Heat Flux Measurement in Shock Heated Combustible Gases and Clarification of Ignition Delay Time
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ϕ | combustible mixture equivalence ratio |
P0 | riven tube initial pressure [kPa] |
P5 | reflected shock pressure [MPa] |
T5 | reflected shock temperature [K] |
VSW | shock wave velocity [m/s] |
TD | thermoelectric detector |
PMT | photomultiplier tube |
OF1, OF2 | optical fibers |
P1–P3 | pressure sensors |
References
- Tunik, Y.V.; Gerasimov, G.Y.; Levashov, V.Y.; Mayorov, V.O. Busemann diffuser for supersonic ramjet on detonation combustion of kerosene vapor. Acta Astronaut. 2022, 198, 495–501. [Google Scholar]
- Hanson, R.K.; Davidson, D.F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 2014, 44, 103–114. [Google Scholar]
- Reyner, P. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations. Prog. Aerospace Sci. 2016, 85, 1–32. [Google Scholar]
- Han, H.S.; Kim, C.J.; Cho, C.H.; Sohn, C.H.; Han, J. Ignition delay time and sooting propensity of a kerosene aviation jet fuel and its derivative blended with a bio-jet fuel. Fuel 2018, 232, 724–728. [Google Scholar] [CrossRef]
- Petersen, E.L. Interpreting endwall and sidewall measurements in shock-tube ignition studies. Comb. Sci. Technol. 2009, 181, 1123–1144. [Google Scholar]
- Kotov, M.A.; Shemyakin, A.N.; Solovyov, N.G.; Yakimov, M.Y.; Glebov, V.N.; Dubrova, G.A.; Malyutin, A.M.; Popov, P.A.; Poniaev, S.A.; Lapushkina, T.A.; et al. Performance assessment of thermoelectric detector for heat flux measurement behind a reflected shock of low intensity. Appl. Therm. Eng. 2021, 195, 117143. [Google Scholar] [CrossRef]
- MKotov, A.; Shemyakin, A.N.; Solovyov, N.G.; Yakimov, M.Y.; Glebov, V.N.; Dubrova, G.A.; Malyutin, A.M.; Popov, P.A.; Poniaev, S.A.; Lapushkina, T.A.; et al. The analysis of applicability of thermoelectric radiation detectors for heat flux measurements behind a reflected shock wave. J. Phys. Conf. Ser. 2021, 2103, 012218. [Google Scholar]
- Kozlov, P.V.; Zabelinskii, I.E.; Bikova, N.G.; Gerasimov, G.Y.; Levashov, V.Y. Ignition of Propane-Air Mixtures in Shock Tube at Pressure of 30 atm, Physical-Chemical Kinetics in Gas Dynamics. High Temp. 2021, 59, 240–244. [Google Scholar] [CrossRef]
- A Chemical Equilibrium Program for Windows. Available online: http://www.gaseq.co.uk/ (accessed on 9 January 2022).
- Tang, C.; Man, X.; Wei, L.; Pan, L.; Huang, Z. Further study on the ignition delay times of propane–hydrogen–oxygen–argon mixtures: Effect of equivalence ratio, Combust. Flame 2013, 160, 2283–2290. [Google Scholar] [CrossRef]
- Mathieu, O.; Goulier, J.; Gourmel, F.; Mannan, M.S.; Chaumeix, N.; Petersen, E.L. Experimental study of the effect of CF3I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane. Proc. Combust. Inst. 2015, 35, 2731–2740. [Google Scholar] [CrossRef]
- Paxon, D.E.; Naples, A.G.; Hoke, J.L.; Schauer, F. Numerical Analysis of a Pulse Detonation Cross Flow Heat Load Experiment. In Proceedings of the 49th AIAA Aerospace Sciences Meeting—AIAA 2011, Orlando, FL, USA, 4–7 January 2011; p. 584. [Google Scholar]
- Hoke, J.; Bradley, R.; Schauer, F. Heat Transfer and Thermal Management in a Pulsed Detonation Engine. In Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibit-—AIAA 2003, Reno, Nevada, 6–9 January 2003; p. 852. [Google Scholar]
- Ragozin, K. Thrust Performance and Heat Load Modelling of Pulse Detonation Engines. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2020. [Google Scholar]
# Exp. | Composition | ϕ | P0, kPa | VSW, m/s | P5, MPa | T5, K |
---|---|---|---|---|---|---|
1 | 2.1% C3H8/20.56% O2/77.34% N2 | 0.5 | 20.02 | 1289 | 2.12 | 1644 |
2 | 4.2% C3H8/20.12% O2/75.68% N2 | 1 | 17 | 1302 | 1.85 | 1670 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotov, M.A.; Kozlov, P.V.; Gerasimov, G.Y.; Levashov, V.Y.; Shemyakin, A.N.; Solovyov, N.G.; Yakimov, M.Y.; Glebov, V.N.; Dubrova, G.A.; Malyutin, A.M. Heat Flux Measurement in Shock Heated Combustible Gases and Clarification of Ignition Delay Time. Fluids 2022, 7, 291. https://doi.org/10.3390/fluids7090291
Kotov MA, Kozlov PV, Gerasimov GY, Levashov VY, Shemyakin AN, Solovyov NG, Yakimov MY, Glebov VN, Dubrova GA, Malyutin AM. Heat Flux Measurement in Shock Heated Combustible Gases and Clarification of Ignition Delay Time. Fluids. 2022; 7(9):291. https://doi.org/10.3390/fluids7090291
Chicago/Turabian StyleKotov, Mikhail A., Pavel V. Kozlov, Gennady Ya. Gerasimov, Vladimir Yu. Levashov, Andrey N. Shemyakin, Nikolay G. Solovyov, Mikhail Yu. Yakimov, Vladislav N. Glebov, Galina A. Dubrova, and Andrey M. Malyutin. 2022. "Heat Flux Measurement in Shock Heated Combustible Gases and Clarification of Ignition Delay Time" Fluids 7, no. 9: 291. https://doi.org/10.3390/fluids7090291
APA StyleKotov, M. A., Kozlov, P. V., Gerasimov, G. Y., Levashov, V. Y., Shemyakin, A. N., Solovyov, N. G., Yakimov, M. Y., Glebov, V. N., Dubrova, G. A., & Malyutin, A. M. (2022). Heat Flux Measurement in Shock Heated Combustible Gases and Clarification of Ignition Delay Time. Fluids, 7(9), 291. https://doi.org/10.3390/fluids7090291