Utilization of Geogrid and Water Cushion to Reduce the Impact of Nappe Flow and Scouring on the Downstream Side of a Levee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flow Conditions
2.2. Model Features
2.3. Rigid and Moveable Bed Conditions
2.4. Flow Duration
2.5. Acquisition System of the Experimental Data
2.6. Dimensional Analysis
2.7. Determination of Jet Thickness, Angle with Horizontal and Impact Velocity
3. Analysis of Results and Discussions
3.1. Flow Structure Analysis
3.1.1. Flow Structure Manifestation and Its Physical Identification
- No hydraulic jump was observed.
- After nappe impinged on the pooled water, hydraulic jump was generated with a distinct surface roller.
- A submerged hydraulic jump was formed.
- Hydraulic jump with a standing wave was generated.
3.1.2. Flow Structure Classification
3.2. Analysis of Scouring
3.2.1. Effect Dimensionless Pooled Water Depth () and Overtopping Depth () on Scour Profile
3.2.2. Combined Effect of Dimensionless Pooled Water Depth () and Geogrid on Scour Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, P.; He, B.; Takara, K.; Xiong, Y.E.; Nover, D.; Duan, W.; Fukushi, K. Historical assessment of Chinese and Japanese flood management policies and implications for managing future floods. Environ. Sci. Policy 2015, 48, 265–277. [Google Scholar] [CrossRef]
- Okazumi, T.; Tadashi, N.; Sugimoto, M.; Adikari, Y. Lessons Learnt from Two Unprecedented Disasters in 2011: Great East Japan Earthquake and Tsunami in Japan and Chao Phraya River Flood in Thailand; International Centre for Water Hazard and Risk Management (ICHARM) under the auspices of UNESCO/Public Works Research Institute (PWRI): Tsukuba, Japan, 2013. [Google Scholar]
- Kato, F.; Suwa, Y.; Watanabe, K.; Hatogai, S. Mechanisms of coastal dike failure induced by the Great East Japan earthquake tsunami. In Proceedings of the 33rd International Conference Coastal Engineering, Santander, Spain, 1–6 July 2012. [Google Scholar] [CrossRef]
- Mikami, T.; Shibayama, T.; Esteban, M.; Matsumaru, R. Field Survey of the 2011 Tohoku Earthquake and Tsunami in Miyagi and Fukushima Prefectures. Coastal Eng. J. 2012, 54, 125001-1–125001-26. [Google Scholar] [CrossRef]
- Tokida, K.I.; Tanimoto, R. Lessons for countermeasures using earth structures against tsunami obtained in the 2011 off the Pacific Coast of Tohoku Earthquake. Soils Found 2014, 54, 523–543. [Google Scholar] [CrossRef]
- Tanaka, N.; Sato, M. Scoured depth and length of pools and ditches generated by overflow flow from embankments during the 2011 Great East Japan Tsunami. Ocean Eng. 2015, 109, 72–82. [Google Scholar] [CrossRef]
- Tobita, D.; Kakinuma, T.; Yokoyama, H.; Takeda, A. Quantification of levee breach volume based on levee breach at the chiyoda experimental flume. J. Jpn. Soc. Civ. Eng. 2014, 2, 136–143. [Google Scholar] [CrossRef]
- Enomoto, T.; Horikoshi, K.; Ishikawa, K.; Mori, H.; Takahashi, A.; Unno, T.; Watanabe, K. Levee damage and bridge scour by 2019 typhoon Hagibis in Kanto Region Japan. Soils Found 2021, 61, 566–585. [Google Scholar] [CrossRef]
- Pandey, M.; Zakwan, M.; Khan, M.A.; Bhave, S. Development of scour around a circular pier and its modelling using genetic algorithm. Water Supply 2020, 20, 3358–3367. [Google Scholar] [CrossRef]
- Pandey, M.; Oliveto, G.; Pu, J.H.; Sharma, P.K.; Ojha, C.S.P. Pier scour prediction in non-uniform gravel beds. Water 2020, 12, 1696. [Google Scholar] [CrossRef]
- Jain, R.; Lodhi, A.S.; Oliveto, G.; Pandey, M. Influence of cohesion on scour at piers founded in clay-sand-gravel mixtures. J. Irri. Eng. 2021, 147, 04021046. [Google Scholar] [CrossRef]
- Pandey, M.; Ahmad, Z.; Sharma, P.K. Estimation of maximum scour depth near a spur dike. Can. J. Civ. Eng. 2016, 43, 270–278. [Google Scholar] [CrossRef]
- Pandey, M.; Jmei, M.; Karbasi, M.; Ahmadianfar, I.; Chu, X. Prediction of Maximum Scour Depth near Spur Dikes in Uniform Bed Sediment Using Stacked Generalization Ensemble Tree-Based Frameworks. J. Irri. Drain Eng. 2021, 147, 04021050. [Google Scholar] [CrossRef]
- Lantz, W.D.; Crookston, B.M.; Palermo, M. Evolution of local scour downstream of type A PK weir in non-cohesive sediments. J. Hydrol. Hydromech. 2021, 70, 103–113. [Google Scholar]
- Guo, W.D.; Hong, J.H.; Chen, C.H.; Su, C.C.; Lai, J.S. A simplified simulation method for flood-induced bend scour—A case study near the Shuideliaw embankment on the Cho-Shui River. Water 2017, 9, 324. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Koshimura, S.; Miyagi, T.; Imamura, F. Tsunami damage reduction performance of a mangrove forest in Banda Aceh, Indonesia inferred from field data and a numerical model. J. Geophys. Res. 2010, 115, C06032. [Google Scholar] [CrossRef]
- Chang, C.H.; Chen, H.; Guo, W.D.; Yeh, S.H.; Chen, W.B.; Liu, C.H.; Lee, S.C. Predicting River embankment failure caused by toe scour considering 1D and 2D hydraulic models: A case study of Da-an River, Taiwan. Water 2020, 12, 1026. [Google Scholar] [CrossRef]
- Fadly, U.; Murakami, K.; Kurniawan, E.B. Study on reducing tsunami inundation energy by the modification of topography based on local wisdom. Proc. Environ. Sci. 2014, 20, 642–650. [Google Scholar] [CrossRef]
- Johnson, E.B.; Testik, F.Y.; Ravichandran, N.; Schooler, J. Levee scour from overtopping storm waves and scour counter measures. Ocean. Eng. 2013, 57, 72–82. [Google Scholar] [CrossRef]
- Ko, D.; Kang, J. Biopolymer-reinforced levee for breach development retardation and enhanced erosion control. Water 2020, 12, 1070. [Google Scholar] [CrossRef]
- Pagliara, S.; Palermo, M. Scour control downstream of block ramps. J. Hydraul. Eng. 2008, 134, 1376–1382. [Google Scholar] [CrossRef]
- Matsuba, S.; Mikami, T.; Jayaratne, R.; Shibayama, T.; Esteban, M. Analysis of tsunami behavior and the effect of coastal forest in reducing tsunami force around coastal dikes. In Proceedings of the Coastal Engineering Conference, Seoul, Korea, 15–20 June 2014; pp. 1–34. [Google Scholar]
- Muhammad, R.A.H.; Tanaka, N. Energy reduction of a tsunami current through a hybrid defense system comprising a sea embankment followed by a coastal forest. Geosciences 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, N. Numerical Investigation of 3D Flow Properties around Finite Emergent Vegetation by Using the Two-Phase Volume of Fluid (VOF) Modeling Technique. Fluids 2022, 7, 175. [Google Scholar]
- Pasha, G.A.; Ghani, U.; Ahmed, A.; Abbas, F.M. Investigating role of vegetation in protection of houses during floods. Civ. Eng. J. 2019, 5, 2598–2613. [Google Scholar]
- Abbas, F.M.; Tanaka, N. Numerical Study of Flow Structures through Horizontal Double-Layered Vegetation Consisting of Combined Submergent and Emergent Vegetations. J. Earthq. Tsunami 2022, 16, 2250004. [Google Scholar] [CrossRef]
- Ahmed, A.; Ghumman, A.R. Experimental investigation of flood energy dissipation by single and hybrid defense system. Water 2019, 11, 1971. [Google Scholar] [CrossRef]
- Kimiwada, Y.; Tanaka, N.; Zaha, T. Differences in effectiveness of a hybrid tsunami defense system comprising an embankment, moat, and forest in submerged, emergent, or combined conditions. Ocean Eng. 2020, 208, 107457. [Google Scholar] [CrossRef]
- Abbas, F.M.; Tanaka, N. Investigation of flow structure with moat acting as a water cushion at the toe of an overflowing levee. Environ. Fluid Mech. 2022, 22, 865–889. [Google Scholar] [CrossRef]
- Mitobe, Y.; Adityawan, M.B.; Tanaka, H.; Kawahara, T.; Kurosawa, T.; Otsushi, K. Experiments on scouring behind coastal dikes induced by tsunami overflow. Coast Eng. Proc. 2014, 1, 62. [Google Scholar] [CrossRef]
- Mitobe, Y.; Adityawan, M.B.; Roh, M.; Tanaka, H.; Otsushi, K.; Kurosawa, T. Experimental study on embankment reinforcement by steel sheet pile structure against tsunami overflow. Coast Eng. J. 2016, 58, 1640018-1–1640018-18. [Google Scholar]
- Yoshida, K.; Maeno, S.; Iiboshi, T.; Araki, D. Estimation of hydrodynamic forces acting on concrete blocks of toe protection works for coastal dikes by tsunami overflows. Appl. Ocean Res. 2018, 80, 181–196. [Google Scholar] [CrossRef]
- Esmaeili, M.; Naderi, B.; Neyesranaki, H.K.; Khodaverdian, A. Investigating the effect of geogrid on stabilization of high railway embankments. Soils Found 2017, 58, 319–332. [Google Scholar] [CrossRef]
- Wu, H.; Yao, C.; Li, C.; Mjao, M.; Zhong, Y.; Lu, Y.; Liu, T. Review of application and innovation of geotextiles in geotechnical engineering. Material. 2020, 13, 1774. [Google Scholar] [CrossRef] [PubMed]
- Takegawa, N.; Sawada, Y.; Kawabata, T. Geogrid-based countermeasures against scour behind coastal dikes under tsunami overflow. Mar. Georesour. Geotechnol. 2019, 38, 64–72. [Google Scholar] [CrossRef]
- Tanimoto, R.; Tokida, K.; Kitagawa, H.; Araki, S. Investigation on resistance of earth bank and reduction by dug pool against Tsunami. J. Jpn. Soc. Civ. Eng. Ser. 2012, 68, 316–320. [Google Scholar]
- Kiri, H.; Nakaya, T.; Azechi, I.; Matsushima, K. Effect of the tsunami dissipation facility that modeled a pool at the toe of back slope of the coastal levees. J. Soc. Civ. Eng. Ser. Hydraul. Eng. 2015, 71. [Google Scholar]
- Li, L.-X.; Liao, H.-S.; Liu, D.; Jiang, S.Y. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrody 2015, 27, 522–529. [Google Scholar] [CrossRef]
- Li, Q.; Li, L.; Liao, H. Study on the best depth of stilling basin with shallow-water cushion. Water 2018, 10, 1801. [Google Scholar] [CrossRef]
- Larsen, B.E.; Arboll, L.K.; Kristoffersen, S.F.; Carstensen, S.; Fuhrman, D.R. Experimental study of tsunami-induced scour around a monopile foundation. Coast. Eng. 2018, 138, 9–21. [Google Scholar] [CrossRef]
- Correia, A.S. Tsunami mitigation in Japan after the 2011 Tōhoku Tsunami. Int. J. Disaster Risk Reduct. 2017, 22, 397–411. [Google Scholar] [CrossRef]
- Lenzi, M.A.; Comiti, F. Local scouring and morphological adjustments in steep channels with check-dam sequences. Geomorphology 2003, 55, 97–109. [Google Scholar] [CrossRef]
- Afreen, S.; Yagisawa, J.; Binh, D.V.; Tanaka, N. Investigation of scour pattern downstream of levee toe due to overtopping flow. J. Jpn. Soc. Civ. Eng. 2015, 71, 175–180. [Google Scholar] [CrossRef]
- Pagliara, S. Influence of sediment gradation on scour downstream of block ramps. J. Hydraul. Eng. 2007, 133, 1241–1248. [Google Scholar] [CrossRef]
- Meftah, B.B.; Moosa, M. New Approach to Predicting Local Scour Downstream of Grade-Control Structure. J. Hydraul. Eng. 2020, 146-2, 04019058. [Google Scholar] [CrossRef]
- Rahman, M.A.; Tanaka, N. Countermeasure against local scouring and tsunami damage by landward forests behind a coastal embankment. Ocean Eng. 2022, 120, 103070. [Google Scholar] [CrossRef]
- Anjum, N.; Tanaka, N. Experimental study on flow analysis and energy loss around discontinued vertically layered vegetation. Environ. Fluid Mech. 2020, 20, 791–817. [Google Scholar] [CrossRef]
- Pasha, G.A.; Tanaka, N. Undular hydraulic jump formation and energy loss in a flow through emergent vegetation of varying thickness and density. Ocean Eng. 2017, 141, 308–325. [Google Scholar] [CrossRef]
- Novak, P.; Moffat, A.; Nalluri, C.; Narayanan, R. Hydraulic Structures, 4th ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9780415306089. [Google Scholar]
- Peakall, J.; Warburton, J. Surface tension in small hydraulic river models, the significance of the Weber number. J. Hydrol. N. Z. 1996, 35, 199–212. [Google Scholar]
- Rand, W. Flow geometry at straight drop spillways. Proc. Am. Soc. Civ. Eng. 1955, 81, 1–13. [Google Scholar]
- Yen, C.L. Discussion on ‘Free jet scour below dams and flip buckets’ by Peter J. Mason and K. Arumugam. J. Hydraul. Eng. 1987, 113, 1200–1202. [Google Scholar] [CrossRef]
- Agostino, V.D.; Ferro, V. Scour on alluvial bed downstream of grade control structures. J. Hydraul. Eng. 2004, 130, 24–37. [Google Scholar] [CrossRef]
- Merkel, J.; Belzner, F.; Gebhardt, M.; Thorenz, C. Energy dissipation downstream of Labyrinth weirs. In Proceedings of the 7th International Symposium on Hydraulic Structures, Aachen, Germany, 15–18 May 2018. [Google Scholar]
Trial No. | Case Name | Geogrid | Dimensionless Overtopping Depth (DC*) | Dimensionless Pool Water Depth (DP*) | |
---|---|---|---|---|---|
Aperture Size d (mm) | Shape of Mesh | ||||
1–12 | NR | - | circle | 0.1, 0.15, 0.2 | 0.30, 0.35, 0.40, 0.45 |
13–24 | G1R | 2.5 | circle | 0.1, 0.15, 0.2 | 0.30, 0.35, 0.40, 0.45 |
25–36 | G2R | 6.5 | circle | 0.1, 0.15, 0.2 | 0.30, 0.35, 0.40, 0.45 |
37–48 | NM | - | circle | 0.1, 0.15, 0.2 | 0.30, 0.35, 0.40, 0.45 |
49–60 | G1M | 2.5 | circle | 0.1, 0.15, 0.2 | 0.30, 0.35, 0.40, 0.45 |
61–72 | G2M | 6.5 | circle | 0.1, 0.15, 0.2 | 0.30, 0.35, 0.40, 0.45 |
DC* | Thickness of Approaching Nappe (di) m | Angle with Horizontal (θ) | Impact Velocity | ||
---|---|---|---|---|---|
Experimental | Analytical (Equation (5)) | Experimental | Analytical (Equation (7)) | (Vi) m/s (Equation (6)) | |
0.1 | 0.005 | 0.0055 | 70.86 | 71.63 | 1.95 |
0.15 | 0.0089 | 0.008 | 69.1 | 68.45 | 1.96 |
0.2 | 0.0133 | 0.0123 | 66.34 | 65.27 | 1.98 |
Case Name | DP* | DC* = 0.1 | DC* = 0.15 | DC* = 0.2 |
---|---|---|---|---|
NR cases | 0.45 | a | b | c |
0.4 | a | b | c | |
0.35 | a | b | c | |
0.30 | a | b | c | |
G1R cases | 0.45 | a | b | c |
0.4 | a | b | c | |
0.35 | a | b | c | |
0.30 | a | b | c | |
G2R cases | 0.45 | a | d | d |
0.4 | a | d | d | |
0.35 | a | d | d | |
0.30 | a | d | d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, F.M.; Tanaka, N. Utilization of Geogrid and Water Cushion to Reduce the Impact of Nappe Flow and Scouring on the Downstream Side of a Levee. Fluids 2022, 7, 299. https://doi.org/10.3390/fluids7090299
Abbas FM, Tanaka N. Utilization of Geogrid and Water Cushion to Reduce the Impact of Nappe Flow and Scouring on the Downstream Side of a Levee. Fluids. 2022; 7(9):299. https://doi.org/10.3390/fluids7090299
Chicago/Turabian StyleAbbas, Fakhar Muhammad, and Norio Tanaka. 2022. "Utilization of Geogrid and Water Cushion to Reduce the Impact of Nappe Flow and Scouring on the Downstream Side of a Levee" Fluids 7, no. 9: 299. https://doi.org/10.3390/fluids7090299
APA StyleAbbas, F. M., & Tanaka, N. (2022). Utilization of Geogrid and Water Cushion to Reduce the Impact of Nappe Flow and Scouring on the Downstream Side of a Levee. Fluids, 7(9), 299. https://doi.org/10.3390/fluids7090299