The Influence of Mitral Valve Asymmetry for an Improved Choice of Valve Repair or Replacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometries
2.2. Fluid Dynamics
2.3. Kinetic Energy and Dissipation Rate
2.4. Vorticity and Vortex Formation Time
2.5. Hemodynamic Forces
3. Results
Fluid Dynamics, Vortex Formation, and Energetic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freed, A.; Levy, D.; Levine, R.A.; Larson, M.G.; Evans, J.C.; Fuller, D.L.; Lehman, B.; Benjamin, E.J. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 1999, 341, 1–7. [Google Scholar] [CrossRef]
- Shapira, Y.; Vaturi, M.; Sagie, A. Hemolysis associated with prosthetic heart valves: A review. Cardiol. Rev. 2009, 17, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.C.; Wagner, R. Xenotransplantation. Nonhum. Primates Biomed. Res. 2012, 1, 391–402. [Google Scholar]
- Adams, D.H.; Rosenhek, R.; Falk, V. Degenerative mitral valve regurgitation: Best practice revolution. Eur. Heart J. 2010, 31, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Elbey, M.A.; Dalan, L.P.; Attizzani, G.F. Value of MitraClip in reducing functional mitral regurgitation. US Cardiol. Rev. 2019, 13, 30. [Google Scholar] [CrossRef]
- Castillo, J.G.; Anyanwu, A.C.; Fuster, V.; Adams, D.H. A near 100% repair rate for mitral valve prolapse is achievable in a reference center: Implications for future guidelines. J. Thorac. Cardiovasc. Surg. 2012, 144, 308–312. [Google Scholar] [CrossRef]
- Carpentier, A. Cardiac valve surgery-the ‘French correction’. J. Thorac. Cardiovasc. Surg. 1983, 86, 323–337. [Google Scholar] [CrossRef]
- Colli, A.; Adams, D.H.; Fiocco, A.; Pradegan, N.; Longinotti, L.; Nadali, M.; Pandis, D.; Gerosa, G. Transapical NeoChord mitral valve repair. Ann. Cardiothorac. Surg. 2018, 7, 812–820. [Google Scholar] [CrossRef]
- Stone, G.W.; Lindenfeld, J.A.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef]
- Collia, D. Mitral valve asymmetry in healthy, pathological, and repaired cases. Phys. Fluids 2021, 22, 077118. [Google Scholar] [CrossRef]
- Danilov, A.; Lozovskiy, A.; Olshanskii, M.; Borgquist, R.; Vassilevski, Y. A finite element method for the Navier–Stokes equations in moving domain with application to hemodynamics of the left ventricle. Russ. J. Numer. Anal. Math. Model. 2017, 32, 225–236. [Google Scholar] [CrossRef]
- Peskin, C.S. Numerical Analysis of Blood Flow in the Heart. J. Comput. Phys. 1977, 25, 220–252. [Google Scholar] [CrossRef]
- Zakerzadeh, R.; Hsu, M.C.; Sacks, M.S. Computational methods for the aortic heart valve and its replacements. Expert Rev. Med. Devices 2017, 14, 849–866. [Google Scholar] [CrossRef] [PubMed]
- Vassilevski, Y.; Liogky, A.; Salamatova, V. Application of Hyperelastic Nodal Force Method to Evaluation of Aortic Valve Cusps Coaptation: Thin Shell vs. Membrane Formulations. Mathematics 2021, 9, 1450. [Google Scholar] [CrossRef]
- Collia, D.; Vukicevic, M.; Meschini, V.; Zovatto, L.; Pedrizzetti, G. Simplified mitral valve modeling for prospective clinical application of left ventricular fluid dynamics. J. Comput. Phys. 2019, 398, 108895. [Google Scholar] [CrossRef]
- Meschini, V.; de Tullio, M.; Querzoli, G.; Verzicco, R. Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. J. Fluid Mech. 2018, 834, 271–307. [Google Scholar] [CrossRef]
- Domenichini, F.; Pedrizzetti, G. Asymptotic Model of Fluid—Tissue Interaction for Mitral Valve Dynamics. Cardiovasc. Eng. Technol. 2015, 6, 95–104. [Google Scholar] [CrossRef]
- Elbaz, M.S.M.; Calkoen, E.E.; Westenberg, J.J.M.; Lelieveldt, B.P.F.; Roest, A.A.W.; van der Geest, R.J. Vortex flow during early and late left ventricular filling in normal subjects: Quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J. Cardiovasc. Magn. Reson. 2014, 16, 78. [Google Scholar] [CrossRef]
- Arvidsson, P.M.; Kovács, S.J.; Töger, J.; Borgquist, R.; Heiberg, E.; Carlsson, M.; Arheden, H. Vortex ring behavior provides the epigenetic blueprint for the human heart. Sci. Rep. 2016, 6, 22021. [Google Scholar] [CrossRef]
- Meschini, V.; de Tullio, M.D.; Verzicco, R. Effects of mitral chordae tendineae on the flow in the left heart ventricle. Eur. Phys. J. E 2018, 41, 27. [Google Scholar] [CrossRef]
- Collia, D.; Zovatto, L.; Pedrizzetti, G. Analysis of mitral valve regurgitation by computational fluid dynamics. APL Bioeng. 2019, 3, 036105. [Google Scholar] [CrossRef] [PubMed]
- Collia, D.; Zovatto, L.; Tonti, G.; Pedrizzetti, G. Comparative Analysis of Right Ventricle Fluid Dynamics. Front. Bioeng. Biotech. 2021, 9, 667408. [Google Scholar] [CrossRef] [PubMed]
- Collia, D.; Pedrizzetti, G. Cardiac Fluid Dynamics in Prolapsed and Repaired Mitral Valve. In Proceedings of the XXIV AIMETA Conference 2019, Rome, Italy, 15–19 September 2019; Carcaterra, A., Paolone, A., Graziani, G., Eds.; Lecture Notes in Mechanical Engineering. Springer: Cham, Switzerland, 2020; pp. 857–867. [Google Scholar]
- Pedrizzetti, G.; Canna, G.L.; Alfieri, O.; Tonti, G. The vortex an early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 2008, 11, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Pedrizzetti, G.; Domenichini, F. Left ventricular fluid mechanics: The long way from theoretical models to clinical applications. Ann. Biomed. Eng. 2015, 43, 26–40. [Google Scholar] [CrossRef]
- Celotto, C.; Zovatto, L.; Collia, D.; Pedrizzetti, G. Influence of mitral valve elasticity on flow development in the left ventricle. J. Biomech. 2019, 75, 110–118. [Google Scholar] [CrossRef]
- Domenichini, F. On the consistency of the direct forcing method in the fractional step solution of the navier–stokes equations. J. Comput. Phys. 2008, 227, 6372–6384. [Google Scholar] [CrossRef]
- Carlsson, M.; Heiberg, E.; Toger, J.; Arheden, H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurement. J. Heart Circ. Physiol. 2011, 302, 893–900. [Google Scholar] [CrossRef]
- Garg, P.; Crandon, S.; Swoboda, P.P.; Fent, G.J.; Foley, J.R.J.; Chew, P.G.; Brown, L.A.E.; Vijayan, S.; Hassell, M.E.C.J.; Nijveldt, R.; et al. Left ventricular blood flow kinetic energy after myocardial infarction—Insights from 4d flow cardiovascular magnetic resonance. J. Cardiovasc. Magn. Res. 2018, 20, 2344–2350. [Google Scholar] [CrossRef]
- Hayashi, T.; Itatani, K.; Inuzuka, R.; Shimizu, N.; Shindo, T.; Hirata, Y.; Miyaji, K. Dissipative energy loss within the left ventricle detected by vector flow mapping in children: Normal values and effects of age and heart rate. J. Cardiol. 2015, 66, 403–410. [Google Scholar] [CrossRef]
- Kilner, P.; Yang, G.; Wilkes, A.J.; Mohiaddin, R.; Firmin, D.; Yacoub, M. Asymmetric redirection of flow through the heart. Nature 2000, 404, 759–761. [Google Scholar] [CrossRef]
- Kheradvar, A.; Rickers, C.; Morisawa, D.; Kim, M.; Hong, G.; Pedrizzetti, G. Diagnostic and prognostic significance of cardiovascular vortex formation. J. Cardiol. 2019, 74, 403–411. [Google Scholar] [CrossRef] [PubMed]
- King, G.; Ngiam, N.; Clarke, J.; Wood, M.J.; Poh, K.K. Left ventricular vortex formation time in elite athletes. Int. J. Cardiovasc. Imaging 2019, 35, 307–311. [Google Scholar] [CrossRef]
- Kheradvar, A.; Assadi, R.; Falahatpisheh, A.; Sengupta, P.P. Assessment of Transmitral Vortex Formation in Patients with Diastolic Dysfunction. JASE 2012, 25, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Mangual, J.O.; Kraigher-Krainer, E.; De Luca, A.; Toncelli, L.; Shah, A.; Solomon, S.; Galantic, G.; Domenichini, F.; Pedrizzetti, G. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. Biomech. 2013, 46, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Hove, J.R.; Köster, R.W.; Forouhar, A.S.; Acevedo-Bolton, G.; Fraser, S.E.; Gharib, M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 2003, 421, 172–177. [Google Scholar] [CrossRef]
- Arvidsson, P.M.; Töger, J.; Carlsson, M.; Steding-Ehrenborg, K.; Pedrizzetti, G.; Heiberg, E.; Arheden, H. Left and right ventricular hemodynamic forces in healthy volunteers and elite athletes assessed with 4D flow magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H314–H328. [Google Scholar] [CrossRef]
- Pedrizzetti, G. On the computation of hemodynamic forces in the heart chambers. Am. J. Physiol. Heart Circ. Physiol. 2019, 95, 109323. [Google Scholar] [CrossRef]
- Steding-Ehrenborg, K.; Arvidsson, P.; Töger, J.; Rydberg, M.; Heiberg, E.; Carlsson, M. Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, 113–122. [Google Scholar] [CrossRef]
- Seo, J.; Mittal, R. Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 2013, 25, 110801. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Arvidsson, M.; Töger, J.; Borgquist, R.; Domenichini, F.; Arheden, H.; Heiberg, E. On estimating intraventricular hemodynamic forces from endocardial dynamics: A comparative study with 4D flow MRI. J. Biomech. 2017, 60, 203–210. [Google Scholar] [CrossRef]
- Arvidsson, P.M.; Töger, G.; Pedrizzetti, G.; Heiberg, E.; Borgquist, R.; Carlsson, M.; Arheden, H. Hemodynamic forces using four-dimensional flow MRI: an independent biomarker of cardiac function in heart failure with left ventricular dyssynchrony? Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1627–H1639. [Google Scholar] [CrossRef]
- Vallelonga, F.; Airale, L.; Tonti, G.; Argulian, E.; Milan, A.; Narula, J.; Pedrizzetti, G. Introduction to Hemodynamic Forces Analysis: Moving Into the New Frontier of Cardiac Deformation Analysis. J. Am. Heart Assoc. 2013, 10, e023417. [Google Scholar] [CrossRef]
- Faganello, G.; Collia, D.; Furlotti, S.; Pagura, L.; Zaccari, M.; Pedrizzetti, G.; Di Lenarda, A. A new integrated approach to cardiac mechanics: reference values for normal left ventricle. Int. J. Cardiovasc. Imaging 2020, 36, 2173–2185. [Google Scholar] [CrossRef]
- Schnittman, S.R.; Itagaki, S.; Toyoda, N.; Adams, D.H.; Egorova, N.N.; Chikwe, J. Survival and long-term outcomes after mitral valve replacement in patients aged 18 to 50 years. J. Thorac. Cardiovasc. Surg. 2018, 155, 96–102. [Google Scholar] [CrossRef]
- Chikwe, J.; Toyoda, N.; Anyanwu, A.C.; Itagaki, S.; Egorova, N.N.; Boateng, P.; El-Eshmawi, A.; Adams, D.H. Relation of Mitral Valve Surgery Volume to Repair Rate, Durability, and Survival. J. Am. Coll. Cardiol. 2018, 69, 2397–2406. [Google Scholar] [CrossRef]
- Villars, P.S.; Hamlin, S.K.; Shaw, A.D.; Kanusky, J.T. Role of diastole in left ventricular function, I: Biochemical and biomechanical events. Am. J. Crit. Care 2004, 13, 394–403. [Google Scholar] [CrossRef]
- Nagueh, S.F. Left Ventricular Diastolic Function: Understanding Pathophysiology, Diagnosis, and Prognosis with Echocardiography. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef]
- Oliveira, D.; Srinivasan, J.; Espino, D.; Buchan, K.; Dawson, D.; Shepherd, D. Geometric description for the anatomy of the mitral valve: A review. J. Anat. 2020, 237, 209–224. [Google Scholar] [CrossRef]
- Pandis, D.; Anyanwu, A. Commentary: Four-dimensional left ventricular flow imaging after surgical valve reconstruction—Pretty pictures or marker of repair quality? J. Thorac. Cardiovasc. Surg. 2020, 163, 962–964. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collia, D.; Pedrizzetti, G. The Influence of Mitral Valve Asymmetry for an Improved Choice of Valve Repair or Replacement. Fluids 2022, 7, 293. https://doi.org/10.3390/fluids7090293
Collia D, Pedrizzetti G. The Influence of Mitral Valve Asymmetry for an Improved Choice of Valve Repair or Replacement. Fluids. 2022; 7(9):293. https://doi.org/10.3390/fluids7090293
Chicago/Turabian StyleCollia, Dario, and Gianni Pedrizzetti. 2022. "The Influence of Mitral Valve Asymmetry for an Improved Choice of Valve Repair or Replacement" Fluids 7, no. 9: 293. https://doi.org/10.3390/fluids7090293
APA StyleCollia, D., & Pedrizzetti, G. (2022). The Influence of Mitral Valve Asymmetry for an Improved Choice of Valve Repair or Replacement. Fluids, 7(9), 293. https://doi.org/10.3390/fluids7090293