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Abstract: The transfer of suspended sediment can range widely from being diluted to being hyper-
concentrated, depending on the local flow and ground conditions. Using the Rouse model and the
Kundu and Ghoshal (2017) model, it is possible to look at the sediment distribution for a range of
hyper-concentrated and diluted flows. According to the Kundu and Ghoshal model, the sediment
flow follows a linear profile for the hyper-concentrated flow regime and a power law applies for the
dilute concentrated flow regime. This paper describes these models and how the Kundu and Ghoshal
parameters (linear-law coefficients and power-law coefficients) are dependent on sediment flow
parameters using machine-learning techniques. The machine-learning models used are XGboost Clas-
sifier, Linear Regressor (Ridge), Linear Regressor (Bayesian), K Nearest Neighbours, Decision Tree
Regressor, and Support Vector Machines (Regressor). The models were implemented on Google Colab
and the models have been applied to determine the relationship between every Kundu and Ghoshal
parameter with each sediment flow parameter (mean concentration, Rouse number, and size parame-
ter) for both a linear profile and a power-law profile. The models correctly calculated the suspended
sediment profile for a range of flow conditions (0.268 mm ≤ d50 ≤ 2.29 mm, 0.00105 g

mm3 ≤ particle
density ≤ 2.65 g

mm3 , 0.197 mm
s ≤ vs ≤ 96 mm

s , 7.16 mm
s ≤ u∗ ≤ 63.3 mm

s , 0.00042 ≤ c ≤ 0.54), includ-
ing a range of Rouse numbers (0.0076 ≤ P ≤ 23.5). The models showed particularly good accuracy
for testing at low and extremely high concentrations for type I to III profiles.

Keywords: Rouse number; mean concentration; suspended sediment transport; sediment size
parameter; parameterized power-linear model; machine learning; decision tree regressor; support
vector machines

1. Introduction

Sediment transport commonly occurs in unlined water conveyance systems such
as rivers, streams, canals, and drainage channels. There are three sediment transport
modes: wash load, bedload, and suspended load. In wash load, particles do not exist
on the bed, therefore, the characterization and prediction of wash load composition is
highly difficult. The bedload transfer is almost always in contact with the bed. Bedload
transport takes place if critical friction velocity (u∗c) is less than the friction velocity (u∗).
The suspended load, which is part of the total load, moves without continuously being
in contact with the bed. Turbulence is the main flow property that keeps the sediment
in suspension [1–3]. The turbulence is characterized by the magnitude of root mean
square velocity (u′). For significant suspension to occur u′ near the bed must exceed the
sediment fall velocity (vs). Sediment particle concentration distribution along the depth is
very important for predicting the sediment transport rate that is taking place in the river.
However, the problem with suspended load transport is that it is not fully understood,
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because of limitations in modelling techniques such as diffusion theory [4]. Rouse [5]
developed a suspended sediment concentration profile based on diffusion theory for steady
uniform flows by using the eddy viscosity model to relate Reynolds stress and log-law
for the velocity profile. Despite the drawbacks of diffusion theory, the Rouse model has
become a standard for calculating suspended sediment concentration profiles and a basis
for many models developed later.

Two-phase flows have complex interactions between the phases. Modelling fluid–
particle interactions and particle–particle attractions is difficult therefore they are excluded.
Huang et al. [6], Hsu et al. [7] and Rouse [5] resolved this issue based on the differential
continuity equation of suspended sediment diffusion in the 2D steady turbulent flow. They
considered that the sediment diffusion coefficient is related to both the mixing length and
the turbulence intensity. These models could not account for turbulence or forces operating
on the sediment particle surfaces, such as collisions between particles, and as a result, their
accuracy was limited. To overcome this, several studies have addressed sediment distribu-
tions in stationary and uniform two-dimensional (2D) open channel flows by solving the
momentum equation for sediment particles [4,8,9]. Most notably, the diffusion coefficient
of sediment particles generated from the momentum conservation equation provides sig-
nificantly more accurate, perhaps allowing for a better understanding of sediment particle
dispersion. Generally, the sediment concentration profile attains the maximum at some
distance above the bed surface, decreases with farther moving away from the bed, and
finally attains the minimum at the free surface. To model suspended-sediment distribution
along with the depth, parameters such as particle fall velocity, particle diameter, turbu-
lence intensity, shear velocity, Rouse number and mean concentration are required [10,11].
Kundu and Ghosal [4] and Pu and Lim [12] found that two-dimensional incompressible
flow modelling over a sediment bed with a uniform slope predicts reasonably accurate
suspended sediment transport since full three-dimensional modelling involves a lot more
complexity. In addition, the diffusion theory with appropriate modifications such as a
two-layer theoretical model based on diffusion theory or the fractional advection-diffusion
equation can predict suspended sediment concentration profiles with reasonable accuracy.
Goree et al. [13] used equations of motion and considered drift flux, which is a fluid that con-
sists of multiple phases or volume fractions. The mixture flow consists of different volume
fractions and each volume fraction has a different transport velocity. This velocity depends
on the particle size and the total volumetric concentration of solids. Goree et al. [13] used
LES for turbulence modelling however the computed results were not accurate at the wall.
Another type of modelling concept is kinetic theory. Models established based on kinetic
theory for granular flows and two-fluid models i.e., the probability density function (PDF)
approach, in which both fluid and solid phases are considered as continuum media, allow
classic continuum mechanics to be naturally employed to formulate the two-phase flows
with fundamental conservation laws [4]. Therefore, the observable macro mechanical states
of flows and sediment transport are completely determined by conservation equations of
solid and liquid systems. In addition, other theories, such as a numerical investigation
based on the kinetic theory of granular flows, in combination with a RANS (Reynolds-
Averaged Navier–Stokes) turbulence model were investigated by Ekambara et al. [14] for
a pipe flow using Ansys CFX which gave very good results. Ni et al. [10] developed a
combined model of both kinetic theory and diffusion theory, which has given reasonable
results.

The limitations of existing models to simulate suspended sediment transport can be
efficiently overcome with data-driven models such as machine learning. Barati et al. [15]
estimated the drag coefficient of a smooth sphere using multi-gene genetic programming.
Alizadeh et al. [16] used ANN and Bayesian network models to predict pollutant transport
in natural rivers. Sadeghifar and Barati [17] used soft-computing techniques with very
good accuracy to predict sediment transport in the southern shorelines of the Caspian Sea.
Cao et al. [18] developed a nonparametric machine-learning (ML) model to predict the
settling velocity of noncohesive sediment which demonstrated the capability of the ML
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model for accuracy and consistency. Rushd et al. [19] used AI-based machine learning
algorithms to develop a generalized model for computing the settling velocity of spheres
in both Newtonian and non-Newtonian fluids. The above-mentioned studies demonstrate
that data-driven models (AI and ML) and soft-computing techniques are powerful tools for
predicting complicated processes such as sediment transport.

A central perspective advocated in this paper is that by exploiting foundational knowl-
edge of suspended sediment profiles and physical constraints, data-driven approaches can
be used to yield useful predictive results. In this paper, current models are analysed and
the crucial flow parameters are estimated by using machine learning algorithms.

2. Model Review

The diffusion theory was utilised by van Rijn [20], Wang and Ni [21], McLean [22],
and Zhong et al. [23] to define the transport of suspended material in numerical modelling.
According to diffusion theory, sediment transport takes place from higher concentration ar-
eas to lower concentration areas [24]. Rouse [5] derived suspended sediment concentration
in a steady uniform current. As per Rouse [5], the sediment is kept in suspension mainly
by turbulence [7]. Rouse [5] used Prandtl’s mixing length theory to estimate the vertical
profile of suspended sediment. Rouse’s [5] methodology is given as follows.

As shown in Figure 1, consider two sand particles 1 and 2 with a settling velocity vs.
In a unit time through a unit area on horizontal plan p-p, the sediment volumes going up
(qu) and down (qd) are:

qu =
(
w′ − vs

)(
c− 1

2
l
dc
dz

)
(1)

qd =
(
w′ + vs

)(
c +

1
2

l
dc
dz

)
(2)
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In an equilibrium state, qu and qd must be equal to each other, substracting Equation (2)
from Equation (1) gives

cvs +
1
2

w′l
dc
dz

= 0 (3)

By assuming that
1
2

w′l =u∗
(

1− z
H

)
κz (4)

where mixing length l = κz, w′ = u∗
(
1− z

H
)
, κ = 0.4 and u∗ = friction velocity, H = flow depth.
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Substituting Equation (3) into Equation (4) yields

cvs + u∗
(

1− z
H

)
κz

dc
dz

= 0 (5)

By integrating Equation (5), one obtains

c(z) = cb

(
H − z

z
.

b
H − b

) vs
κu∗

(6)

where cb is the integration constant ( c|z=b = cb ) and vs
κu∗ = Rouse number (P). It is assumed

that bedload transport takes place in the bedload layer from z = 0 to z = b = ks. In
the bedload layer, sediment concentration is given by cb. Hsu et al. [7] suggested b

H
is approximately 0.005. The concentration distribution profile is thought to grow more
uniform, according to Rouse [5]. Small settling velocity and minimal shear velocity can
result in low Rouse numbers.

c(z) = cb

(
b
z

.
H − z
H − b

) vs
κu∗

(7)

Log-law can be written as

u(z) =
u∗
κ

ln
(

z
ks

)
+ B (8)

The flux per river cross-section per square meter can be written from Equations (7)
and (8) as

∅(z) =
(

u∗
κ

ln
(

z
ks

)
+ Bu∗

)(
b
z

.
H − z
H − b

) vs
κu∗

(9)

For steady, uniform open channel flow, the sediment concentration varies with the
distance z from the wall. The depth can be nondimensionalized as ε = z

H where its range is
0 < ε ≤ 1.

In addition, Kundu and Ghosal [11] recognized that sediment concentration profiles
occur in three (type I, type II, and type III) types as shown in Figure 2. For the low-flow
condition, the sediment carrying capacity is weak, therefore the maximum concentration
occurs at the bed and decreases exponentially to the minimum concentration at the free
surface. This type of profile is called type I. In medium-flow conditions, the sediment
concentration is lower near the bed because of the gravity effect, sediment concentration
attains a maximum concentration a little distance away from the bed and is the lowest
near the free surface, and is classified as type II. The type III profile is attained during
high-flow conditions subjected to hyper concentration. In the type III profile, sediment
concentration is low near the bed as well as near the free surface, whereas the maximum
concentration occurs in the middle region. According to Kundu and Ghoshal [11], the entire
flow depth can be divided into two regions: the inner suspension region, where sediment
concentration increases with a characteristic height from the sediment bed (εb ≤ ε ≤ εmax).
Here εmax corresponds to cmax and εb corresponds to the nondimensional height at which
the suspended sediment starts. The outer suspension region above the inner suspension
region, where sediment concentration decreases with an increase in the characteristic
height and εmax ≤ ε ≤ 1. For each region, sediment concentration which is a function of
characteristic height can be written as

∅1 = b1εa1 + d1 for inner suspension region (εb ≤ ε ≤ εmax) (10)

∅2 = b2εa2 + d2 for outer suspension region (εmax ≤ ε ≤ 1) (11)

where a1, b1, d1, a2, b2, d2 are experimental coefficients that can be found by the least squares
method by analysing observed data.
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In the asymptotic matching method (refer Figure 3), the final model of suspended
sediment concentration for the entire flow region is given as follows [25].

∅ =

(
1

(b1εa1 + d1)
−1 + (b2εa2 + d2)

−1

)
(12)
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The aforementioned equation has also been used by Bouvard and Petkovic [26], Wang
and Ni [21], and Einstein and Chein [27] to demonstrate that the sediment profile for a di-
luted flow should follow a power law (Equations (10) and (11)). In Equations (10) and (11),
d = 0 produce a simplified form of power law as given below.

∅ = bεa. (13)

Equation (13) is similar to Rouse Equation (Equation (7)). For type III, the sediment
transport equation in power-law format is not suitable. Pu et al. [1] stated that the linear-
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type profile fits well. Therefore, the equation for the suspended sediment profile for type
III is given as follows

∅ = bε + d (14)

This is similar to Equations (7) and (8) but a value is taken as unity. Rouse formulation
has drawbacks at the riverbed and the free surface as shown by the experimental studies
of Kironoto and Yulistiyanto [28], Goeree et al. [13], Greiimann and Holly [8], Jha and
Bombardelli [9], and Sumer et al. [29]. Since the Rouse formula is derived from the
diffusion theory, it is valid only for a single phase i.e., sediment phase. Therefore, the Rouse
formula is applicable only for the type I profile with zero concentration at the free surface
and infinite concentration at the bed [30]. According to Huang et al. [6], the Rouse formula
produces an inaccurate estimation of sediment concentration near the bed for highly rough
conditions. Kumbhakar et al., [30] showed that the Rouse formula can be improved by
incorporating an additional factor to dampen the diffusion coefficient. Sumer et al. [29]
tried to improve the reference height representation to better estimate suspended sediment
modelling. Greiimann and Holly [8] stated that the Rouse formula excluded the particle–
particle attractions in addition to the assumption in estimating diffusion coefficient resulting
Rouse formula valid only for c < 0.1. Rouse formula gives a good understanding as long as
sediment particles have small inertia. Wang and Ni [21], Ni et al. [10], and Zhong et al. [23]
models showed significant differences in the shape of the vertical profile. The concentration
calculated by the Wang model changes slowly under 0.05 h but the Rouse model changes
dramatically. The Zhong model, the power-law model, the Rouse model, and the two-phase
flow model provide similar results near the water’s surface.

The proposed study will look into the relationships between different flows and
sediment factors to better describe them in Equations (10)–(12). This will result in a param-
eterized expression of the final characteristic model for suspended particles and enable
accurate profile prediction. Rouse number P, size parameter S, and mean concentration c
are the flow parameters that will be examined.

3. Proposed Model

Numerous studies have examined the factors that should be taken into account when
determining a concentration profile, such as Rouse number, particle size, mean concentra-
tion, and flow depth [5,29,31,32]. By using a modified Equation (12), the variables that are
thought to be connected to the power-linear law coefficients are as follows:

b1, b2, a1, a2, d1, d2 = f (P, S, c) (15)

where d50 is the diameter of the sediment particle, c is the mean concentration, P is the Rouse
number, H is the flow depth, and S is the size parameter (S = d50/H). In order to examine
the distribution of each power-linear law coefficient toward the physical parameters of
Rouse number, particle size, and mean concentration and to derive a modified Rouse model
for validation tests, we collected the data from numerous reported experimental studies
(as detailed in Table 1). Table 1 further shows that the data sources employed to cover a
broad range of tested parameters. Particularly, the range of c in the referenced literature is
from 0.00013 to 0.147, which provides an accurate picture of flow conditions from diluted
to hyper-concentrated.

Table 1. Sources of data for parameterised modelling [1].

Data Sources H d50 (mm) vs (cm/s) u* (cm/s) c (×10−3)

Bouvard and
Petkovic [26] 7.5 2.00–9.00 1.81–2.70 2.54–5.41 2.1–4.5

Cellino and Graf [33] 12.0 0.135 1.20 4.30–4.50 96–147

Coleman [32] 17.0–17.4 0.21–0.42 1.23–1.31 4.10 0.13–0.28

Muste et al. [34] 2.1 0.21–0.25 0.06 4.00–4.30 0.46–1.62
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3.1. Machine-Learning Algorithms

In trying to investigate the relationship between power-linear law coefficients of the
Kundu and Ghoshal model and sediment parameters such as the Rouse number, particle
size, mean concentration, and flow depth, various machine-learning models have been
used as follows:

3.1.1. XGboost Classifier

XGBoost is a decision-tree-based ensemble machine-learning technique that uses gra-
dient boosting. It may be used to solve a variety of regression and classification predictive
modelling challenges. It is a fast implementation of the stochastic gradient boosting algorithm
with several hyperparameters that allows the fine tuning of the model’s training process.

3.1.2. Linear Regressor (Ridge)

Linear regression uses a best-fit straight line to establish a link between a dependent
variable (y) and one or more independent variables (x) (also known as a regression line).
Ridge regression is a multicollinear data analysis technique (independent variables are
highly correlated).

3.1.3. Linear Regressor (Bayesian)

While Ridge regression utilises L2 norm regularisation, Bayesian regression is a prob-
abilistic linear regression model with explicit priors on the parameters. Priors can have
a regularising impact, for example, the application of Laplace priors for coefficients is
comparable to L1 regularisation.

3.1.4. K Nearest Neighbours

The supervised machine learning algorithm K-nearest neighbours (kNN) can be used
to address both classification and regression problems. Because it delivers highly precise
predictions, this algorithm can compete with the most accurate models. As a result, the
kNN algorithm can be utilised in applications where great accuracy is required but a
human-readable model is not required. The accuracy of the predictions is influenced by the
distance measured.

3.1.5. Decision Tree Regressor

In the corporate world, the Decision Tree algorithm has become one of the most
widely utilised machine learning algorithms. Both classification and regression issues can
benefit from the use of the Decision Tree. In the shape of a tree structure, the Decision Tree
constructs regression or classification models. It incrementally cuts down a dataset into
smaller and smaller sections while also developing an associated decision tree. A tree with
decision nodes and leaf nodes is the result.

3.1.6. Support Vector Machines (Regressor)

SVM stands for Support Vector Machine and is a supervised machine learning method
capable of classification, regression, and even outlier detection. SVM classifiers have a high
level of accuracy and can anticipate events quickly. They also utilise less memory in the
decision phase because they only use a subset of training points. With a clear separation
margin and a large dimensional space, SVM performs well.

The complete flow chart describing the workflow of using machine-learning algo-
rithms for estimating coefficients for linear and power laws is shown in Figure 4.

3.2. Theoretical Description of Proposed Models

The three broad categories of machine-learning approaches are supervised, unsuper-
vised, and semi-supervised learning. Classified data is needed in supervised learning
systems so that the algorithm may be trained. In contrast, the unsupervised learning
approach discovers features in the data sets without requiring training data to be classified
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beforehand. These methods have been practised and are well established. While supervised
and unsupervised learning techniques are combined in semi-supervised learning systems.
The theoretical foundation of the suggested ML models is provided in the paragraph below
in this subsection.
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Adaptive Boosting (AdaBoost), a very popular boosting technique, focuses on combin-
ing several weak classifiers into a single strong classifier. It is the first binary classification
boosting ensemble model. It applies to problems involving classification and regression. It
can handle both textual and numerical data and is versatile. It is more susceptible to data
noise and outliers than XGBoost is. It is more adaptable since it can be used to improve the
weak classifiers’ accuracy. In contrast to XGBoost, it minimises exponential loss function
rather than differentiable loss function.

CatBoost, an ML algorithm is based on gradient-boosted decision trees. During the
model’s training, a collection of decision trees are built one after another. Compared to the
prior trees, the loss decreases with each additional tree. The gradient boosting method is the
foundation for the CatBoost Regressor implementation, which uses a decision tree as the
primary predictor. Because there is not a sparse dataframe, the data, which contains many
categorical features, is processed much more quickly than it would be if another technique,
such XGBoost or Random Forest was being used. In CatBoost, parameters self-tune to
save time modifying. With CatBoost, we can work more effectively with ML engineers
and software engineers because we can essentially maintain the feature or column in its
original state.

The K nearest neighbours (KNN), is a straightforward machine learning algorithm
that examines all of the inputs and predicts the target based on features that are similar
to them. As a nonparametric model, it has been used in statistical estimation and pattern
recognition for more than 50 years. According to this method, the analyst must specify
the neighbourhoods’ size. To set the size that lowers the MSE to a minimal amount, cross-
validation may also be used. Utilizing an inverse distance weighted average of the KNN
is a straightforward use of KNN regression. It makes use of the same KNN classification
distance functions. Equations (16)–(18) are used to represent the distance functions.
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Euclidean √√√√ k

∑
i=1

(xi − yi)
2 (16)

Manhattan
k

∑
i=1
|xi − yi| (17)

Minkowski (
k

∑
i=1

(|xi − yi|)q

) 1
q

(18)

These three distance functions are applicable only for continuous variables while in the
case of discrete or categorical data, the Hamming distance function is used. The Hamming
distance function is given below by Equation (19) as:

DH =
k

∑
i=1
|xi − yi| (19)

The Hamming distance function is zero if x = y, otherwise if (x 6= y), it is equal
to unity.

LightGBM, a decision-tree-based gradient boosting framework helps GPU learning
while also maximising model efficiency by growing trees vertically (leaf-wise split), as op-
posed to other boosting approaches that grow trees horizontally, which increases accuracy
(level-wise split). Since it transforms continuous values into discrete bins, the primary
benefit of the LightGBM regressor is that it lowers memory usage without sacrificing
forecasting speed or prediction accuracy.

3.3. Rouse Number Modelling

Shear velocity and settling velocity are the two key variables that influence drag on a
sediment particle. The Rouse number as stated in Equation (6) is a dimensionless form of
these parameters along with the von Karman constant. We may create the figures shown in
Figures 5–8 below by testing each value in Equation (12) against P.
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Figure 5. Rouse number vs. coefficient b1 using SVM (R2 = 0.9148).
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Figure 6. Rouse number vs. coefficient a1 using KNN (R2 = 0.61).
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Figure 7. Rouse number regression vs. coefficient b2 using KNN (R2 = 0.777).
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Figures 5–8 show the relationship between b1, a1, b2 and a2 against P. This result
demonstrates that for a wide range of measured data, P offers a reasonable match which is
represented by the power law and its coefficients.

3.3.1. Size Parameter Modelling

Another element that may impact sediment drag and lift is particle size. The effective-
ness of interactive interactions acting on the particle can be influenced by the surface area
of the particle, which is dictated by the diameter. The settling velocity of a particle is also
influenced by its diameter [35]. The dimensionless S is utilised to model against the power-
law coefficients in Figures 9–12 in this study. The effect of particle size has not been taken
into account in the modified Rouse model [11] or the original Rouse technique [5] despite
the fact that it is an important aspect that affects the behaviour of suspended sediment.
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The relationship between b1, b2, a1 and a2 against S is depicted in Figures 9–12. Nu-
merous analytical modelling studies, such as Wang and Ni [21] and Ni et al. [10], used a
coefficient from the concentration equation that was deduced from the collected data to
fit the particle diameter. Their experiments demonstrated that when different sediment
diameters are investigated, it is challenging to capture the character of the concentration
profile. This serves as more evidence of how challenging it is to identify a representative
function of the particle size parameter studied here.

3.3.2. Mean Concentration Modelling

For hyper-concentrated flows, the recorded sediment concentration profiles were
examined by Cellino and Graf [33], and Michalik [36]. Their findings demonstrated that, in
contrast to the general power-law shown in earlier studies of diluted flows, the sediment
profile for such flows follows a much more uniform and linear distribution. This study will
develop the analytical approach by mean concentration to use in linear-law modelling in
response to another empirical finding by Michalik [36] that the mean concentration has a
key dominant impact changing the character of concentration distribution when compared
to Rouse number and particle size. The fitting between the linear law coefficients and mean
concentration was determined using the procedure below, with the findings displayed in
Figures 13–16.
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Figure 13. Mean concentration regression vs. coefficient b1 using decision trees (R2 = 0.973).
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Figure 14. Mean concentration vs. coefficient d1 using decision trees (R2 = 0.9617).
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Figure 15. Mean concentration vs. coefficient b2 using KNN (R2 = 0.982).
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Figure 16. Mean concentration vs. coefficient d2 using KNN (R2 = 0.979).

The above Figures 13–16 show the relationship between b1, b2, d1, and d2. Here, the
association between c and the hyper-concentrated profile is evident.

3.3.3. Modified Rouse Approach

Each coefficient is defined in the aforementioned sections before being adapted into
Equation (12) to create a parameterized expression for the distribution of silt concentration
over the flow depth. A linked approach controls the suggested model for sediment concen-
tration prediction. When 0 < c < 0.1, a power law describes the concentration of diluted
silt, whereas a linear law describes the concentration of dense hyper-concentration. This
hyper-to-dilute boundary was established by comparing it to the research on diluted flow
definition by Greiimann and Holly [8] and the Rouse model limit. The suggested strategy
can be written as in Equation (20).

c
c
=

1

(b1εa1 + d1)
−1 + (b2εa2 + d2)

−1 (20)

where 0 < c < 0.1, and d1 = d2 = 0

2b1 = 0.002P3 + 0.07P2 − 0.415P− 6185.41S3 + 1045.69S2 − 44.71S + 1.39,

2a1 = −0.11805P3 + 1.0174P2 − 2.3468P− 39061S3 + 4338.84S2 − 129.347S− 1.6847,

2b2 = 0.1516P3 − 0.59101P2 + 1.2473P + 15966.1S3 − 3445.7S2 + 174.95S + 3.228,

2a2 = −0.01186P3 + 0.0796P2 − 0.17577P− 4357.67S3 + 427.12S2 − 12.34S + 0.3075,

and when c ≥ 0.1, and a1 = a2 = 1.0

b1 = −242.445c3 + 280.1008c2 − 104.985c + 11.80698,

d1 = 200.1184c3 − 231.901c2 + 88.2763c− 9.99,

b2 = −125.73c3 + 139.45c2 − 34.0925c + 2.3447,

d2 = −24.453c3 + 10.7537c2 + 2.276c + 0.1974.

4. Model Validations

The link between parameters of the power-linear coupled model and sediment flow
characteristics were discovered using a variety of machine-learning approaches. The
distribution of suspended sediment over the characteristic height inside the flow was
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inclusively estimated from diluted to hyper-concentrated. The model can precisely calculate
the suspended sediment profile for a range of flow conditions, and sediment sizes, including
a range of Rouse numbers. The models show good accuracy for testing at low and extremely
high concentrations for type I to III profiles. The best result-giving model’s RMSE, MAE,
and MSE values are displayed in Table 2.

Table 2. The following RMSE, MAE, and MSE scores of the best result-giving models are shown.

Relationship Modelled Model Giving
Best Result

MSE (Mean
Square Error)

RMSE (Root Mean
Square Error)

MAE (Mean
Absolute Error)

a1 and Rouse Number (P) K-Nearest Neighbours 0.3876 0.6225 0.4522

b1 and Rouse Number (P) Support Vector
Machines (Regressor) 0.0067 0.0820 0.0718

a2 and Rouse Number (P) Decision Trees 0.0014 0.0374 0.0225

b2 and Rouse Number (P) K-Nearest Neighbours 1.0384 1.0190 0.8427

a1 and (S = d50/H) Decision Trees 0.2080 0.4561 0.4062

b1 and (S = d50/H) Decision Trees 0.0064 0.0802 0.0506

a2 and (S = d50/H ): K-Nearest Neighbours 0.0017 0.0416 0.0302

b2 and (S = d50/H ): K-Nearest Neighbours 0.9923 0.9961 0.8027

b1 and mean concentration (c) Decision Trees 16.7333 4.0906 3.4095

d1 and mean concentration (c) Support Vector
Machines (Regressor) 6.5332 2.5560 2.1114

d2 and mean concentration (c) K-Nearest Neighbours 3.3596 1.8329 1.4628

b2 and mean concentration (c) K-Nearest Neighbours 9.9020 3.1467 2.6971

Initially, the necessary python libraries were imported into the Google Colab environ-
ment for modelling. The dataset was then imported using the wget function. The dataset
was preprocessed in a suitable format for modelling by separating the X (input feature)
and Y (output feature). Using the train-test-split, the dataset was split into train and test
sets. Cumulatively we obtained the X_train, Y_train, X_test and Y_test for training and
validating the dataset. The models including XGBoost Classifier, Linear Regressor (Ridge),
Linear Regressor (BayesianRidge), K-Nearest Neighbours, Decision Tree Regressor and
Support Vector Machines (Regressor) were used.

The experimental data from Wang and Qian [37], Wang and Ni [31], and Michalik [36]
were used to validate the model proposed in this study (Equation (20)). It was also
contrasted with the models that Wang and Ni [31], Ni et al. [10], Zhong et al. [23], and
Pu et al. [1] had previously presented. A theoretical distribution model derived from kinetic
theory was presented by Wang and Ni [31]. Their model can only forecast type I and a
subset of type II profiles since it is confined to diluted flow. They incorrectly assumed
that particle interaction did not exist, and as a result, they blamed fluid-induced lift forces
for the categorization of the distribution profile. Further, their analysis states that the
distribution tends to follow the type I profile when the particle size is small.

The Ni et al. [10] model incorporated both continuum and kinetic theories. Kinetic
theory employing the Boltzmann equation for the solid phase, and continuum theory for
the fluid phase was used. The two-phase interactions in their derivation are represented
by the forces acting on the sediment those are empirically weighted. It is claimed that the
model can handle both diluted and dense flows. In comparison to the other two models,
the model provided by Zhong et al. [23] is more sophisticated. It is founded on a three-
part strategy in which the model can be made simpler for a given different empirically
supported hypotheses. As a result, in their research, all type I, II, and III profiles are
shown in the experimental testing. Their type III profile used varying empirical dampening
function values to meet various flow conditions due to its complexity. Pu et al. [1] proposed
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a parameterized method using sediment size, mean concentration, Rouse number, and flow
depth, which was effective as shown in the comparisons.

4.1. Wang and Ni

Wang and Ni [31] evaluated the diluted flow in a conduit using measured data. All
of the investigated conditions are shown in Table 3; the quantities examined ranged from
0.00042 < c < 0.0033, and they were severely diluted. The ability of the suggested model to
capture severely diluted flow is tested during this validation study. The sediments studied
were granules and coarse sand with particle diameters ranging from 0.58 mm to 2.29 mm.
The outcomes are displayed in Figure 17a–k. The measurements of Wang and Ni [31] show
that for diluted flow the sediment concentration tends to follow the type I or II profile
where the maximum concentration occurs at the near-bed region.

Table 3. Data by Wang and Ni [31].

Test No. d50 (mm) vs (cm/s) u* (cm/s) c (×10−3)

1 1.80 2.56 3.28 3.30

A2 1.3 2.17 3.35 4.4

A3 1.40 6.90 4.76 3.10

A4 1.10 5.15 4.52 2.40

A5 0.58 4.51 4.79 0.97

A6 0.60 3.79 4.90 0.57

A7 2.29 6.15 4.83 0.44

B3 1.40 6.90 6.11 1.98

B4 1.10 5.15 6.15 2.00

B5 0.58 4.51 6.33 1.94

B6 0.60 3.79 6.23 0.42

The results shown in Figure 17a–k demonstrate that overall, there is a better fit between
the proposed models and other models away from the near-bed regions. The proposed
model corresponds to the experimental data well in the middle and free surface regions.
In cases A1, A2, A6, A7, B3, and B4, the proposed model predicts experimental data bet-
ter than the model proposed by Pu et al. [1] and other models. This is consistent with
the literature [1,4,8] which states that possibility of particle–particle collisions increases
near-bed to produce conditions that are more challenging to represent with mathemati-
cal modelling.

The biggest particles among all the measured data from Wang and Ni [31] were used
in the experimental data presented in Figure 17g. Due to the higher surface area of the
sediment particles, there would be stronger forces coming from the solid–fluid phase
interaction. One can see that the concentration distribution for A7 shown by the proposed
model (Figure 17g) is consistent with the observations. The suggested model exhibits the
promising computation of big particles in observed data when compared to a model such
as those by Zhong et al. [23] that does not account for particle size. In addition, the tests A5
and B5 are the smallest particle diameters, and the proposed model is doing better than
Ni et al. [10] which relies on empirical particle interactions.
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Figure 17. (a–k) The modelled results and comparisons against experimental data of Wang and
Ni [31] and models of Wang and Ni [21], Pu et al. [1], Ni et al. [10] and Zhong et al. [23].

4.2. Wang and Qian

Using an experimental recirculating-tilting flume, Wang and Qian [37] investigated
the impact of diluted to dense concentrations in an open channel flow. Their tests included
silt with diameters ranging from 0.15 mm to 0.96 mm and concentrations ranging from
0.0102 to 0.0906. All the conditions tested are shown in Table 4. As a result, their tests have
been used in this comparison with the suggested and other earlier models as the findings
shown in Figure 18a–f. In general, the models’ accuracy declines as the mean concentration
rises across the flow depth. In particular, in the upper-flow zone, the experimental data
are reasonably fit by the suggested model. The lift and drag caused by the fluid-induced
forces as well as the inertia of the sediment particles are the principal forces acting on the
particles in the upper layer. This demonstrates that the proposed model’s incorporation of
the Rouse and size parameters allows it to accurately calculate the solid-fluid interactions
for individual particles.

Table 4. Data by Wang and Qian [37].

Test No. d50 (mm) vs (cm/s) u* (cm/s) c (×10−3)

SF2 0.268 0.197 7.74 10.2

SF5 0.268 0.197 7.16 90.6

SM6 0.266 0.129 7.37 7.54

SM7 0.960 1.590 7.37 75.4

SC5 1.420 2.290 7.37 65.1

SC7 0.266 1.59 7.37 13.72
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Figure 18. (a–f) Modelled results and comparisons against experimental data of Wang and Qian [37].
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The accuracy of the various models, including the suggested model, decreases at the
lower-suspension region, according to an overview of all the results shown in Figure 18.
Compared to type III profiles, type II profiles have higher concentrations and a smaller
turning point near the bed. Rather than suspended load, bedload behaviour governs the
distribution of sediment along the wall boundary. In Wang and Qian’s [37] investigation,
plastic particles were also utilised in the flow, and theoretically, under the influence of
particle–particle interacting forces, it produced less notable movement than the normal
and natural sediment. This means that, in contrast to models by Ni et al. [10] and Zhong
et al. [23], which incorporated empirical functions discovered from the relevant experi-
ments into the modelling, the proposed model, which deals with the forces by coupling
expressions of Rouse and size parameters, is unable to simulate its near-bed concentration
reasonably for experiments SF2, SC5, and SC6 as shown in Figure 18a, Figure 18e, and
Figure 18f respectively. Results of the proposed model are better than those from Pu et al. [1]
for experiments SF5, SM6, and SM7 as shown in Figure 18b, Figure 18c, and Figure 18e.

4.3. Michalik

Michalik [36] researched the sediment profile of hyper-concentrated flows using
experimental data. Sand with a diameter of 0.45 mm and concentrations ranging from
0.15 to 0.54 was employed as the sediment material (all the tested conditions are shown in
Table 5). The linear law found in Equation (20) is used in this study to model Michalik’s tests.
The test findings are displayed in Figure 19a–h, where measurements and the proposed
model results are contrasted.

Table 5. Data by Michalik [36].

Test No. d50 vs (cm/s) u* (cm/s) c (×10−3)

1 0.45 6.15 15.56 150

2 0.45 6.15 15.56 240

3 0.45 6.15 15.56 270

4 0.45 6.15 15.56 310

5 0.45 6.15 15.56 420

6 0.45 6.15 15.56 450

7 0.45 6.15 15.56 480

8 0.45 6.15 15.56 540
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Figure 19. (a–h) The modelled results and comparisons for experimental data of Micahlik [36].

The sediment-concentration distribution from the investigated hyper-concentrated
flows displays a type III characteristic. It is challenging to precisely calculate the con-
centration distribution’s turning point in a hyper-concentrated flow. This is due to the
fact that the boundary between the sediment’s bed and suspended states is not clearly
defined, but rather, the bedload will diffuse into the suspended state through a transitional
zone. Because of this, the suspended load has occasionally been calculated as a portion
of the bedload, which widens the gap between measurements and suspended sediment
modelling. A correct assumption of εa and ca is necessary in order to precisely describe
the transition zone and, consequently, the position of the turning point [29]. Given that
both the variables are constant in this study’s proposed model and are not changing in an
experiment, it is reasonable to draw the conclusion of εa and ca [38].

The suggested model shows a decent fit of the type III profile to the hyper-concentrated
distribution and offers a reasonable match to the experimental data. As demonstrated
in Michalik [36], studies of hyper-concentrated flow demonstrate that as c increases, the
sediment concentration distribution becomes more homogeneous. Power distributions may
not be appropriate to model hyper-concentrated flow as a result. Rather, a linear model is
used here, which has been shown to generate superior accuracy.

The height of the maximum concentration also increases as the mean concentration
rises, possibly as a result of the growing possibility of a bedload layer close to the bed. The
near-bed region becomes increasingly saturated as the mean concentration rises. The exper-
iments in Figure 19 demonstrate that the settling velocity has no effect when c > 0.31 and
that the dominant interaction forces must result from particle–particle reactions. The sug-
gested model accurately depicts the concentration distribution in these highly concentrated
tests of c > 0.31. In particular, for the majority of cases, the suggested model correctly
predicts the height at which the greatest concentration (turning point) occurs.

5. Conclusions

For accurately estimating the diluted and hyper-concentrated distributions over typi-
cal heights within the flow, a parameterized power-linear coupled model with machine
learning has been validated. The machine learning models used were XGboost Classifier,
Linear Regressor (Ridge), Linear Regressor (Bayesian), K Nearest Neighbours, Decision
Tree Regressor and Support Vector Machines (Regressor). The models were implemented
using Google Colab. The models have been applied to investigate the relationship between
every Kundu and Ghoshal [4] parameter with each sediment flow parameter namely, mean
concentration, Rouse number, and size parameter. The distribution of suspended sediment
over the characteristic height inside the flow was inclusively estimated from diluted to
hyper-concentrated. Comparisons with experimental data from Wang and Ni [31] on highly
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diluted flows, Wang and Qian [37] on mixed diluted to dense flows, and Michalik [36] on
hyper-concentrated flows for low and extremely high concentration testing that approxi-
mates type I to III profiles, the proposed power-law and linear-law models are more precise
than Pu et al. [1] in some cases, and in other cases, just as precise as those of Pu et al. [1].
Finally, it is shown that the models produced from machine learning are capable of calcu-
lating the suspended sediment profile accurately under a variety of flow circumstances
(0.268 mm ≤ d50 ≤ 2.29 mm, 0.00105 g

mm3 ≤ particle density ≤ 2.65 g
mm3 , 0.197 mm

s ≤ vs ≤
96 mm

s , 7.16 mm
s ≤ u∗ ≤ 63.3 mm

s , 0.00042 ≤ c ≤ 0.54), including different Rouse numbers
(0.0076 ≤ P ≤ 23.5).
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Notations

b Empirical coe f f icient
c Concentration
c Mean concentration
cb Re f erence concentration
d50 Sediment diameter
D Coe f f icient o f di f f usivity
H Flow depth
P Rouse number, P = vs/(κu∗)
d Empirical coe f f icient
S Size parameter, S = d50/H
z Vertical distance f rom bed
a Empirical coe f f icient
ε Characteristic height, ε = z/H
εb Re f erence characteristic height
κ Von Karman constant
u∗ Shear velocity
ϕ Function o f characteristic height
vs Particle f all velocity
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