Effects of Surface Roughness on Shock-Wave/Turbulent Boundary-Layer Interaction at Mach 4 over a Hollow Cylinder Flare Model
Abstract
:1. Introduction
2. Experimental Program
2.1. Wind Tunnel Facility
2.2. Test Geometries
2.3. Experimental Setup
2.4. Schlieren Image Processing
- User-assisted definition of flowfield region of interest (ROI) where shock is likely to be located, through a graphical user interface.
- Rotate ROI image matrix by a user-defined estimated shock angle.
- Average rotated image matrix in vertical direction.
- Detect variation (s) in the line resulting from Step 3 to collect approximate location of shock structure center.
- Transform coordinates of shock center back to ROI image matrix.
- Based on the estimated shock angle, define a straight line passing through the shock center to serve as an initial estimate.
- For each shock structure and for each row i in the image matrix, interrogate along a line centered at the location of the initial estimate with bounds ±b, where b is a user-defined window size, and identify the position of each shock in row i by locating the center of the intensity variation along the line.
- Step 7 produces a shock location for each row in the image matrix. If fewer than five points are identified for a given shock feature, a not-a-number (NaN) result is returned for the image and an error is logged. Otherwise, a straight line is fit to the series of points. If the best-fit solution does not fit within a user-defined shock angle tolerance, a NaN result is returned for the image and an error is logged.
- Shock positions and angles are logged and (optionally) the result is displayed to the user in real time, and superimposed on the individual schlieren image. Shock location outliers that lie beyond user-defined bounds are also assigned a NaN value and result in an error being recorded.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radespiel, R.; Ali, S.R.C.; Muñoz, F.; Bowersox, R.; Leidy, A.; Tanno, H.; Kirk, L.C.; Reshotko, E. Experimental Investigation of Roughness Effects on Transition on Blunt Spherical Capsule Shapes. J. Spacecr. Rocket. 2019, 56, 405–420. [Google Scholar] [CrossRef]
- Combs, C.S. Quantitative Measurements of Ablation-Products Transport in Supersonic Turbulent Flows Using Planar Laser-Induced Fluorescence. Ph.D. Dissertation, The University of Texas at Austin, Austin, TX, USA, 2015. [Google Scholar]
- Siddiqui, F.; Gragston, M.; Saric, W.S.; Bowersox, R.D.W. Mack-mode instabilities on a cooled flared cone with discrete roughness elements at Mach 6. Exp. Fluids 2021, 62, 213. [Google Scholar] [CrossRef]
- Siddiqui, F.; Saric, W.S.; Bowersox, R.D. Interaction of Second-Mode Disturbances and 3-D Roughness on a Cooled Flared Cone at Mach 6. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–21 January 2021. [Google Scholar] [CrossRef]
- Stock, H.W.; Ginoux, J.J. Experimental results on crosshatched ablation patterns. AIAA J. 1971, 9, 971–973. [Google Scholar] [CrossRef]
- Berg, D.E. Surface Roughness Effects on the Hypersonic Turbulent Boundary Layer. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, USA, 1977. [Google Scholar]
- Sietzen, F., Jr. From Mercury to CEV: Space Capsules Reemerge. Aerosp. Am. 2005, 43, 26–30. [Google Scholar]
- Vignoles, G.L.; Lachaud, J.; Aspa, Y.; Goyhénèche, J.-M. Ablation of carbon-based materials: Multiscale roughness mod-elling. Compos. Sci. Technol. 2009, 69, 1470–1477. [Google Scholar] [CrossRef]
- Chawla, K.K. Composite Materials Science and Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1989. [Google Scholar] [CrossRef]
- Stern, E.C.; Poovathingal, S.; Nompelis, I.; Schwartzentruber, T.E.; Candler, G.V. Nonequilibrium flow through porous thermal protection materials, Part I: Numerical methods. J. Comput. Phys. 2019, 380, 408–426. [Google Scholar] [CrossRef]
- Poovathingal, S.; Stern, E.C.; Nompelis, I.; Schwartzentruber, T.E.; Candler, G.V. Nonequilibrium flow through porous thermal protection materials, Part II: Oxidation and pyrolysis. J. Comput. Phys. 2019, 380, 427–441. [Google Scholar] [CrossRef]
- Wu, Y.; Christensen, K.T. Outer-layer similarity in the presence of a practical rough-wall topography. Phys. Fluids 2007, 19, 085108. [Google Scholar] [CrossRef]
- Wu, Y.; Christensen, K.T. Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 2010, 655, 380–418. [Google Scholar] [CrossRef]
- Mejia-Alvarez, R.; Christensen, K.T. Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 2010, 22, 015106. [Google Scholar] [CrossRef]
- Berry, S.A.; Auslender, A.H.; Dilley, A.D.; Calleja, J.F. Hypersonic Boundary-Layer Trip Development for Hyper-X. J. Spacecr. Rocket. 2001, 38, 853–864. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Webster, M.; Lempert, W.R.; Miller, J.D.; Meyer, T.R.; Ivey, C.B.; Danehy, P.M. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel. Appl. Opt. 2010, 50, A20–A28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyakonov, A.; Danehy, P.; Garcia, A.; Borg, S.; Berry, S.; Inman, J.; Alderfer, D. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-Layer Trips. In Proceedings of the 45th AIAA Aerospace Sciences Meeting, Reno, NV, USA, 8–11 January 2007. [Google Scholar] [CrossRef] [Green Version]
- Danehy, P.; Bathel, B.; Ivey, C.; Inman, J.; Jones, S. NO PLIF Study of Hypersonic Transition over a Discrete Hemispherical Roughness Element. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 5–8 January 2009. [Google Scholar] [CrossRef] [Green Version]
- Bathel, B.; Danehy, P.; Inman, J.; Watkins, A.; Jones, S.; Lipford, W.; Goodman, K.; Ivey, C.; Goyne, C. Hypersonic Laminar Boundary Layer Velocimetry with Discrete Roughness on a Flat Plate. In Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Chicago, IL, USA, 28 June–1 July 2010. [Google Scholar] [CrossRef] [Green Version]
- Reda, D.; Wilder, M.; Bogdanoff, D.; Olejniczak, J. Aerothermodynamic Testing of Ablative Reentry Vehicle Nosetip Materials in Hypersonic Ballistic-Range Environments. In Proceedings of the USAF Developmental Test and Evaluation Summit, Woodland Hills, CA, USA, 16–18 November 2004. [Google Scholar] [CrossRef]
- Charwat, A.F. Exploratory Studies on the Sublimation of Slender Camphor and Naphthalene Models in a Supersonic Wind-Tunnel; Memorandum RM-5506-ARPA; Rand Corp: Santa Monica, CA, USA, 1968; Available online: https://apps.dtic.mil/sti/citations/AD0673531 (accessed on 28 July 2022).
- Latin, R.M.; Bowersox, R.D.W. Flow Properties of a Supersonic Turbulent Boundary Layer with Wall Roughness. AIAA J. 2000, 38, 1804–1821. [Google Scholar] [CrossRef]
- Latin, R.M.; Bowersox, R.D.W. Temporal Turbulent Flow Structure for Supersonic Rough-Wall Boundary Layers. AIAA J. 2002, 40, 832–841. [Google Scholar] [CrossRef]
- Peltier, S.J.; Humble, R.A.; Bowersox, R.D.W. Crosshatch roughness distortions on a hypersonic turbulent boundary layer. Phys. Fluids 2016, 28, 045105. [Google Scholar] [CrossRef]
- Kocher, B.D.; Kreth, P.A.; Schmisseur, J.D.; LaLonde, E.J.; Combs, C.S. Characterizing Streamwise Development of Surface Roughness Effects on a Supersonic Boundary Layer. AIAA J. 2022, 1–14. [Google Scholar] [CrossRef]
- Sahoo, D.; Smits, A.; Papageorge, M. PIV Experiments on a Rough Wall Hypersonic Turbulent Boundary Layer. In Proceedings of the 40th AIAA Fluid Dynamics Conference and Exhibit, Chicago, IL, USA, 28 June–1 July 2010. [Google Scholar] [CrossRef]
- Lindörfer, S.A.; Combs, C.S.; Kreth, P.A.; Bond, R.B.; Schmisseur, J.D. Scaling of cylinder-generated shock-wave/turbulent boundary-layer interactions. Shock Waves 2020, 30, 395–407. [Google Scholar] [CrossRef]
- Bathel, B.F.; Jones, S.B.; Watkins, A.N.; Berry, S.; Goodman, K.; Combs, C.S.; Schmisseur, J.D.; Kreth, P.A.; Lash, E.L. Shockwave/Boundary-Layer Interaction Studies Performed in the NASA Langley 20-Inch Mach 6 Air Tunnel. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Gaitonde, D.V. Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 2015, 72, 80–99. [Google Scholar] [CrossRef]
- Combs, C.S.; Clemens, N.T.; Danehy, P.M.; Bathel, B.; Parker, R.; Wadhams, T.; Holden, M.; Kirk, B. Fluorescence Imaging of Reaction Control Jets and Backshell Aeroheating of Orion Capsule. J. Spacecr. Rocket. 2015, 52, 243–252. [Google Scholar] [CrossRef]
- Sansica, A.; Sandham, N.; Hu, Z. Forced response of a laminar shock-induced separation bubble. Phys. Fluids 2014, 26, 093601. [Google Scholar] [CrossRef]
- Dolling, D.S. Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? AIAA J. 2001, 39, 1517–1531. [Google Scholar] [CrossRef]
- Hoffman, E.N.A.; Rodriguez, J.M.; Cottier, S.M.; Combs, C.S.; Bathel, B.F.; Weisberger, J.M.; Jones, S.B.; Schmisseur, J.D.; Kreth, P.A. Modal Analysis of Cylinder-Induced Transitional Shock-Wave/Boundary-Layer Interaction Unsteadiness. AIAA J. 2022, 60, 2730–2748. [Google Scholar] [CrossRef]
- Estruch, D.; MacManus, D.G.; Richardson, D.P.; Lawson, N.J.; Garry, K.P.; Stollery, J.L. Experimental study of unsteadiness in supersonic shock-wave/turbulent boundary-layer interactions with separation. Aeronaut. J. 2010, 114, 299–308. [Google Scholar] [CrossRef]
- Combs, C.S.; Lash, E.L.; Kreth, P.A.; Schmisseur, J.D. Investigating Unsteady Dynamics of Cylinder-Induced Shock-Wave/Transitional Boundary-Layer Interactions. AIAA J. 2018, 56, 1588–1599. [Google Scholar] [CrossRef]
- Clemens, N.T.; Narayanaswamy, V. Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions. Annu. Rev. Fluid Mech. 2014, 46, 469–492. [Google Scholar] [CrossRef] [Green Version]
- Murphree, Z.R.; Combs, C.S.; Yu, W.M.; Dolling, D.S.; Clemens, N.T. Physics of unsteady cylinder-induced shock-wave/transitional boundary-layer interactions. J. Fluid Mech. 2021, 918, A39. [Google Scholar] [CrossRef]
- Combs, C.S.; Schmisseur, J.D.; Bathel, B.F.; Jones, S.B. Unsteady Analysis of Shock-Wave/Boundary-Layer Interaction Experiments at Mach 4.2. AIAA J. 2019, 57, 4715–4724. [Google Scholar] [CrossRef]
- Combs, C.S.; Kreth, P.A.; Schmisseur, J.D.; Lash, E.L. Image-Based Analysis of Shock-Wave/Boundary-Layer Interaction Unsteadiness. AIAA J. 2018, 56, 1288–1293. [Google Scholar] [CrossRef]
- Sun, Z.; Gan, T.; Wu, Y. Shock-Wave/Boundary-Layer Interactions at Compression Ramps Studied by High-Speed Schlieren. AIAA J. 2020, 58, 1681–1688. [Google Scholar] [CrossRef]
- Dolling, D.S.; Or, C.T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows. Exp. Fluids 1985, 3, 24–32. [Google Scholar] [CrossRef]
- Kreth, P.A.; Gragston, M.; Davenport, K.; Schmisseur, J.D. Design and Initial Characterization of the UTSI Mach 4 Ludwieg Tube. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–21 January 2021. [Google Scholar] [CrossRef]
- Cobourn, J.W. Optical Measurements of Viscous Interactions on a Hollow-Cylinder/Flare in a Mach 4 Freestream. Master’s Thesis, The University of Tennessee, Knoxville, TN, USA, 2020. [Google Scholar]
- Settles, G.; Covert, E. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transport Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Willert, C.E.; Mitchell, D.M.; Soria, J. An assessment of high-power light-emitting diodes for high frame rate schlieren imaging. Exp. Fluids 2012, 53, 413–421. [Google Scholar] [CrossRef]
Case | Stagnation Pressure (kPa) | Static Pressure (kPa) | Stagnation Temperature (K) | Free Stream Velocity (m/s) | |
---|---|---|---|---|---|
Smooth | 374 | 2.9 | 295 | 672 | 17.2 × 106 |
Rough | 427 | 3.1 | 299 | 672 | 19.7 × 106 |
Surface | Image Resolution | Acquisition Rate | Scale | Camera Lens |
---|---|---|---|---|
Smooth | 640 × 122 pixels | 200 kHz | 10.95 pixel/mm | 300 mm lens + 2x teleconverter |
Rough | 384 × 176 pixels | 200 kHz | 2.19 pixel/mm | 70–200 mm lens |
Surface | δ (mm) | (deg) | σ | Kurtosis | Skewness | ||||
---|---|---|---|---|---|---|---|---|---|
Smooth | 0.85 | 2.6 | 29 | 12 | −5 | 0.98 | 0.97 | 4.3 | −0.55 |
Rough | 9.22 | 11.4 | 20 | 71 | −10 | 1.49 | 2.23 | 3.4 | −0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, M.; Hoffman, E.N.A.; LaLonde, E.J.; Combs, C.S.; Pohlman, M.; Smith, C.; Gragston, M.T.; Schmisseur, J.D. Effects of Surface Roughness on Shock-Wave/Turbulent Boundary-Layer Interaction at Mach 4 over a Hollow Cylinder Flare Model. Fluids 2022, 7, 286. https://doi.org/10.3390/fluids7090286
Garcia M, Hoffman ENA, LaLonde EJ, Combs CS, Pohlman M, Smith C, Gragston MT, Schmisseur JD. Effects of Surface Roughness on Shock-Wave/Turbulent Boundary-Layer Interaction at Mach 4 over a Hollow Cylinder Flare Model. Fluids. 2022; 7(9):286. https://doi.org/10.3390/fluids7090286
Chicago/Turabian StyleGarcia, Matt, Eugene N. A. Hoffman, Elijah J. LaLonde, Christopher S. Combs, Mason Pohlman, Cary Smith, Mark T. Gragston, and John D. Schmisseur. 2022. "Effects of Surface Roughness on Shock-Wave/Turbulent Boundary-Layer Interaction at Mach 4 over a Hollow Cylinder Flare Model" Fluids 7, no. 9: 286. https://doi.org/10.3390/fluids7090286
APA StyleGarcia, M., Hoffman, E. N. A., LaLonde, E. J., Combs, C. S., Pohlman, M., Smith, C., Gragston, M. T., & Schmisseur, J. D. (2022). Effects of Surface Roughness on Shock-Wave/Turbulent Boundary-Layer Interaction at Mach 4 over a Hollow Cylinder Flare Model. Fluids, 7(9), 286. https://doi.org/10.3390/fluids7090286