Toward the Simulation of Flashing Cryogenic Liquids by a Fully Compressible Volume of Fluid Solver
Abstract
:1. Introduction
1.1. Motivation of This Research
1.2. Goals and Highlights
1.3. Paper Structure
2. Compressible VOF Solver with Phase Change
- -
- Mixture velocity:
- -
- Mixture density:
- -
- Mixture viscosity:
- -
- Mixture heat capacity:
- -
- Mixture thermal diffusivity:
3. Phase-Fraction Equations
4. Continuum Barotropic Model for Phase Change
5. Energy Equation
6. Solution Algorithm
7. Code Verification
- Evolution of mass for each phase:
- Time evolution of the relative mass error, to verify if mass is conserved during phase change:
- Global mass relative error:
- Volume weighted average void fraction:
- Global conservation of the volume weighted void fraction:
8. Validation: High Pressure Liquid Injection
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vallet, A.; Burluka, A.A.; Borghi, R. Development of a eulerian model for the atomization of a liquid jet. At. Sprays 2001, 11, 619–642. [Google Scholar] [CrossRef]
- Mayer, W.; Smith, J. Fundamentals of Supercritical Mixing and Combustion of Cryogenic Propellants. In Liquid Rocket Thrust Chambers; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012; pp. 339–367. [Google Scholar] [CrossRef]
- Smith, J.; Schneider, G.; Suslov, D.; Oschwald, M.; Haidn, O. Steady-state high pressure LOx/H2 rocket engine combustion. Aerosp. Sci. Technol. 2007, 11, 39–47. [Google Scholar] [CrossRef]
- Paravan, C.; Galfetti, L.; Bisin, R.; Piscaglia, F. Combustion processes in hybrid rockets. Int. J. Energetic Mater. Chem. Propuls. 2019, 18, 255–286. [Google Scholar] [CrossRef]
- Piscaglia, F.; Giussani, F.; Montorfano, A.; Hélie, J.; Aithal, S. A MultiPhase Dynamic-VoF solver to model primary jet atomization and cavitation inside high-pressure fuel injectors in OpenFOAM. Acta Astronaut. 2019, 158, 375–387. [Google Scholar] [CrossRef]
- Martinez, J.; Piscaglia, F.; Montorfano, A.; Onorati, A.; Aithal, S.M. Influence of spatial discretization schemes on accuracy of explicit LES: Canonical problems to engine-like geometries. Comput. Fluids 2015, 117, 62–78. [Google Scholar] [CrossRef]
- Hélie, J.; Piscaglia, F. On the Influence of Nozzle-generated Coherent Structures on the Primary Atomization of Fuel Jets. In Proceedings of the ICLASS 2021, International Conference on Liquid Atomization and Spray Systems, Edinburgh, Scotland, 29 August–2 September 2021. [Google Scholar]
- Piscaglia, F. Developments in Transient Modeling, Moving Mesh, Turbulence and Multiphase Methodologies in OpenFOAM. In Proceedings of the Keynote Lecture at the 4th Annual OpenFOAM User Conference 2016, Cologne, Germany, 11–13 October 2016. [Google Scholar]
- Piscaglia, F.; Montorfano, A.; Onorati, A. Development of a non-reflecting boundary condition for multidimensional nonlinear duct acoustic computation. J. Sound Vib. 2013, 332, 922–935. [Google Scholar] [CrossRef]
- Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F.X. Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection. J. Phys. Conf. Ser. 2015, 656, 012081. [Google Scholar] [CrossRef]
- Kolev, N.I. Multiphase Flow Dynamics 3; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Reid, B.; Hargrave, G.; Garner, C.; Wigley, G. An investigation of string cavitation in a true-scale fuel injector flow geometry at high pressure. Phys. Fluids 2010, 22, 031703. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Schmidt, D.P.; Corradini, M.L. The internal flow of diesel fuel injector nozzles: A review. Int. J. Engine Res. 2001, 2, 1–22. [Google Scholar] [CrossRef]
- Ishimoto, J.; Sato, F.; Sato, G. Computational Prediction of the Effect of Microcavitation on an Atomization Mechanism in a Gasoline Injector Nozzle. J. Eng. Gas Turbines Power 2010, 132, 082801. [Google Scholar] [CrossRef]
- Ishimoto, J.; Oike, M.; Kamijo, K. Two-Dimensional Numerical Simulation of Boiling Two-Phase Flow of Liquid Nitrogen. Jpn. Soc. Aeronaut. Space Sci. Trans. 2001, 43, 114–121. [Google Scholar] [CrossRef]
- Deshpande, M.; Feng, J.; Merkle, C.L. Numerical Modeling of the Thermodynamic Effects of Cavitation. J. Fluids Eng. 1997, 119, 420–427. [Google Scholar] [CrossRef]
- Örley, F.; Trummler, T.; Hickel, S.; Mihatsch, M.S.; Schmidt, S.J.; Adams, N.A. Large-eddy simulation of cavitating nozzle flow and primary jet break-up. Phys. Fluids 2015, 27, 086101. [Google Scholar] [CrossRef]
- Edelbauer, W. Numerical simulation of cavitating injector flow and liquid spray break-up by combination of Eulerian—Eulerian and Volume-of-Fluid methods. Comput. Fluids 2017, 144, 19–33. [Google Scholar] [CrossRef]
- Mithun, M.G.; Koukouvinis, P.; Gavaises, M. Numerical simulation of cavitation and atomization using a fully compressible three-phase model. Phys. Rev. Fluids 2018, 3, 064304. [Google Scholar] [CrossRef]
- Piscaglia, F.; Giussani, F.; Hèlie, J.; Lamarque, N.; Aithal, S. Vortex Flow and Cavitation in Liquid Injection: A Comparison between High-Fidelity CFD Simulations and Experimental Visualizations on Transparent Nozzle Replicas. Int. J. Multiph. Flow 2021, 138, 103605. [Google Scholar] [CrossRef]
- Giussani, F.; Piscaglia, F.; Saez-Mischlich, G.; Hélie, J. A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization. J. Comput. Phys. 2020, 406, 109068. [Google Scholar] [CrossRef]
- Ahmed, A.; Duret, B.; Reveillon, J.; Demoulin, F.X. Numerical simulation of cavitation for liquid injection in non-condensable gas. Int. J. Multiph. Flow 2020, 127, 103269. [Google Scholar] [CrossRef]
- Trummler, T.; Schmidt, S.J.; Adams, N.A. Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by Large-Eddy Simulation. Int. J. Multiph. Flow 2020, 125, 103215. [Google Scholar] [CrossRef] [Green Version]
- Wermelinger, F.; Rasthofer, U.; Hadjidoukas, P.E.; Koumoutsakos, P. Petascale simulations of compressible flows with interfaces. J. Comput. Sci. 2018, 26, 217–225. [Google Scholar] [CrossRef]
- Schillaci, E.; Antepara, O.; Balcázar, N.; Rigola Serrano, J.; Assensi, O. A numerical study of liquid atomization regimes by means of conservative level-set simulations. Comput. Fluids 2019, 179, 137–149. [Google Scholar] [CrossRef]
- Coutier-Delgosha, O.; Fortes-Patella, R.; Reboud, J.L. Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation. J. Fluids Eng. 2003, 125, 38–45. [Google Scholar] [CrossRef]
- Huang, B.; Ducoin, A.; Young, Y.L. Physical and numerical investigation of cavitating flows around a pitching hydrofoil. Phys. Fluids 2013, 25, 102109. [Google Scholar] [CrossRef]
- Huang, B.; Young, Y.L.; Wang, G.; Shyy, W. Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation. J. Fluids Eng. 2013, 135, 071301. [Google Scholar] [CrossRef]
- Reboud, J.L.; Stutz, B.; Coutier, O. Two-phase flow structure of cavitation: Experiments and modelling of unsteady effects. In Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, 7–10 April 1998. [Google Scholar]
- Koukouvinis, P.; Naseri, H.; Gavaises, M. Performance of turbulence and cavitation models in prediction of incipient and developed cavitation. Int. J. Engine Res. 2017, 18, 333–350. [Google Scholar] [CrossRef]
- Huang, H.; Sukop, M.; Lu, X.C. Multiphase Lattice Boltzmann Methods: Theory and Application; Wiley: Hoboken, NJ, USA, 2015; pp. 1–373. [Google Scholar] [CrossRef]
- Liu, G.; Liu, M. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific Publishing Company: Singapore, 2003. [Google Scholar] [CrossRef]
- Reynolds, A.J. Thermo-fluid Dynamic Theory of Two-phase Flow. By M. ISHIL. Eyrolles 1975. 248 pp. J. Fluid Mech. 1976, 78, 638–639. [Google Scholar] [CrossRef]
- Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.J. A Front-Tracking Method for the Computations of Multiphase Flow. J. Comput. Phys. 2001, 169, 708–759. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Fix, B.; Glimm, J.; Jia, X.; Li, X.; Li, Y.; Wu, L. A simple package for front tracking. J. Comput. Phys. 2006, 213, 613–628. [Google Scholar] [CrossRef]
- Wallis, G.B. Critical two-phase flow. Int. J. Multiph. Flow 1980, 6, 97–112. [Google Scholar] [CrossRef]
- Baer, M.; Nunziato, J. A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (ddt) in Reactive Granular Materials. Int. J. Multiph. Flow 1986, 12, 861–889. [Google Scholar] [CrossRef]
- Saurel, R.; Abgrall, R. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows. J. Comput. Phys. 1999, 150, 425–467. [Google Scholar] [CrossRef]
- Sethian, J.A.; Smereka, P. Level Set Methods for Fluid Interfaces. Annu. Rev. Fluid Mech. 2003, 35, 341–372. [Google Scholar] [CrossRef]
- Sussman, M.; Puckett, E.G. A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. J. Comput. Phys. 2000, 162, 301–337. [Google Scholar] [CrossRef]
- Ménard, T.; Tanguy, S.; Berlemont, A. Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int. J. Multiph. Flow 2007, 33, 510–524. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Koo, B.; Stern, F. A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves. Int. J. Multiph. Flow 2009, 35, 227–246. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Niedźwiedzka, A.; Schnerr, G.H.; Sobieski, W. Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch. Thermodyn. 2016, 37, 71–88. [Google Scholar] [CrossRef]
- Shukla, R.K.; Pantano, C.; Freund, J.B. An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 2010, 229, 7411–7439. [Google Scholar] [CrossRef]
- Miller, G.H.; Puckett, E.G. A High-Order Godunov Method for Multiple Condensed Phases. J. Comput. Phys. 1996, 128, 134–164. [Google Scholar] [CrossRef]
- Saurel, R.; Abgrall, R. A Simple Method for Compressible Multifluid Flows. SIAM J. Sci. Comput. 1999, 21, 1115–1145. [Google Scholar] [CrossRef]
- Plesset, M.S. Cavitating Flows; Technical Report; California Intstitute of Technology: Pasadena, CA, USA, 1969. [Google Scholar]
- Plesset, M.S. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Plesset, M.S.; Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [Google Scholar] [CrossRef]
- Rayleigh, L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Schmidt, D.P.; Rutland, C.J.; Corradini, M.L. A fully compressible, two-dimensional model of small, high-speed, cavitating nozzles. At. Sprays 1999, 9, 255–276. [Google Scholar] [CrossRef]
- Altimira, M.; Fuchs, L. Numerical investigation of throttle flow under cavitating conditions. Int. J. Multiph. Flow 2015, 75, 124–136. [Google Scholar] [CrossRef]
- Gopalan, S.; Katz, J. Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 2000, 12, 895–911. [Google Scholar] [CrossRef]
- Adams, N.A.; Schmidt, S.J. Shocks in Cavitating Flows. In Bubble Dynamics and Shock Waves; Delale, C.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 235–256. [Google Scholar] [CrossRef]
- Egerer, C.P.; Hickel, S.; Schmidt, S.J.; Adams, N.A. Large-Eddy Simulation of Turbulent Cavitating Flow in a Micro Channel. Phys. Fluids 2014, 26, 085102. [Google Scholar] [CrossRef]
- Schnerr, G.H.; Sezal, I.H.; Schmidt, S.J. Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics. Phys. Fluids 2008, 20, 040703. [Google Scholar] [CrossRef]
- Rahbarimanesh, S.; Brinkerhoff, J.; Huang, J. Development and Validation of a Homogeneous Flow Model for Simulating Cavitation in Cryogenic Fluids. Appl. Math. Model. 2017, 56, 584–611. [Google Scholar] [CrossRef]
- Yu, H.; Goldsworthy, L.; Brandner, P.; Garaniya, V. Development of a compressible multiphase cavitation approach for diesel spray modelling. Appl. Math. Model. 2017, 45, 705–727. [Google Scholar] [CrossRef]
- The OpenFOAM Foundation. OpenFOAM User Guide. Available online: https://cfd.direct/openfoam/user-guide (accessed on 24 July 2022).
- Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Suhas, V.P. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: London, UK, 1980. [Google Scholar]
- de Villiers, E.; Gosman, A.; Weller, H. Large Eddy Simulation of Primary Diesel Spray Atomization. SAE Trans. 2004, 113, 193–206. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Popinet, S. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 2009, 228, 5838–5866. [Google Scholar] [CrossRef]
- Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S. Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows. J. Comput. Phys. 1999, 152, 423–456. [Google Scholar] [CrossRef]
- Fedkiw, R.P.; Aslam, T.; Merriman, B.; Osher, S. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method). J. Comput. Phys. 1999, 152, 457–492. [Google Scholar] [CrossRef]
- Weller, H.G. The Development of a New Flame Area Combustion Model Using Conditional Averaging; Thermo-Fluids Section Report TF/9307; Department of Mechanical Engineering, Imperial College of Science Technology and Medicine: London, UK, 1993. [Google Scholar]
- Weller, H.G. A new Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Flow; Technical Report; TR/HGW/04; OpenCFD Ltd.: Bracknell, UK, 2008. [Google Scholar]
- Wardle, K.E.; Weller, H.G. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction. Int. J. Chem. Eng. 2013, 2013, 128936. [Google Scholar] [CrossRef]
- Peng Karrholm, F. Numerical Modelling of Diesel Spray Injection, Turbulence Interaction and Combustion. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2008. [Google Scholar]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef]
- Nedderman, R.M. One-Dimensional Two-Phase Flow. BY G. B. WALLIS. McGraw Hill, 1969. 408pp. £7. 18s. Cocurrent Gas-Liquid Flow. Edited by E. RHODES AND D. S. SCOTT. Plenum Press, 1969. 698 pp. $27.50. J. Fluid Mech. 1970, 42, 428–430. [Google Scholar] [CrossRef]
- Chung, T.J. Computational Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Li, Y.H. Equation of State of Water and Sea Water. J. Geophys. Res. 1967, 72, 2665–2678. [Google Scholar] [CrossRef]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Imperial College London, University of London, London, UK, 1996. [Google Scholar]
- Yu, H.; Goldsworthy, L.; Brandner, P.; Li, J.; Garaniya, V. Modelling thermal effects in cavitating high-pressure diesel sprays using an improved compressible multiphase approach. Fuel 2018, 222, 125–145. [Google Scholar] [CrossRef]
- Greenshields, C.; Weller, H. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Ltd.: Reading, UK, 2022. [Google Scholar]
- Winklhofer, E.; Kull, E.; Kelz, E.; Morozov, A. Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments under Cavitation Conditions. In Proceedings of the ILASS-Europe 2001, 17 International Conference on Liquid Atomization and Spray Systems, Zurich, Switzerland, 2–6 September 2001; Available online: https://www.ilasseurope.org/ICLASS/ilass2001/ILASS2001.pdf (accessed on 24 July 2022).
- Duret, B.; Canu, R.; Reveillon, J.; Demoulin, F.X. A pressure based method for vaporizing compressible two-phase flows with interface capturing approach. Int. J. Multiph. Flow 2018, 108, 42–50. [Google Scholar] [CrossRef]
- Daru, V.; Le Quéré, P.; Duluc, M.C.; Le Maître, O. A numerical method for the simulation of low Mach number liquid–gas flows. J. Comput. Phys. 2010, 229, 8844–8867. [Google Scholar] [CrossRef]
- Kadioglu, S.Y.; Sussman, M.; Osher, S.; Wright, J.P.; Kang, M. A second order primitive preconditioner for solving all speed multi-phase flows. J. Comput. Phys. 2005, 209, 477–503. [Google Scholar] [CrossRef]
- Koren, B.; Lewis, M.; van Brummelen, E.; van Leer, B. Riemann-Problem and Level-Set Approaches for Homentropic Two-Fluid Flow Computations. J. Comput. Phys. 2002, 181, 654–674. [Google Scholar] [CrossRef]
- Zhao, H.; Quan, S.; Dai, M.; Pomraning, E.; Senecal, P.; Xue, Q.; Battistoni, M.; Som, S. Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects. J. Eng. Gas Turbines Power 2014, 136, 1–11. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
No. Cells | 640 | 1280 |
---|---|---|
0.044 | 0.011 |
No. Cells | 640 | 1280 |
---|---|---|
0.045 | 0.040 |
Fluid Properties | |
---|---|
Parameter | Value |
998.16 kg | |
2000 Pa | |
B | 3.07 × 109 Pa |
1.75 | |
20.5 × 10−3 kg/ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomino Solis, D.A.; Piscaglia, F. Toward the Simulation of Flashing Cryogenic Liquids by a Fully Compressible Volume of Fluid Solver. Fluids 2022, 7, 289. https://doi.org/10.3390/fluids7090289
Palomino Solis DA, Piscaglia F. Toward the Simulation of Flashing Cryogenic Liquids by a Fully Compressible Volume of Fluid Solver. Fluids. 2022; 7(9):289. https://doi.org/10.3390/fluids7090289
Chicago/Turabian StylePalomino Solis, Daniel Angel, and Federico Piscaglia. 2022. "Toward the Simulation of Flashing Cryogenic Liquids by a Fully Compressible Volume of Fluid Solver" Fluids 7, no. 9: 289. https://doi.org/10.3390/fluids7090289
APA StylePalomino Solis, D. A., & Piscaglia, F. (2022). Toward the Simulation of Flashing Cryogenic Liquids by a Fully Compressible Volume of Fluid Solver. Fluids, 7(9), 289. https://doi.org/10.3390/fluids7090289