0(Ω) ,

b(ũ, q) = (l̃2, q) ∀q ∈ L2
0(Ω) ,

αa(T̃, ϕ) + c(ũ, T, ϕ) + c(u, T̃, ϕ)− (h̃, ϕ)Γc = (l̃3, ϕ) ∀ϕ ∈ H1
Γd
(Ω) .

(48)

The operator N′(z) : B3 → R× B2 may be defined as N′(z) · z̃ = (ã, l̃) for ã ∈ R if
and only if

αu(u− ud, ũ)Ωd + αT(T − Td, T̃)Ωd + λ(h, h̃)Γc = ã

νa(ũ, v) + c(ũ, u, v) + c(u, ũ, v) + b(v, p̃) + β(gT̃, v) = (̃l1, v) ∀v ∈ H1
0(Ω) ,

b(ũ, q) = (l̃2, q) ∀q ∈ L2
0(Ω) ,

αa(T̃, ϕ) + c(ũ, T, ϕ) + c(u, T̃, ϕ)− (h̃, ϕ)Γc = (l̃3, ϕ) ∀ϕ ∈ H1
Γd
(Ω) .

(49)

Let z0 ∈ B1. Then, we have that the operator M′(z0) has closed range in B2 and the
operator N′(z0) has closed range but is not in R× B2. This follows standard techniques
(see [21]). Therefore, let ẑ = (û, p̂, T̂, ĥ) ∈ H1(Ω) × L2

0(Ω) × H1(Ω) × L2(Γc) denote
an optimal solution satisfying (42). Then, there exists a nonzero Lagrange multiplier
(Λ, ûa, p̂a, T̂a) ∈ R× B∗2 satisfying the Euler equations

ΛJ ′(û, T̂, ĥ) · z̃ + 〈(ûa, p̂a, T̂a), M′(ẑ) · z̃〉 = 0 , ∀z̃ ∈ B3 , (50)

where 〈·, ·〉 denotes the duality pairing between B2 and B∗2 .

3.2.2. The Optimality System

We drop the (̂·) notation for the optimal solution and derive now the optimality system
using (50). The Euler Equation (50) are equivalent to

αuΛ(u− ud, ũ)Ωd + αTΛ(T − Td, T̃)Ωd + Λλ(h, h̃)Γc + b(ũ, pa) + νa(ũ, ua)+

+ c(ũ, u, ua) + b(ua, p̃) + c(u, ũ, ua) + β(gT̃, ua) + αa(T̃, Ta)+

+ c(ũ, T, Ta) + c(u, T̃, Ta)− (h̃, Ta)Γc = 0 .

(51)
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By extracting the terms involved in the same variation and setting Λ = −1, we obtain
the following equations:

νa(ũ, ua) + c(u, ũ, ua) + c(ũ, u, ua) + b(ũ, pa)d =

= αu(u− ud, ũ)Ωd − c(ũ; T, Ta) ∀ũ ∈ H1
0(Ω) ,

b(ua, p̃) = 0 ∀ p̃ ∈ L2
0(Ω) ,

αa(T̃, Ta) + c(u, T̃, Ta) = −(βgT̃, ua) + αT(T − Td, T̃)Ωd ∀T̃ ∈ H1
Γd
(Ω) ,

(52)

and the control equation

λ(h, h̃)Γc + (h̃, Ta)Γc = 0 ∀h̃ ∈ L2(Γc) . (53)

The necessary conditions for an optimum are that Equations (40) and (52) are satisfied.
This system of equations is called the optimality system. Integrations by parts may be used
to show that the system constitutes a weak formulation of the boundary value problem

u · ∇u +∇p− ν∆u = f− βgT ,

∇ · u = 0 ,

u · ∇T − α∆T = Q ,

u = w on Γ , α∇T · n|Γi = gt,n on Γi , α∇T · n|Γc = h on Γc , T = gt on Γd ,

(54)

the adjoint equations

ua · (∇u)T − u · ∇ua +∇pa − ν∆ua = −T∇Ta + αu(u− ud) ,

∇ · ua = 0 ,

− α∆Ta − u · ∇Ta = −βg · ua + αT(T − Td) ,

ua = 0 on Γ , ∇Ta · n|Γn = 0 on Γn , Ta = 0 on Γd ,

(55)

and the control equation

h = −Ta

λ
on Γc . (56)

The optimality system in the strong form consists of the Boussinesq system (54), the
adjoint of Boussinesq Equation (55), and the control Equation (56).

3.2.3. Numerical Algorithm

We consider the gradient method for the following minimization problem: find
h ∈ L2(Γc) such that F (h) := J (u(h), T(h), h) is minimized. Given h(0), we can define
the sequence

h(n+1) = h(n) − ρ(n)
dF (h(n))

dh(n)
, (57)

recursively, where ρ(n) is a variable step size. For each fixed Tc, the Gâteaux derivative
(dF (h)/dh) · h̃ for every direction h̃ ∈ L2(Γc) may be computed as

dF (h)
dh

· h̃ = λ(h, h̃)Γc + (h̃, Ta)Γc , (58)

or

dF (h)
dh

= h +
Ta

λ
. (59)

The optimization algorithm is then given as follows
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(a) Initial step:

1. choose tolerance τ and h(0); set n = 0 and ρ(0) = 1;
2. solve for (u(0), p(0), T(0)) from (40) with h = h(0);
3. evaluate J (0) = J (u(0), T(0), h(0)) using (39).

(b) Main loop:

1. set n = n + 1;

2. solve for (u(n)
a , p(n)a , T(n)

a ) from (52);
3. solve for h(n) from

h(n) = h(n−1) − ρ(n)
(

h(n−1) +
T(n)

a
λ

)
; (60)

4. solve for (u(n), p(n), T(n)) from (40) with h = h(n);
5. evaluate J (n) = J (u(n), T(n), h(n)) using (39);

(i) if J (n) > J (n−1), set ρ(n) = 0.5ρ(n) and go to step (b) 3.;
(ii) if J (n) < J (n−1), set ρ(n+1) = 1 and go to step (b) 1.;
(iii) if |J (n) −J (n−1)|/|J (n)| < τ stop.

3.3. Distributed Control

A distributed control problem aims to control the flow state using a heat source acting
on the domain Ω as a control mechanism. In (8), the heat source Q is the control of the
optimal control problem. The boundary conditions are those reported in (9), where w, gt,
and gt,n are given functions. The cost functional is formulated as

J (u, T, Q) =
αu

2

∫
Ωd

|u− ud|2dx +
αT
2

∫
Ωd

|T − Td|2dx +
λ

2

∫
Ω
|Q|2dx , (61)

where the cost contribution measures the L2(Ω)-norm of the control Q.

3.3.1. Weak Formulation and Lagrange Multiplier Approach

The weak form of the boundary value problem (6)–(9) is given as follows: find
(u, p, T) ∈ H1(Ω)× L2

0(Ω)× H1(Ω) such that

νa(u, v) + c(u, u, v) + b(v, p) = (f, v)− β(gT, v) ∀v ∈ H1
0(Ω) ,

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,

αa(T, ϕ) + c(u, T, ϕ) = (Q, ϕ) + (gt,n, ϕ)Γn ∀ϕ ∈ H1
Γd
(Ω) .

(62)

The existence of the solution of the system (62) can be proved as in [9].
We now state the optimal control problem. We look for a (u, p, T, Q) ∈ H1(Ω)×

L2
0(Ω) × H1(Ω) × L2(Ω) such that the cost functional (61) is minimized subject to the

constraints (62). The admissible set of states and controls is

Uad = {(u, p, T, Q) ∈ H1(Ω)× L2
0(Ω)× H1(Ω)× L2(Ω) :

J (u, T, Q) < ∞ and (62) is satified.}
(63)

Then (û, p̂, T̂, Q̂) ∈ Uad is called an optimal solution if there exists ε > 0 such that

J (û, p̂, T̂, Q̂) ≤ J (u, p, T, Q) ∀(u, p, T, Q) ∈ Uad satisfying

‖u− û‖1 + ‖p− p̂‖0 + ‖T − T̂‖1 + ‖Q− Q̂‖0 < ε .
(64)

The existence of at least one optimal solution (û, p̂, T̂, Q̂) ∈ Uad can be proved as in [9].
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We define the following functional spaces:

B1 = H1(Ω)× L2
0(Ω)× H1(Ω)× L2(Ω) , (65)

B2 = H−1(Ω)× L2
0(Ω)× H1∗

Γd
(Ω) , (66)

B3 = H1
0(Ω)× L2

0(Ω)× H1
Γd
(Ω)× L2(Ω) . (67)

Let M : B1 → B2 denote the generalized constraint equations, namely, M(z) = l for
z = (u, p, T, Q) ∈ B1 and l = (l1, l2, l3) ∈ B2 if and only if

νa(u, v) + c(u, u, v) + b(v, p)− (f, v) + β(gT, v) = (l1, v) ∀v ∈ H1
0(Ω) ,

b(u, q) = (l2, q) ∀q ∈ L2
0(Ω) ,

αa(T, ϕ) + c(u, T, ϕ)− (Q, ϕ)− (gt,n, ϕ)Γn = (l3, ϕ) ∀ϕ ∈ H1
Γd
(Ω) .

(68)

Thus, the constraints (62) can be expressed as M(z) = 0. Let (û, p̂, T̂, Q̂) ∈ H1(Ω)×
L2

0(Ω)× H1(Ω)× L2(Ω) denote an optimal solution in the sense of (64). Then, consider
the nonlinear operator N : B1 → R× B2 defined by

N(u, p, T, Q) =

( J (u, T, Q)−J (û, T̂, Q̂)
M(u, p, T, Q)

)
. (69)

Given z = (u, p, T, Q) ∈ B1, the operator M′(z) : B3 → B2 may be defined as
M′(z) · z̃ = l̃ for z̃ = (ũ, p̃, T̃, Q̃) ∈ B3 and l̃ = (̃l1, l̃2, l̃3) ∈ B2 if and only if

νa(ũ, v) + c(ũ, u, v) + c(u, ũ, v) + b(v, p̃) + β(gT̃, v) = (̃l1, v) ∀v ∈ H1
0(Ω) ,

b(ũ, q) = (l̃2, q) ∀q ∈ L2
0(Ω) ,

αa(T̃, ϕ) + c(ũ, T, ϕ) + c(u, T̃, ϕ)− (Q̃, ϕ) = (l̃3, ϕ) ∀ϕ ∈ H1
Γd
(Ω) .

(70)

The operator N′(z) : B3 → R× B2 may be defined as N′(z) · z̃ = (ã, l̃) for ã ∈ R if
and only if

αu(u− ud, ũ)Ωd + αT(T − Td, T̃)Ωd + λ(Q, Q̃) = ã

νa(ũ, v) + c(ũ, u, v) + c(u, ũ, v) + b(v, p̃) + β(gT̃, v) = (̃l1, v) ∀v ∈ H1
0(Ω) ,

b(ũ, q) = (l̃2, q) ∀q ∈ L2
0(Ω) ,

αa(T̃, ϕ) + c(ũ, T, ϕ) + c(u, T̃, ϕ)− (Q̃, ϕ) = (l̃3, ϕ) ∀ϕ ∈ H1
Γd
(Ω) .

(71)

Let z0 ∈ B1. We have that the operator M′(z0) has closed range in B2 and the operator
N′(z0) has closed range but is not in R× B2 [21].

Similarly to the other controls presented in previous sections, let ẑ = (û, p̂, T̂, Q̂) ∈
H1(Ω)× L2

0(Ω)× H1(Ω)× L2(Ω) denote an optimal solution in the sense of (64). Then,
there exists a nonzero Lagrange multiplier (Λ, ûa, p̂a, T̂a) ∈ R × B∗2 satisfying the Eu-
ler equations

ΛJ ′(û, T̂, Q̂) · z̃ + 〈(ûa, p̂a, T̂a), M′(ẑ) · z̃〉 = 0 ∀z̃ ∈ B3 , (72)

where 〈·, ·〉 denotes the duality pairing between B2 and B∗2 . The interested reader can
consult [21] on the existence of the Lagrange multiplier.
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3.3.2. Optimality System

As in the previous case, we drop the (̂·) notation for the optimal solution and derive
the optimality system using the Euler Equation (72)

αuΛ(u− ud, ũ)Ωd + αTΛ(T − Td, T̃)Ωd + Λλ(Q, Q̃) + b(ũ, pa) + νa(ũ, ua)+

+ c(ũ, u, ua) + b(ua, p̃) + c(u, ũ, ua) + β(gT̃, ua) + αa(T̃, Ta) + c(ũ, T, Ta)+

+ c(u, T̃, Ta)− (Q̃, Ta) = 0 .

(73)

We extract the terms involved in the same variation, set Λ = −1, and obtain the
following equations:

νa(ũ, ua) + c(u, ũ, ua) + c(ũ, u, ua) + b(ũ, pa) =

= αu(u− ud, ũ)Ωd − c(ũ; T, Ta) ∀ũ ∈ H1
0(Ω) ,

b(ua, p̃) = 0 ∀ p̃ ∈ L2
0(Ω) ,

αa(T̃, Ta) + c(u, T̃, Ta) = −(βgT̃, ua) + αT(T − Td, T̃)Ωd ∀T̃ ∈ H1
Γd
(Ω) ,

(74)

and the control equation

λ(Q, Q̃) + (Q̃, Ta) = 0 , ∀Q̃ ∈ L2(Ω) . (75)

The necessary conditions for an optimum are defined by Equations (62) and (74). This
system of equations is the optimality system. We can use integrations to show that the
system constitutes a weak formulation of the boundary value problem for state equations

u · ∇u +∇p− ν∆u = f− βgT ,

∇ · u = 0 ,

u · ∇T − α∆T = Q ,

u = w on Γ , α∇T · n|Γn = gt,n on Γn , T = gt on Γd ,

(76)

the adjoint equations

ua · (∇u)T − u · ∇ua +∇pa − ν∆ua = −T∇Ta + αu(u− ud) ,

∇ · ua = 0 ,

− α∆Ta − u · ∇Ta = −βg · ua + αT(T − Td) ,

ua = 0 on Γ , ∇Ta · n|Γn = 0 on Γn , Ta = 0 on Γd ,

(77)

and the control equation

Q = −Ta

λ
in Ω . (78)

Therefore, the optimality system in the strong form consists of the Boussinesq sys-
tem (76), the adjoint of Boussinesq Equation (77), and the control Equation (78).

3.3.3. Numerical Algorithm

Let us consider the gradient method for the following minimization problem: find
Q ∈ L2(Ω) such that F (Q) := J (u(Q), T(Q), Q) is minimized. Given Q(0), we can define
the sequence

Q(n+1) = Q(n) − ρ(n)
dF (Q(n))

dQ(n)
, (79)

recursively, where ρ(n) is a variable step size. Let Q̂c be a solution of the minimization
problem. Thus, at the optimum dF (Q̂)/dQ̂ = 0 and Q(n+1) = Q(n). The Gâteaux derivative
(dF (Q)/dQ) · Q̃ for every direction Q̃ ∈ L2(Ω) may be computed as
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dF (Q)

dQ
· Q̃ = λ(Q, Q̃) + (Q̃, Ta) . (80)

Thus, the Gâteaux derivative may be computed as

dF (Q)

dQ
= Q +

Ta

λ
. (81)

The optimization algorithm is then given as follows.

(a) Initial step:

1. choose tolerance τ and Q(0); set n = 0 and ρ(0) = 1;
2. solve for (u(0), p(0), T(0)) from (62) with Q = Q(0);
3. evaluate J (0) = J (u(0), T(0), Q(0)) using (61).

(b) Main loop:

1. set n = n + 1;

2. solve for (u(n)
a , p(n)a , T(n)

a ) from (74);
3. solve for Q(n) from

Q(n) = Q(n−1) − ρ(n)
(

Q(n−1) +
T(n)

a
λ

)
; (82)

4. solve for (u(n), p(n), T(n)) from (40) with Q = Q(n);
5. evaluate J (n) = J (u(n), T(n), Q(n)) using (39);

(i) if J (n) > J (n−1), set ρ(n) = 0.5ρ(n) and go to step (b) 3.;
(ii) if J (n) < J (n−1), set ρ(n+1) = 1 and go to step (b) 1.;
(iii) if |J (n) −J (n−1)|/|J (n)| < τ stop.

4. Numerical Results

In this section, we report some numerical results obtained by using the mathematical
models shown in the previous sections. The main difference between the three control
problems is in the nature of the control equations. For Neumann and distributed controls,
the control equation is an algebraic equation that states that the control is proportional
to the adjoint temperature (see Equations (56) and (78)). In contrast, when we have a
Dirichlet boundary control, the control equation is a partial differential equation with the
normal adjoint temperature gradient as source term, as reported in (31). Thus, the adjoint
temperature Ta plays a key role in all three control mechanisms, as does the regularization
parameter λ that appears in the denominator of the source terms. The adjoint temperature
Ta depends on the objectives of the velocity and temperature fields. When the objective
relates to the temperature field, the dependence is direct through the term αT(T − Td)
appearing on the right-hand side of the adjoint temperature Equations (27), (52), and (74).
If the objective relates to the velocity field, the control mechanism is indirect, since the term
αu(u− ud) acts as a source in the adjoint velocity equation. In turn, the adjoint velocity
appears in the source term of the adjoint temperature βg · ua.

The geometry considered for all the simulations is a square cavity with L = 0.01 m.
The domain Ω = [0, L]× [0, L] ∈ R2 is shown in Figure 1. We consider liquid lead with
the properties reported in Table 1. We discretize the numerical problem in a finite element
framework, and we consider a 20× 20 uniform quadrangular mesh formed by biquadratic
elements. The simulations were performed using the in-house finite element multigrid
code FEMuS developed at the University of Bologna [22]. The code is based on a C++
main program that handles several external open-source libraries such as the MPI and
PETSc libraries.
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Table 1. Boussinesq control: physical properties employed for the numerical simulations.

Property Symbol Value Units

Viscosity µ 0.00181 Pa s
Density ρ 10, 340 kg/m3

Thermal conductivity λ 10.72 W/(mK)
Specific heat c 145.75 J/(kgK)

Coefficient of expansion β 2.5684× 10−4 K−1

Γ1

Γ2

Γ3

Γ4

g

x

y

Figure 1. Computational domain for the optimal control of Boussinesq equations, where g is the
gravity vector and Γ1, Γ2, Γ3, and Γ4 are the boundaries.

4.1. Dirichlet Boundary Control

We now show the numerical results for the Dirichlet boundary control. The boundary
conditions are reported in (12), where Γd = Γ1 ∪ Γ3, Γi = Γ3, Γc = Γ1 and Γn = Γ2 ∪ Γ4. We
set f = 0 and Q = 0 in (14), and gu = 0, gt,n = 0, gt = 493 K on Γ3, and gt = 503 K on Γ1

in (12). For the reference case, we set T(0)
c = 0. Then, on Γc = Γ1 we have T(0) = gt. In

Figure 2a,b, we show the temperature and velocity contours, respectively, of the numerical
solution when the control algorithm is not applied. Lead flows in the cavity and forms
a clockwise vortex due to buoyancy forces caused by the heated cavity wall. The bulk
velocity is Ub = 0.008765 m/s. The Richardson number, computed as Ri = gL∆Tβ/U2

b , is
equal to 3.28. The Grashof number is Gr = RiRe2 = 8.2× 105. Lastly, the Rayleigh number
is given by Ra = GrPr = 2× 104. The results shown in Figure 2 follow the typical features
of temperature and velocity profiles for Ra ≈ 104, i.e., isotherms departing from the vertical
position with the formation of a central elliptic clockwise vortex [23].
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495.22
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497.44
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500.78
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T (K)
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0.00524

0.00699

0.00874
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0.01224

0.01399

0.01573
|u| (m/s)

(b)

Figure 2. Uncontrolled solution: contours of the temperature field T (a); contours and streamlines of
the velocity field u (b). The velocity magnitude is indicated by |u|.
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4.1.1. Temperature Matching Case

Firstly, we aim to test the optimization algorithm with a temperature matching case.
Let (13) be the objective functional with αu = 0, αT = 1, and Ωd = [0.45L; 0.55L] ×
[0.75L; 0.85L]. The region Ωd is indicated in Figure 3a. We set Td = 450 K. Then, in Ωd we
aim at obtaining cooler fluid than in the reference case reported in Figure 2a. We consider
four different values of the regularization parameter λ, namely, 10−5, 10−6, 10−7, and 10−8.
The reference objective functional is J (0) = 0.001250. For the numerical simulations, we
use the algorithm for Dirichlet boundary problems presented in the previous sections, and
we choose (37) for the update algorithm of the control.

Ωd

304.6

326.6

348.7

370.7

392.8

414.8

436.9

458.9

481.0

503.0
T (K)

(a)
0.00000

0.00640

0.01281

0.01921

0.02561

0.03202

0.03842

0.04482

0.05122

0.05763
|u| (m/s)

(b)

Figure 3. Temperature matching case with Dirichlet boundary control: optimal solution for λ = 10−7.
Contours of the temperature field T (a); contours and streamlines of the velocity field u (b). The
velocity magnitude is indicated by |u|, and Ωd is the region where the objective is set.

The contours of the optimal solution in terms of temperature and velocity fields are
shown in Figure 3a,b, respectively, for λ = 10−7. The region Ωd, where the objective is
set, is highlighted with a black square in Figure 3a. From the contours, we can see that
the optimal temperature field assumes values close to the target temperature Td = 450 K.
To achieve the objective, the temperature on the left wall decreases with respect to the
reference case. For this reason, the motion changes, and we obtain a counterclockwise
vortex, as depicted by the streamlines in Figure 3b.

In Table 2, we report the objective functional values J (n) corresponding to its optimal
state for each numerical simulation. We also report the value of the reference objective
functionalJ (0) and the percentage reduction for each case evaluated as (J (0)−J (n))/J (0).
In addition, the number of iterations n of the optimization algorithm is included in Table 2.
The lowest value of λ results in the lowest functional value of J (10) = 1.979× 10−6 and
the greatest percentage reduction.

Table 2. Temperature matching case with Dirichlet boundary control: objective functional, percentage
reduction, and number of iterations of the optimization algorithm for different λ values.

λ 10−5 10−6 10−7 10−8 Reference

J (n) × 106 3.110 2.179 2.091 1.979 1250
% Reduction 99.75 99.82 99.83 99.84 0
Iterations n 6 5 6 10 0

Temperature profiles along the boundary Γc are reported in Figure 4a for the different
values of the regularization parameter λ. As λ decreases, the minima of the profiles move
towards y/L = 1. In Figure 4b, the temperature is plotted along a line at y/L = 0.8 for
0.45 < x/L < 0.55 in the region Ωd. We can see that for the lowest values of λ, the optimal
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solutions tend to the target profile Td. The case λ = 10−5 is the farthest from the objective,
as we can also deduce from the functional values reported in Table 2.
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y/L

300

325

350

375

400

425

450

475

500

T
(K

)

10−5

10−6

10−7

10−8

(a)
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Figure 4. Temperature matching case with Dirichlet boundary control: temperature T profiles plotted
against y/L along the controlled boundary Γc (a); temperature T profiles plotted against x/L on the
region Ωd along the line y/L = 0.8 (b). Numerical results for λ = 10−5, 10−6, 10−7, and 10−8. The
target value Td is shown as a dotted line.

4.1.2. Velocity Matching Case 1

The second test for the Dirichlet optimal control is a velocity matching case. The
objective functional is the one reported in Equation (13), setting αu = 1, αT = 0 and
Ωd = [0.15L; 0.25L]× [0.45L; 0.55L]. The region Ωd is represented in Figure 5c. We aim
to control the y-component of the velocity with vd = 0.05 m/s. In the reference case,
the mean value of v over Ωd is 0.0159 m/s, but we aim to accelerate the fluid near the
controlled boundary Γc in order to enhance the velocity on Ωd. We consider different
values of the regularization parameter λ, i.e., 10−10, 10−11, 10−12, 10−13, and 10−14. The
considered values are lower than those used for the temperature matching test. We also
tested higher values of the regularization parameter, but the control was ineffective in
those cases. Indeed, it is easier to achieve an objective on the temperature field than on the
velocity field, since the control parameter Tc (or h or Q) depends directly on the adjoint
temperature but indirectly on the adjoint velocity. The value of the reference objective
functional is J (0) = 7.011× 10−10.

In Figure 5, the optimal solution obtained with λ = 10−13 is reported. In Figure 5a, the
contours of the optimal temperature field are shown. Along Γc, the temperature shows a
sharp variation. At the bottom of Γc, we have a maximum for the temperature, while at the
top is the minimum temperature value. The fluid is heated and is accelerated to the desired
velocity in the region Ωd. The resulting velocity field is shown in Figure 5b, where contours
of the velocity magnitude and streamlines are shown. The contours of the y-component of
the velocity are shown in Figure 5c, where the region Ωd is highlighted.

In Table 3, we report the objective functional values J (n), the number of iterations n
of the optimization algorithm, and the percentage reduction with respect to the reference
J (0). For the highest values of λ, the control is poor, and the functional is quite similar to
the reference value. However, we can observe a strong functional reduction for the cases
with λ ≤ 10−13.



Fluids 2022, 7, 203 19 of 27

Table 3. Velocity matching case with Dirichlet boundary control. Case 1: objective functional,
percentage reduction, and number of iterations of the optimization algorithm for different λ values.

λ 10−10 10−11 10−12 10−13 10−14 Reference

J (n) × 1012 586.3 413.6 137.4 9.767 8.796 701.1
% Reduction 16.4 41.01 80.40 98.61 98.74 0
Iterations n 5 5 4 6 5 0

406.2

430.5

454.9

479.2

503.6

528.0

552.3

576.7

601.0

625.4
T (K)

(a)
0.00000

0.00644

0.01289

0.01933

0.02578

0.03222

0.03866

0.04511

0.05155

0.05800
|u| (m/s)

(b)

Ωd

−0.0551

−0.0432

−0.0313

−0.0193

−0.0074

0.0046

0.0165

0.0285

0.0404

0.0524
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Figure 5. Velocity matching case with Dirichlet boundary control—Case 1: optimal solution for
λ = 10−13. Contours of the temperature field T (a); contours and streamlines of the velocity field
u (b); contours of the y-component of the velocity field v (c). The velocity magnitude is indicated by
|u|, and Ωd is the region where the objective is set.

Temperature profiles along the boundary Γc are reported in Figure 6a for different
values of the regularization parameter λ. For λ = 10−10, the profile only has a stationary
point at y/L ≈ 0.5. For lower values of λ, there is a change of concavity in the temperature
profiles and an inflection point at y/L ≈ 0.5. As λ decreases, the maximum is located at
0.2 < y/L < 0.4 and its value increases, while the minimum is located at 0.6 < y/L < 0.8
and its value decreases. As expected, with low values of the regularization parameter,
the H−1(Γc)-norm of the control has less weight in the objective functional, and more
irregular functions are accepted as optimal solutions. In Figure 6b, the y-component of the
velocity is plotted along a line at x/L = 0.2 for 0.45 < y/L < 0.55 in the region Ωd. The
velocity profile is reported for all values of λ, together with the target velocity profile vd.
For the lowest values of λ (10−13, 10−14), the optimal solutions tend to the target profile
vd, while the highest values of λ (10−10, 10−11, 10−12) lead to the solutions farthest from
the objective, as can be deduced from the functional values in Table 3. However, when λ is
small (10−13, 10−14), the maximum temperature value increases (from 503 K up to 650 K)
and the minimum value decreases (from 503 K down to 400 K). This large variation is due
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to the fact that the target vd is quite far from the reference case, and the temperature over
Γc must change considerably to reach the objective.
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Figure 6. Velocity matching case with Dirichlet boundary control—Case 1: temperature profiles
T plotted against y/L on the controlled boundary Γc (a); y-component of the velocity v pro-
files plotted against y/L on the region Ωd along the line x/L = 0.2 (b). Numerical results for
λ = 10−10, 10−11, 10−12, 10−13, and 10−14. The target value vd is shown as a dotted line.

4.1.3. Velocity Matching Case 2

A second case for the velocity matching test is now considered. The objective is set
on the x-component of the velocity field, where we aim to achieve a counterclockwise
flow. Let us consider Ωd = [0.45L; 0.55L]× [0.75L; 0.85L]. This region is highlighted in
Figure 7c. In the reference case, the mean value of u on Ωd is set to 0.0129 m/s. Then, we
set a uniform value ud = −0.02 m/s as a target profile. The simulations are performed
considering different values of λ, namely, 10−10, 10−11, and 10−12. The reference objective
functional is J (0) = 5.425× 10−10.

The optimal temperature and velocity fields obtained with λ = 10−11 are reported
in Figure 7. In Figure 7a, the contours of the optimal temperature field are shown. The
resulting velocity field is shown in Figure 7b, where contours of the velocity magnitude
and streamlines are reported. We can observe that a counterclockwise flow is driven by
the buoyancy forces. The contours of the x-component of the velocity are represented in
Figure 7c, where the region Ωd is highlighted. We also report the optimal solution obtained
with λ = 10−12 in Figure 8. In this case, the solution is quite unexpected. Figure 8a shows
the contours of the optimal temperature field. At the bottom of the left wall (Γc = Γ1), the
temperature is higher than the temperature on the right wall (Γi = Γ3), while at the top of
Γc the temperature is lower than the temperature on Γ3.

This profile induces buoyancy forces which cause two vortexes; a smaller clockwise
vortex behind the bottom-left corner and a bigger counterclockwise vortex in the center of
the cavity, as shown in Figure 8b. The contours of the x-component of velocity are shown in
Figure 8c, where the region Ωd is in evidence. There, the x-component of velocity is quite
uniform and close to the target value ud.

In Table 4, we report the objective functional values J (n), the percentage reduction,
and the number of iterations n of the optimization algorithm. For the highest value of λ
(10−10), the control is poor, and the functional value is quite similar to the reference value.
For the other values of λ, the control is more effective. As observed in the previous test
cases, with the lowest value of λ, we have the lowest functional value and the greatest
percentage reduction.
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Figure 7. Velocity matching case with Dirichlet boundary control—Case 2: optimal solution for
λ = 10−11. Contours of the temperature field T (a); contours and streamlines of the velocity field u
(b); contours of the x-component of the velocity field u (c). The velocity magnitude is indicated by
|u|, and Ωd is the region where the objective is set.
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Figure 8. Velocity matching case with Dirichlet boundary control—Case 2: optimal solution for λ = 10−12.
Contours of the temperature field T (a); contours and streamlines of the velocity field u (b); contours
of the x-component of the velocity field u (c). The velocity magnitude is indicated by |u|, and Ωd is
the region where the objective is set.
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Table 4. Velocity matching case with Dirichlet boundary control—Case 2: objective functional,
percentage reduction and number of iterations of the optimization algorithm for different λ values.

λ 10−10 10−11 10−12 Reference

J (n) × 1013 246.6 36.04 1.677 5423
% Reduction 54.53 93.35 99.69 0
Iterations n 4 10 9 0

In Figure 9a, the temperature profiles along the boundary Γc are shown for different
values of the regularization parameter λ (10−10, 10−11, 10−12). For λ = 10−10 and λ = 10−11,
the profiles present a minimum point at 0.4 < y/L < 0.7. The temperature on Γc is
lower than the temperature on the opposite wall Γi, namely, T = 493 K, to obtain a
counterclockwise flow. For λ = 10−12, the optimal solution is unexpected, as previously
noted. There is a variation of concavity in the profile and an inflection point at y/L ≈ 0.5.
For y/L < 0.5, the temperature on Γc is higher than the temperature on Γ3, while at the top
of the controlled wall, for y/L > 0.5, the temperature on Γc is lower than the temperature
on Γ3. In Figure 9b, the x-component of the velocity is plotted along a line at y/L = 0.8
for 0.45 < x/L < 0.55 in the region Ωd. The velocity profiles are shown for all values of
λ, together with the target velocity profile ud. We can observe that in all cases, the flow
changes from clockwise to counterclockwise with a negative x-component of velocity at the
top of the cavity. We note that in this test, the lower the value of λ, the closer the velocity
profile is to the target profile.
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Figure 9. Velocity matching case with Dirichlet boundary control—Case 2: temperature profiles T
plotted against y/L on the controlled boundary Γc (a); x-component of the velocity u profiles plotted
against y/L on the region Ωd along the line x/L = 0.2 (b). Numerical results for λ = 10−10, 10−11,
and 10−12. The target value ud is shown as a dotted line.

4.2. Neumann Boundary Control

For the Neumann control problem, we consider the geometry shown in Figure 1. The
boundary conditions are reported in (38), where Γd = Γ3, Γn = Γ1 ∪ Γ2 ∪ Γ4, Γi = Γ2 ∪ Γ4,
Γc = Γ1. We set gt,n = 0, gt = 493 K, and gu = 0 in (38) and f = 0, Q = 0 in (40). The
wall-normal heat flux h acting on Γc is the control for the problem. To compute the reference
case, we set h(0) = 0. Thus, the uncontrolled problem consists of three thermally-insulated
walls, i.e., the left (Γ1), bottom (Γ2), and top (Γ4) walls, and a wall with a fixed temperature,
which is the right wall (Γ3). The reference case is a trivial problem, characterized by a
uniform and constant temperature, no buoyancy forces, and still fluid.

We performed several tests, varying the objective. We report the numerical results
obtained considering the same objective on the x-component of velocity also studied with
the Dirichlet control. We recall the main simulation parameters. Let Ωd = [0.45L; 0.55L]×
[0.75L; 0.85L] be the region where we aim to achieve the objective, and let ud = −0.02 m/s
be the target velocity profile. In the reference case, the fluid is still. Then, u = 0 m/s
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in Ωd. The simulations were performed considering different values of λ, namely, 10−4,
10−5, 10−6, and 10−7. The reference objective functional is J (0) = 2.061× 10−10.

In Table 5, the objective functional values J (n) and the number of iterations n of the
optimization algorithm are reported for all the values of λ. The percentage reductions are
also reported. In all tests, we observe large functional reductions. In particular, for lower
values of λ, the control is more effective.

The optimal solution obtained with λ = 10−6 is reported in Figure 10. The contours of
the temperature field T over the domain can be seen in Figure 10a. The heat flux imposed on
the left wall is outgoing, and the wall is cooler than in the reference case, with a minimum
value of around 473 K. In Figure 10b, the velocity streamlines and the contours of the
velocity magnitude are shown. The formation of a counterclockwise vortex is shown in this
figure. The contours of the x-component of the velocity field u are reported in Figure 10,
and the region Ωd is highlighted.
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Figure 10. Velocity matching case with Neumann boundary control: optimal solution for λ = 10−6.
Contours of the temperature field T (a); contours and streamlines of the velocity field u (b); contours
of the x-component of the velocity field u (c). The velocity magnitude is indicated by |u|, and Ωd is
the region where the objective is set.

Table 5. Velocity matching case with Neumann boundary control: objective functional, percentage of
reduction, and number of iterations of the optimization algorithm for the reference case and different
λ values.

λ 10−4 10−5 10−6 10−7 Reference

J (n) × 1012 30.58 30.14 8.454 1.536 206.1
% Reduction 85.16 85.8 95.90 99.25 0
Iterations n 4 14 9 7 0
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In Figure 11a, the temperature profiles along the boundary Γc are shown for different
values of the regularization parameter λ (10−4, 10−5, 10−6, 10−7). Comparing these profiles
with the temperature profiles of Figure 9a obtained for a Dirichlet control, we observe very
different trends. With a Dirichlet control, the temperature on Γc belongs to the Hilbert
space H1(Γc), and the control Tc is nullified at the extremities of the boundary, i.e., Tc = 0 K
on ∂Γc. For this reason, with a Dirichlet control, T = gt = 503 K at y/L = 0 and y/L = 1.
With Neumann controls, we do not have constraints on the temperature value on ∂Γc, and
we obtain different shapes for the profiles. In Figure 11b, the control parameter h expressed
in kW/m2 is reported along Γc. With the highest values of λ (10−4, 10−5), the control is
quite uniform and regular, but it is less effective with respect to the functional reduction.
With the lowest values of λ (10−6, 10−7), the profiles of the control h are sharp and present
changes of sign.
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Figure 11. Velocity matching case with Neumann boundary control: temperature T (a) and wall-
normal heat flux h (b) plotted against y/L on the controlled boundary Γc. Numerical results for
λ = 10−4, 10−5, 10−6, and 10−7.

4.3. Distributed Control

For the distributed control problem, we consider the geometry reported in Figure 1.
The boundary conditions are reported in (9), where Γd = Γ1 ∪ Γ3, Γn = Γ2 ∪ Γ4. We set
f = 0, gu = 0 in (62), while in (9) we have gt,n = 0, gt = 493 K on Γ3, and gt = 503 K on
Γ1. The volumetric heat source Q is the control acting on the domain Ω. For the reference
case, we consider Q(0) = 0. Thus, the reference case is the one considered for the Dirichlet
boundary control. The buoyancy forces put the fluid in motion, and a clockwise vortex
is formed. The contours and streamlines for the temperature and velocity are shown in
Figure 2.

We performed several tests, varying the objectives and the values of the regular-
ization parameter λ. We show the results for a velocity matching case. Let us consider
Ωd = [0.15L; 0.25L]× [0.45L; 0.55L]. We aim to control the y-component of the velocity,
and therefore we set vd = 0.05 m/s, as in the first velocity matching case presented for the
Dirichlet boundary control. In the reference case, the mean value of v on Ωd is equal to
0.0159 m/s, as we aim to accelerate the fluid near the controlled boundary Γc. We consider
several values of the regularization coefficient, namely, 10−10, 10−11, and 10−12.

In Table 6, the objective functional values J (n), the percentage reductions, and the
number of iterations n of the optimization algorithm are reported for all values of λ. Thus,
in all the tests, the functional is strongly reduced by a factor of 103. This is an expected
result since the optimal control Q can act on the whole domain, and its influence is strong
on the distribution of the temperature field and buoyancy forces. We remark that with
boundary control problems, the control can act only on a portion of the boundary, and its
impact is less effective on the solution.

In Figure 12, the contours of the optimal solution for λ = 10−11 are shown. The optimal
control Q expressed in MW/m3 is reported in Figure 12a. The heat source is not uniform
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over the domain, being positive in the proximity of the hottest wall (T = 503 K on Γ1) and
negative near the coolest wall (T = 493 K on Γ3). This heat source distribution influences
the temperature solution reported in Figure 12b. The isotherms are more stretched than in
the reference case, and the fluid is locally hotter than 503 K and cooler than 493 K, due to the
volumetric heat source. The streamlines and contours of the velocity field are reported in
Figure 12c. Figure 12d shows the region Ωd and the contours of the y-component of velocity.
The solution is almost uniform in Ωd and is close to the target value of vd = 0.02 m/s.
Comparing Figures 5c and 12d, we can observe that the distributed control is the most
effective in achieving the objective. The great effectiveness of the distributed control can
be also seen by comparing Table 6 and the first three columns of Table 3. With the same
λ coefficients (10−10, 10−11, and 10−12), the distributed control leads to much greater
reductions in the functional J (n) than the Dirichlet control. Moreover, by observing
Figures 5a and 12b, we see that with a distributed control, the optimal temperature solution
is more uniform and regular than with a Dirichlet optimal control, which can lead to
temperature variations that may not be acceptable in a practical context.
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Figure 12. Velocity matching case with distributed control: optimal solution for λ = 10−11. Contours
of the control Q (a); contours of the temperature field T (b); contours and streamlines of the velocity
field u (c); contours of the y-component of velocity v (d). The velocity magnitude is indicated by |u|,
and Ωd is the region where the objective is set.

Table 6. Velocity matching case with distributed control: objective functional J (n), percentage
reduction, and number of iterations n of the optimization algorithm for different values of λ.

λ 10−10 10−11 10−12 Reference

J (n) × 1013 2.792 2.229 2.159 2061
% Reduction 99.96 99.97 99.97 0
Iterations n 3 13 35 0
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5. Conclusions

In this work, optimal control problems for incompressible Newtonian buoyant flows
were presented and discussed. Starting from some important results already presented in
previous studies on the existence of an optimal solution and the existence of the Lagrange
multipliers, we analyzed Dirichlet, Neumann, and distributed optimal control problems.
For each case, we obtained the optimality system, which consists of state, adjoint, and
control equations. To solve this numerically, a gradient method was introduced, and an
efficient numerical algorithm was proposed for each case. We observed that the three
control mechanisms differed only in the control equation, which is an algebraic equation
in the case of distributed and Neumann control and a differential equation in the case of
Dirichlet control. In all the mechanisms, the controls depended on the adjoint temperature
field Ta and on the regularization parameter λ. Numerical simulations were performed
to test the robustness of the algorithm and the feasibility of the method. The developed
numerical simulations included velocity matching cases and temperature matching cases,
both evaluated with various values of the regularization parameter λ. We observed that
the temperature matching case is easier to achieve, since in this case the distance from the
target temperature appears directly as source term in the adjoint temperature equation.
The choice of the value of the regularization parameters proved to be a key issue: too much
regularization leads to smoother but less effective controls, while a lack of regularization
causes numerical issues and singular solutions. We observed that the appropriate choice
of λ should be made on a case-by-case basis. A comparison among the three thermal
control mechanisms allowed us to draw some conclusions as follows. The strongest control
is the distributed control, followed by the Neumann and Dirichlet boundary controls.
Of course, all these three different controls can be feasible at different costs, depending
on the engineering applications. In general, the developed numerical algorithm showed
good convergence properties and thus can be considered a useful tool for the numerical
resolution of optimal control problems for Boussinesq equations.
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