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Abstract: Water overflowing from a levee generates scour holes on the toe, which progresses towards
the backward crest of the levee and results in nappe flow generation. The direct collision of nappe
flow on the downstream area causes levee failure. It is important to introduce a novel countermeasure
against scouring caused by nappe flow. Hence, the present study utilized a new technique to reduce
scouring due to nappe flow by introducing a combination of pooled water and geogrids. Herein,
laboratory experiments were conducted with the three cases for rigid bed (R), named as NR, G1R,
G2R (N, G1 and G2 represent no geogrid, geogrid 1 and geogrid 2, respectively), and moveable bed
(M), named as NM (nothing moveable), G1M (geogrid 1 moveable), G2M (geogrid 2 moveable), to
elucidate the effect of dimensionless pooled water depth (DP*), overtopping depth (DC*) and the
aperture size of geogrids (d*) on flow structure and scouring. The results showed that the scour depth
was reduced by around 17–31% during the NM cases, 57–78% during the G1M cases and 100% during
the G2M cases by increasing the DP* from 0.3 to 0.45. Hence, the combination of geogrids with pooled
water (G1M, G2M) performed a vital role in suppressing the scouring, but the results of G2M were
more advantageous in terms of scouring countermeasures.

Keywords: nappe flow; scouring; water cushion effect; pooled water; geogrid

1. Introduction

Levees are important hydraulic structures used to channelize river flows and protect
human lives and hinterland areas from disastrous flood inundation. In recent years,
flooding has occurred more frequently in Japan, due to global climate change and severe
weather conditions [1]. After the devastation caused by the Great East Japan Tsunami
(GEJT) in 2011, several cases were documented in which the tsunami travelled up rivers
and overflowing occurred from river levees, inflicting the extensive loss of human life and
destruction of property [2].

Field surveys conducted by several researchers [3–8] revealed that, following the
extensive flooding of the rivers, the levees were breached due to the continuous overtopping
of flood water from the levee, despite the flow over the levees being normal in respect
to the river flow. When the levee crest is only paved, in the first stage, the continuous
overtopping of flood water from the levee causes significant erosive forces at the toe of
the levee. These forces further generate scour holes downstream of the levee, and the
generated scour holes propagate towards the levee crest. In the second stage of the paved
crest levee, the landward slope of the levee is washed away, leaving half of the levee in a
safe condition, which generates the nappe flow. This nappe flow further accelerates the
scouring and finally causes the breaching of the levee. The whole process of levee failure
due to overflowing is presented in Figure 1. So, in the situation described above, the present
study considered the second stage, in which the nappe flow was generated with half of the
levee structure.
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Figure 1. Stages of levee failure.

Several studies have been conducted to examine the scour development process
around hydraulic structures, such as piers [9–11], spur dikes [12,13], weirs [14] and embank-
ments/levees [15–18], and to suggest alternative countermeasure techniques to decrease
scouring around them [19–22]. For example, Muhammad and Tanaka [23] revealed in
their experimental study that the toe of an embankment can be protected from excessive
scouring and the energy of overflowing water can be reduced by installing a double-layer
dense coastal vegetation structure behind the embankment. On the other hand, they argued
that in practice, dense forests are difficult to build because they require large spaces to
grow. Furthermore, one of the most important lessons learnt from the 2011 Great East
Japan Tsunami (GEJT) is that as a tsunami defense strategy, depending on coastal vege-
tation alone [24–26] is inadequate. Zaha et al. [27], Kamiwada et al. [28] and Abbas and
Tanaka [29] utilized a moat structure behind an embankment, which significantly reduced
the fluid force, overflow volume and energy, respectively. Another option is the utilization
of concrete blocks to protect the area from local scouring [30–32]. However, despite the effi-
cacy of concrete blocks in terms of minimizing scouring and reducing energy, the concrete
blocks also caused the scour hole to be relocated farther downstream of the embankment.
In addition, a large amount of money must be spent on digging and transporting the heavy
materials required to construct the concrete blocks.

Recently, with the development of geosynthetics, materials such as geogrids have
been widely utilized in the prevention of soil erosion for stability on embankments and
highways [33,34]. The construction of levees or embankments is vulnerable to erosion
from continuous surface water runoff when the slope is not stabilized and erosion is not
controlled. An experimental investigation was carried out by Takegawa et al. [35] who
used geogrids over the gravel bed, which protect the toe of the levee. They reported that
the geogrid prevented local scouring to some extent, but the high-energy overflowing
water shifted the scour hole farther downstream, which was especially detrimental to
downstream buildings. However, due to its light weight nature, water permeability, and
low cost, the usage of geogrids as a countermeasure proved to be quite useful. Therefore,
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both the energy and scouring caused by overflowing water had to be reduced, which the
geogrid alone was unable to do.

Another research conducted by Tanaka and Sato [6] reported that the scour holes
were created behind the overflowing embankments during the 2011 tsunami (GEJT) were
proven to be the most effective means of mitigating erosion due to the pooling of water in
these holes. These scour holes and excavated ground behind the levee were also helpful
in lowering the energy of tsunamis or floods [5,27,36,37]. Similarly, a water cushion or
pool water located at a stilling basin’s foundation is given protection by reducing the
energy and velocity of the flow [38]. Hence, based on the research mentioned above, it was
necessary to utilize the water cushion/pooled water and geogrid in conjunction as a new
countermeasure against the destruction produced by overflowing nappe flow and levee
breaching, which has not yet been clarified.

As a result, the primary goal of this work was to develop a new countermeasure
technique by combining pooled water and geogrids to alleviate the downstream effects
of overflowing nappe flow and scour. Firstly, several pooled water depths were selected
on the assumption that the accumulated pooled water would operate as a water cush-
ion that would counteract the approaching nappe flow, as indicated by [39]. Then, the
combination of pooled water and two different geogrids with large (G1 = 6.5 mm) and
small (G2 = 2.5 mm) aperture sizes were utilized to investigate their combined effect on the
impact of nappe flow and scour behaviour on the downstream side of the levee structure.

Finally, this research proposes which type of geogrid and pooled water, or water
cushion, is appropriate to reduce the impact of the overflowing nappe flow and associated
scouring on the downstream area.

2. Materials and Methods
2.1. Flow Conditions

The experiments were conducted in a 16 m long, 0.5 m wide, and 0.7 m deep rectangu-
lar open channel laboratory flume at Saitama University, Japan. Figure 2a represents the
laboratory flume and experimental setup. During the Great East Japan Tsunami (GEJT)
of 2011, the Abukumagawa river levee in Japan’s Tohoku area experienced overtopping
depths ranging from 0.84 to 1.78 m [6]. Similarly, during the post tsunami survey conducted
by Tokida and Tanimoto [36], overtopping depths between 2.8 and 6.8 m were reported.
Since a real flood wave has a very lengthy duration, its regeneration in an experimental
setting is difficult and unsuitable for sufficient scaling, while the flood flow in the flume
could be reproduced by a control pump discharge (m3/s) [40]. Floods waves are often
referred to as quasi-steady flows because of their extended duration. Therefore, to guar-
antee an adequate scale on a 1/100 scale, pump discharge (m3/s) was employed to create
the flood wave in this experiment. The flow was maintained constant by a valve and a
flow meter (Signet 8150 flow totalizer). To simulate the real flood flow, all experimental
trails were set to a model scale of 1/100 and three quasi-steady critical overflow flow depth
conditions were selected, ranging from (Dc = 2–4 cm). The range of critical overflow
water depths selected was between the lowest and highest overflow depths reported in
the previous study [36]. Froude similarity was employed. Several discharge trials were
conducted, before deciding on the range of flow conditions to be evaluated. Water depths
were measured against each discharge number with a rail-mounted point gauge (KENEK
corporation, accuracy ± 0.1 cm) and used to calculate the corresponding Froude number
(Fro) on the levee’s brink. A total of three Froude numbers, ranging from 1 to 1.3 were
derived from the three critical overflow depths (Dc = 2, 3, 4 cm) measured at the crest of
the levee and discharge values, respectively.
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Figure 2. (a) Schematics of experimental setup, (b) picture of experimental setup. (c) Test section
for nothing rigid bed (NR) experiments, (d) for geogrid rigid bed (G1R/G2R) experiments, (e) for
nothing moveable bed (NM) experiments and (f) for geogrid moveable bed (G1M/G2M) experiments.

2.2. Model Features

The levee and pooled water/water cushion were used as the models during the
experiments. As discussed in the introduction section, we focused on the second condition
in which the half of the paved crest levee was breached or washed out due to continuous
overflowing of water and nappe flow was generated. As a result, the river side of the
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levee consisted of a slope with a ratio of (1:2), while the landward side was a straight
vertical. In addition to this, the length of the levee (HL) was originally 44 cm but due to
the beaching of the levee from its landward slope, the length of the levee was taken as
24 cm, including the river side slope (20 cm) and the crest (4 cm), as shown in Figure 2c–f.
Following the 2011 tsunami (GEJT), the Japanese government planned to elevate and/or
replace the embankments/levees in Fukushima, Miyagi, and Iwate prefectures to a height
of (7.25–14.7) meters in order to decrease the effect of flooding due to level 2 tsunamis on
these three regions [21,41]. Therefore, in this study, on a 1/100 scale, the levee was scaled
down to a height (HL) of 10 cm (10 m on a real scale), whereas the height of the nappe flow
that strikes the downstream bed from the vertical end of the levee, which was denoted
with a notation (HE), was considered to be 20 cm, as shown in Figure 2c–f. A pool/water
cushion with a length of 1.8 m and a width of 0.5 m was placed directly downstream of the
levee model, whereas the four pool heights (DP) were selected ranging from 6 to 9 cm. An
adjustable wooden board was positioned at the end of the pool to achieve the desired pooled
water depths (DP), and the pool was filled with water before beginning the experiment
trail. Two geogrids with large (G1–6.5 mm) and small (G2 = 2.5 mm) mesh sizes were
selected [35]. These geogrids were installed separately inside the pooled water at a fixed
height (Hg) of 5 cm from the downstream channel’s bed. In addition, the depth of the water
(Dg) from the geogrid height to the surface of the polled water was altered depending on
the selected pooled water depths (DP).

2.3. Rigid and Moveable Bed Conditions

Two phases of experiments were conducted in this present study. During the first
phase, tests were carried out in a pool with a rigid bed (R) composed of wooden material
to investigate the combined effect of varying pooled water depths and geogrids on the flow
structure. A total of 36 experimental trails (Nos. 1–36 in Table 1) were conducted under the
fixed bed conditions. The cases with only pooled water with rigid beds were named as NR
(where N represents nothing, i.e., without a geogrid, and R represents rigid bed), as shown
in Figure 2b, while the cases with a combination of pooled water rigid beds and geogrids
were named as G1R and G2R (where G1 depicts geogrid-1 with an aperture size of 6.5 mm,
and G2 represents geogrid-2 with an aperture size of 2.5 mm; R represents rigid bed), as
shown in Figure 2c.

Table 1. Hydraulics and geometric conditions.

Trial No. Case Name
Geogrid Dimensionless

Overtopping Depth (DC*)
Dimensionless Pool
Water Depth (DP*)Aperture Size d (mm) Shape of Mesh

1–12 NR - circle 0.1, 0.15, 0.2 0.30, 0.35, 0.40, 0.45
13–24 G1R 2.5 circle 0.1, 0.15, 0.2 0.30, 0.35, 0.40, 0.45
25–36 G2R 6.5 circle 0.1, 0.15, 0.2 0.30, 0.35, 0.40, 0.45
37–48 NM - circle 0.1, 0.15, 0.2 0.30, 0.35, 0.40, 0.45
49–60 G1M 2.5 circle 0.1, 0.15, 0.2 0.30, 0.35, 0.40, 0.45
61–72 G2M 6.5 circle 0.1, 0.15, 0.2 0.30, 0.35, 0.40, 0.45

During the second phase, a total of 36 experimental trails (37–72 in Table 1) were
conducted under the moveable bed conditions (with nothing/no geogrid with moveable
bed (NM), as shown in Figure 2d, and geogrid with moveable bed (G1M/G2M), as shown in
Figure 2e) to investigate the role of various pooled water depths and geogrids on scouring
behaviour. An aggregate with a dry density of 2650 kg/m3 and a median grain size (d50) of
4.47 mm was chosen for the bed materials as a soil layer [20]. Local souring occurred in 2011
GEJT along dikes/levees and trees due to a greater threshold value for scouring, caused
by the bed’s cohesive soil composition. Numerous authors have performed laboratory
studies in clear water scouring conditions, using a grain size of 4.5 mm as a bed material for
the soil layer to achieve optimum scouring [42,43]. Furthermore, since the soil, in general,
is very cohesive, when employing non-cohesive particles as soil, the particle size must
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be greater with higher gravity to reflect soil cohesivity [44]. Otherwise, the cohesive soil
material would be entirely washed away, due to the direct impact of the high intensity
overflow depth on the bed. Therefore, based on the above reasons, the non-cohesive grain
size or diameter of the particle used for the movable bed material was selected to ensure
the scouring phenomenon under clear water conditions [9,10,26,28,35,45], for which the
Froude similitude law is not applicable. Thus, the movable bed was filled with gravel
particles and placed from the levee edge to farther downstream of the pooled water edge,
covering an area of 1.8 m long, 0.25 m in width and a constant height (HT) of 0.15 m. As
a support, a wooden flat plate with a depth equal to the gravel bed was set at the pooled
water edge to protect the gravel layer from washing away during the flow.

2.4. Flow Duration

The scouring phenomenon caused by overflowing is primarily based upon the grain
size of the bed material, i.e., (cohesive or non-cohesive material) when it comes to the
interaction between the bed and the soil layer [46]. Since cohesive soil layers in model
size studies may be quite challenging to employ, many researchers, as mentioned above
(Section 2.3), have used non-cohesive grains as a soil layer in the context of scouring
investigations. Another critical consideration is the flow duration for the development of
the scour profile for a certain particle size. Considering the non-cohesive particle size as a
bed material, maximum scouring can be estimated when the scouring profile achieves an
equilibrium state [35]. Hence, in this present study, the flow duration was chosen when the
scour depths achieved the equilibrium state. Figure 3 shows the development of scouring
(Sd, maximum scour depth) as a function of overflow time (in seconds) for case NM
(nothing/without geogrid moveable) against the maximum dimensionless overtopping
depth (Dp∗ = 0.4). It is obvious from the Figure 3 that once the overflow time (from the
levee model) reached about 200 s (approx., 3 min 20 s), the equilibrium scoured depth could
be attained. Thus, this flow duration was chosen for all the experimental trails because
the highest scouring depth achieved equilibrium conditions at the overflow time of 200 s,
and no significant changes were observed in the scouring profiles after this flow duration.
Moreover, according to the Froude similitude rule of the physical scale, it was probably
1600 s (33 min) on the real physical scale of 1/100.

Fluids 2022, 7, 299  6 of 19 
 

mm as a bed material for the soil layer to achieve optimum scouring [42,43]. Furthermore, 

since the soil, in general, is very cohesive, when employing non‐cohesive particles as soil, 

the  particle  size  must  be  greater  with  higher  gravity  to  reflect  soil  cohesivity  [44]. 

Otherwise, the cohesive soil material would be entirely washed away, due to the direct 

impact of the high  intensity overflow depth on the bed. Therefore, based on the above 

reasons, the non‐cohesive grain size or diameter of the particle used for the movable bed 

material was selected to ensure the scouring phenomenon under clear water conditions 

[9,10,26,28,35,45], for which the Froude similitude law is not applicable. Thus, the movable 

bed was filled with gravel particles and placed from the levee edge to farther downstream 

of the pooled water edge, covering an area of 1.8 m long, 0.25 m in width and a constant 

height (𝑯𝑻ሻ of 0.15 m. As a support, a wooden flat plate with a depth equal to the gravel 

bed was  set at  the pooled water  edge  to protect  the gravel  layer  from washing  away 

during the flow. 

2.4. Flow Duration 

The scouring phenomenon caused by overflowing is primarily based upon the grain 

size of  the bed material,  i.e.,  (cohesive or non‐cohesive material) when  it comes  to  the 

interaction between the bed and the soil layer [46]. Since cohesive soil layers in model size 

studies may  be  quite  challenging  to  employ, many  researchers,  as mentioned  above 

(Section  2.3), have used non‐cohesive grains  as  a  soil  layer  in  the  context of  scouring 

investigations. Another critical consideration is the flow duration for the development of 

the scour profile for a certain particle size. Considering the non‐cohesive particle size as a 

bed material, maximum scouring can be estimated when the scouring profile achieves an 

equilibrium state [35]. Hence, in this present study, the flow duration was chosen when 

the  scour  depths  achieved  the  equilibrium  state.  Figure  3  shows  the  development  of 

scouring (𝑺𝒅 , maximum scour depth) as a function of overflow time (in seconds) for case 

NM  (nothing/without  geogrid  moveable)  against  the  maximum  dimensionless 

overtopping depth ሺ𝑫𝒑∗ ൌ 𝟎. 𝟒). It is obvious from the Figure 3 that once the overflow time 

(from the levee model) reached about 200 s (approx., 3 min 20 s), the equilibrium scoured 

depth could be attained. Thus, this flow duration was chosen for all the experimental trails 

because the highest scouring depth achieved equilibrium conditions at the overflow time 

of 200 s, and no significant changes were observed in the scouring profiles after this flow 

duration. Moreover, according to the Froude similitude rule of the physical scale, it was 

probably 1600 s (33 min) on the real physical scale of 1/100. 

 

Figure 3. Time progress of dimensionless maximum scour depth (Sd*) at the initial stage to set the 

equilibrium state. 

Figure 3. Time progress of dimensionless maximum scour depth (Sd*) at the initial stage to set the
equilibrium state.

2.5. Acquisition System of the Experimental Data

A previous study conducted by [10] demonstrated that the ratio of the channel width
to the approaching flow depth ratio should be greater than 5 to limit the influence of
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side walls; therefore, this ratio was maintained in the present study. Moreover, to obtain
accurate experimental data, prior research conducted by Anjum, and Tanaka [47] suggested
that, to reduce the impact of the secondary circulation induced by side walls on the
water surface profiles, the water depth measurement should be taken at the centre of the
channel. Therefore, in the present study, during the 1st phase, i.e., only rigid bed with
nothing (NR) and geogrid cases (G1R/G2R), the water levels were measured throughout
the centre of the channel flume by using the rail mounted point gauge (KENEK corporation,
accuracy ± 0.1 cm). Moreover, to observe the types of the flow structures caused by the
hydraulic jump, the flow behaviour was visualized with a high definition (HD) camera
(model = Olympus, frame rate = 1/30). Overall, two different video cameras were used,
which were placed at the top and side of the channel, respectively. These HD cameras were
operated with the computer running photography software K-II ver.1.03 to record and
analyze the videos. In each experimental trail, the water levels were analyzed (within the
pooled water/water cushion) through the captured videos. Because of the complicated
flow patterns and fluctuations inside the pooled water, the minimum and maximum depths
of the water surface were noted at a fixed position with intervals of 1.8 cm to 5 cm in
various consecutive frames and then averaged. During the 2nd phase, i.e., moveable bed
with nothing/no geogrid (NM) and geogrid cases (G1M/G2M), the same (HD) camera was
used to visualize the scour development process. After each experimental trail, the three-
dimensional (3D) laser displacement gauge (model name = Keyence LK-500 cooperation)
was used to measure the scouring at a small interval of 1–2 cm (for obtaining the accuracy),
depending on the variation in the gravel bed both in the longitudinal and transverse
directions. The 3D laser displacement gauge was connected to the PC, and the LJ navigator
was used to obtain the data of the scour profile, which was further analyzed in Fortran
Software to obtain the final values of the scour depths. Finally, the scouring profiles were
created using the measured scouring data.

2.6. Dimensional Analysis

It is mandatory to scale down the prototype model to a smaller size to investigate and
observe the actual phenomena in laboratory experiments under controlled conditions. In
the present experimental study, the scale of 1/100 was considered to estimate the behavior
of the prototype. This study mainly focused on the impact of nappe flow and scouring on
the downstream side by considering the following associated dimensional parameters (1),
as shown in Figure 2b–e.

f1
(
DC, DP, Dg, HE, HT, Sd, d, di, LS, Vc, g, ρ, µ, σ

)
= 0 (1)

where DC represents the critical overflow depth; DP is the pooled water depth; Hg is
the height of the geogrid above the bed (5 cm); Dg is the flow depth above the geogrid
(=DP −Hg); HE is the height of the embankment from the downstream toe, which was
constant, i.e., 20 cm; HT = height of moveable/rigid bed, which was taken as constant, i.e.,
15 cm; Sd is the maximum scour depth; d is the aperture size of the geogrid; di is the nappe
thickness, Ls is the length of the scour hole; Vc is the initial critical flow velocity, g is the
gravitational constant, ρ is the water density in kg/m3, and µ is the viscosity of the water.

The Buckingham’s pi theorem was used to derive the following modified Pi groups to
identify the relevant dimensionless parameters and the governing ones are considered in
the results:

f
(

DC
HE

,
DP

HE
,

d
di

,
Sd
HT

,
Ls

HT
,

Vc√
gDc

,
ρDcVc

µ
,

ρDcVc
2

σ

)
= 0 (2)

f(DC∗ , DP∗ , d∗, HE, HT, Sd∗ , LS∗ , Fro, Re, We) = 0 (3)

Water density and dynamic viscosity, as well as air–water surface tension, are impor-
tant fluid characteristics to consider in free-surface gravity flow. As a result, it is necessary
to maintain the same scale parameters as the actual experiment, such as Froude, Reynolds,
and Weber numbers, to validate this model scale experiment. It is common practice to
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use Froude similarity rather than the Reynolds number to describe free-surface gravity
flows [48]. Therefore, to specify the hydraulic conditions, Froude similarity was employed
in the current study (discussed in Section 2.1). Furthermore, in each case, the density and
viscosity of the water were the same; therefore, the Reynolds number was ignored.

The experiments were carried out in a smooth glass sided wall with a very small bed
slope and the water level was measured along the centerline of the channel. Thus, the
influence of wall roughness was also eliminated. Furthermore, to reduce the effect of water
surface tension, which is related to the dimensionless Weber number, the lowest necessary
Weber number should be greater than 11 [49]. Previous research conducted by Peakall
and Warburton [50] has also shown that the Weber number threshold ranges from around
10 to 120, and values less than this result in some surface tension-induced deformation in
the modelled experiment. The Weber number determined in this investigation was larger
than 10 and varied between 67 and 267; thus, it was supposed that the surface tension had
no effects on the trails and was thought to be negligible.

This study mainly focused on the scour reduction in the flood overtopping flow
through the combination of pooled water and geogrids; therefore, the scour reduction rate,
i.e., scour depth (Sd∗ =

Sd
HT

) and scour length (LS∗ =
Ls
HT

), is a function of the dimensionless

overtopping depth (Dc∗ = DC
HE

), in which DC is calculated from the Froude similarity

(discussed in Section 2.1), pooled water depths (Dp∗=
DP
HE

), and aperture size of the geogrid(
d∗ = d

di

)
.

Sd∗ , LS∗ = f(DC∗ , DP∗ , d∗) (4)

Hence, three varying dimensionless overtopping depths (Dc∗=
DC
HE

, (0.1, 0.15, 0.2), in
which DC was considered as 2, 3, and 4 cm and HE was constant, i.e., 20 cm), and four
different dimensionless pooled water depths (Dp∗=

DP
HE

, 0.30, 0.35, 0.40, 0.45, in which DP
was selected as 6, 7, 8 and 9 cm and HE was constant i.e., 20 cm) were chosen for the
experimental trials. The geogrids with two different aperture sizes, (d) = (G1) 6.5 mm and
(G2) 2.5 mm, were selected.

2.7. Determination of Jet Thickness, Angle with Horizontal and Impact Velocity

The relation between overtopping depth (DC) and thickness (di), impact velocity (Vi)
and angle (θ) of the approaching nappe is given in Table 2. Rand [51] conducted several
experiments and presented the following Equations (5)–(7) to find the thickness, velocity,
and angle of the approaching nappe flow.

di = Dc ∗ 0.687 ∗ [Dc

h
]
0.483

(5)

Vi = Vc ∗ 1.455 ∗ [Dc

h
]
−0.483

(6)

tanθ = 0.838 ∗ [Dc

h
]
−0.586

(7)

where di is the nappe thickness, DC is the critical overflow depth, h is the height of the
levee, Vi is the velocity of the approaching nappe, VC is the critical velocity, θ is the angle
of the approaching nappe with a horizontal layer. Table 2 indicates that the magnitude of
Vi and di increases with increasing DC, while the angle (θ) decreases with increasing DC.

Furthermore, Yen [52] and Agostino and Ferro [53] presented an analytical approach
to find the maximum scour depth (Sd) and length of scour depth (Ls), respectively. The
experimental results of Sd and Ls were compared with the results.
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Table 2. Analysis of experiments.

DC*
Thickness of Approaching Nappe (di) m Angle with Horizontal (θ) Impact Velocity

Experimental Analytical (Equation (5)) Experimental Analytical (Equation (7)) (Vi) m/s (Equation (6))

0.1 0.005 0.0055 70.86 71.63 1.95
0.15 0.0089 0.008 69.1 68.45 1.96
0.2 0.0133 0.0123 66.34 65.27 1.98

3. Analysis of Results and Discussions
3.1. Flow Structure Analysis
3.1.1. Flow Structure Manifestation and Its Physical Identification

The flow structure was mainly classified upon the base of different types of hydraulic
jump. It was noticed during all cases that the formation of hydraulic jump was mainly
dependent upon the dimensionless overtopping depth (Dc∗ ), and aperture size of the
geogrid (d∗), irrespective of the dimensionless pooled water depth (Dp∗ ). During all the
experimental trials, overall, four manifestations of hydraulic jump were observed and were
named as type-(a, b, c and d), respectively, as shown in Figure 4.
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c. A submerged hydraulic jump was formed.
d. Hydraulic jump with a standing wave was generated.

3.1.2. Flow Structure Classification

Table 3 represents that the flow structure classification for the NR, G1R and G2R
cases, at various dimensionless overtopping depths (Dc∗ ), pooled water depths (Dp∗ ) and
aperture sizes (d∗) of the geogrid. During all cases (NR, G1R and G2R), the flow structure
was reported as type (a) at all pooled water depths (Dp∗ = 0.30, 0.35, 0.40 and 0.45) and at the
lowest Dc∗ = 0.1. For type (a), the nappe impinged on the pooled water with lower velocity
and there was no evidence of hydraulic jump, as shown in Figure 4a. As the overtopping
depth was raised (Dc∗ = 0.15, 0.2), the velocity and thickness of the approaching nappe
also increased, causing the impact of the approaching nappe to increase, converting the
flow structure into type (b) and (c), as shown in Figure 4 during the NR and G1R case.
Markel et al. [54] observed similar flow manifestation. During these flow structures of
types (b) (Figure 4b) and (c) (Figure 4c), the impinging nappe flow directly struck the
pooled water up to the bed, where it bounced upstream and generated distinct surface
rollers and hydraulic jump. For maximum Dc∗ = 0.2, only type (c) was observed, where the
approaching nappe flow appeared in two parts. The first part bounced upstream and joined
the mainstream flow and second part was reflected, which generated the anticlockwise
rollers and tended to form a complete submerged hydraulic jump, as shown in Figure 4c.
It can be said that the impact of the approaching nappe flow significantly varies with
the variation in the dimensionless overtopping depth Dc∗ during the NR and G1R cases,
irrespective of the dimensionless pooled water depth Dp∗ .

Table 3. Flow structure classification.

Case Name DP* DC* = 0.1 DC* = 0.15 DC* = 0.2

NR cases

0.45 a b c
0.4 a b c
0.35 a b c
0.30 a b c

G1R cases

0.45 a b c
0.4 a b c
0.35 a b c
0.30 a b c

G2R cases

0.45 a d d
0.4 a d d
0.35 a d d
0.30 a d d

The manifestation of flow structure significantly varied after applying geogrid-2 (G2
with aperture 2.5 mm) during the G2R cases, as compared to the NR and G1R cases. Initially,
the flow structure was type (a) at the lowest Dc∗ = 0.1, while it was converted into type (d)
as the Dc∗ was increased from 0.1 to 0.15 and 0.2, respectively, during all the Dp∗ . The G2
played an important role during the formation of type (d), as shown in Figure 4d, because
when the approaching nappe flow impinged on the pooled water, it faced two obstacles.
The first one is the pooled water, which provides a counterforce and acts as a flexible
bottom plate [39]. The second obstacle was the geogrid (G2) with fine meshing, which
acts as a rigid bed that generates hydraulic jump with a standing wave. On the contrary,
Markel et al. [54] observed this type (d) of flow structure at the highest Dc∗ and lowest
Dp∗ , where the approaching flow had to face a lesser water cushion effect due to the lower
pooled water depth and it directly struck the downstream bed and generated hydraulic
jump with a standing wave. The presence of G2 with the pooled water depth proved to
be very advantageous to minimize the impact of the approaching nappe flow, which may
protect the downstream bed against erosion.
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It can be said that the flow structure during NR and G1R was mainly dependent upon
the Dc∗ , irrespective of the Dp∗ and d∗. On the contrary, the flow structure significantly
varied due to the Dc∗ , in addition to the aperture size of the geogrid (d∗) during the G2R
cases. From the above discussion, it can be concluded that the G2R cases proved very
effective in changing the flow structure and in minimizing the impact of the approaching
nappe flow, as compared to the NR and G1R cases.

3.2. Analysis of Scouring
3.2.1. Effect Dimensionless Pooled Water Depth (Dp∗ ) and Overtopping Depth (Dc∗ ) on
Scour Profile

A variation in scouring due to the nappe flow was observed for all the cases against the
varying non dimensional overtopping depths (Dc∗ ) and pooled water depths (Dp∗ ). During
all the cases, including NM, G1M and G2M, the scouring is initiated at the place where the
nappe flow directly strikes, and it propagates further both upstream and downstream and
finally, a scour hole is generated, as shown in Figures 5–7, respectively. The scour depths
were increased gradually and after some time, they reached their maximum value and later
became uniform (equilibrium state). It can be observed from Figures 5–7 that the scour
profiles significantly varied after changing the Dc∗ , Dp∗ and d∗, respectively. Figure 5a–c
represent the scour profiles variations after changing the Dp∗ , and Dc∗ during the NM cases.
During the NM cases, the scour phenomena were mainly dependent upon two considered
parameters, i.e., Dc∗ and Dp∗ .
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As it can be observed from Figures 5a and 8a,b, the maximum scour depth of the hole
and its length reached their minimum values at the lowest dimensionless overtopping
depth (Dc∗ = 0.1) during all the pooled water depths, While the scour depth and length
increased with the increase in (Dc∗ = 0.15) and reached their maximum values at the
highest (Dc∗ = 0.20), as shown in Figure 5b,c and Figure 8a,b. It was due to this reason
that increasing the Dc∗ increased the impact velocity and thickness of the approaching
nappe flow, as shown in Table 2. Afreen et al. [43] and Takegawa et al. [35] also reported
similar results during their experiments and stated that the scour depth increased with the
increase in Dc∗ . The experimental results of the maximum non dimensional scour depth
(Sd∗ ) and length of scour hole (Ls∗ ) have been compared with the analytical results shown
in Figure 8a,b. It has been observed that Sd∗ and Ls∗ were very close to the results of the
experimental trial with the lowest Dp∗ at all Dc∗ .

The scour profiles show that the scour depth decreases with the increasing Dp∗ during
all NM cases, as shown in Figures 5a–c and 8a,b, respectively. Approximately, scour
reduction rates of 32%, 23% and 18% were observed by changing the Dp∗ from 0.30 to
0.45 when Dc∗ = 0.1, 0.15 and 0.2, respectively. The scour reduction with the increments in
Dp∗ was due to the water cushion effect of the accumulated pooled water, which applies
a counterforce to the directly striking nappe flow [38], which reduced the impact of the
nappe flow.
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Figure 8. (a) Relation between maximum scour depth (Sd*) and (b) length (LS*) and dimensionless
overtopping depth (Dc*) during NM case.

3.2.2. Combined Effect of Dimensionless Pooled Water Depth (Dp∗ ) and Geogrid on
Scour Profile

The scour phenomena were significantly affected by applying the combination of
pooled water and the geogrid. Figures 6a–c and 7a–c represent the scour profiles during
the G1M and G2M cases for the dimensionless overtopping depths (Dc∗ ) of 0.1, 0.15 and 0.2,
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respectively. It can be observed from the scour profiles (Figures 6 and 7) that the utilization
of pooled water depths (Dp∗ ), along with the geogrid, reduced the impact of nappe on the
downstream bed, meaning that the scouring was significantly reduced, as compared to the
NM cases during all Dc∗ (0.1, 0.15 and 0.2).

The scouring phenomena observed during the G1M and G2M case were different
compared to the NM cases because the combined effect of the water cushion and geogrid
acts as a dual barrier, which reduces the impact of the approaching nappe flow. The
maximum scour depth (Sd*) during G1M and G2M was mainly dependent upon the
dimensionless aperture size (d∗) of the geogrid. The scour depth decreases with the
increase in Dp∗ , as shown in Figures 6, 7 and 9a. Approximately 30% (during the NM case),
74% (during the G1M case) and 100% (during the G2M case) scour reduction occurred
as the Dp∗ increased from 0.30 to 0.45 at a constant Dc∗ of 0.2 (Figure 9), while the scour
depth increased with the increase in Dc∗ during all G1M and G2M cases, as shown in
Figures 6 and 7.
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The scour reduction during these cases (G1M and G2M) was mainly due to the
presence of the geogrid, which suppresses the fluid force of the approaching nappe flow [35].
Although both geogrids performed very significant roles during the G1M and G2M cases
as compared to the NM cases Figure 8, the performance of the G2M cases (G2 with aperture
size d = 2.5 mm) was more satisfactory than G1M (G1 with aperture size d = 6.5 mm), as
shown in Figure 8c,d. This was because 100% scour reduction was observed during the
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G2M cases and was due to the aperture size of the geogrid. As the dimensionless aperture
size (d∗) decreased (d∗ < 0.5 during G2), the impact of nappe was significantly reduced
by the finer openings of the geogrid, which significantly reduced the scouring. As the d∗

increased during G1 (d∗ > 0.5), the impact of the approaching nappe was not significantly
reduced due to the coarser aperture size, as compared to the G2. The difference between
G1 and G2 can be observed in Figure 10.
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4. Conclusions

This study was conducted to introduce a novel countermeasure against scouring
due to the direct collision of the overflowing nappe at the downstream side of the levee.
Behind the levee, two countermeasure techniques were examined, i.e., by providing the
water cushion/pooled water and the geogrids with two different aperture sizes, large
(G1 = d = 6.5 mm) and small (G2 = d = 2.5). Flume experiments were conducted in a
laboratory channel through two varying phases (rigid and moveable bed conditions).
During the first phase (rigid bed cases), flow structure variations were observed, due to the
formation of hydraulic jump by providing only dimensionless pooled water ranging from
(Dp∗ = 0.3–0.45), named as (NR) no geogrid with rigid bed and then in combination with
the selected two geogrids (G1R/G2R) against the three dimensionless overtopping depths
(DC∗ = 0.1, 0.15, 0.2). During the second phase (moveable bed material), the development
of the scour process was observed by replacing the rigid bed with non-cohesive gravel bed
material under the same conditions, i.e., varying the dimensionless pooled depths (DP∗),
geogrids with different aperture sizes (G1M/G2M) and the dimensionless overtopping
depths (DC∗). The following conclusions were derived from the present study.

When only pooled water (DP∗) was applied behind the levee during both the first
(rigid) and second (moveable) phase (i.e., NR and NM), the flow structures (hydraulic jump
classification) and scour development significantly varied with the changing dimensionless
pooled water depths (Dp∗ ) and overtopping depths (DC∗ ). During the NM case, i.e., no
geogrid with moveable bed, the scour depth increased by approximately 93% (when
Dp∗ = 0.30) and 62% (when Dp∗ = 0.45) when the Dc∗ increased from 0.1 to 0.2. This means
that the highest values of DC∗ played a significant role in increasing the scouring at the
downstream side of the levee, as compared to the lowest DC∗ value. On the contrary, when
the Dp∗ increased from 0.30–0.45, the scour depth decreased, i.e., around 17–31%.

The combination of the geogrid and pooled water (G1M and G2M cases) played a vital
role in suppressing the scour depth. The performance of the G1M cases with aperture sizes
d = 6.5 mm were more effective as compared to NM and approximately 57–78% scour
reduction occurred during G1M after changing the Dp∗ from 0.30 to 0.45. On the contrary,
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the G2M cases with aperture sizes d = 2.5 mm were more effective as compared to the
G1M and NM cases because 100% scour reduction was reported during the G2M cases
after the changing Dp∗ from 0.30 to 0.45. It was due to the dimensionless aperture size
(d∗ < 0.5 during geogrid 2) that the impact of nappe was significantly reduced by the finer
openings of geogrid 2, which significantly reduced the scouring. Hence, the mesh size of
the geogrid must be finer to suppress the scouring.
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