Computational Inertial Microfluidics: Optimal Design for Particle Separation
Abstract
:1. Introduction
2. Methods
2.1. Optimal Design
2.2. Force Analysis
2.3. Meshing and Mesh Dependent Test
2.4. Numerical Methods
3. Results and Discussion
3.1. Velocity and Dean Vortex
3.2. Optimum Particle Separation
3.3. Validation of Design
3.4. COMSOL Simulation Optimisation
4. Conclusion and Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Re | Reynolds number |
w | width of the channel |
h | height of the channel |
RBC | red blood cell |
WBC | white blood cell |
De | Dean number |
UD | Dean velocity (m/s) |
hydraulic diameter (m) | |
P | pressure (Pa) |
FD | drag force (N) |
FL | lift force (N) |
D | diameter (µm) |
t | time (s) |
Symbols | |
curvature ratio | |
confinement ratio | |
density (kg/m3) | |
dynamic viscosity (kg/m·s) |
References
- Segre, G.; Silberberg, A. Radial particle displacements in Poiseuille flow of suspensions. Nature 1961, 189, 209–210. [Google Scholar] [CrossRef]
- Zhou, J.; Papautsky, I. Fundamentals of inertial focusing in microchannels. Lab Chip 2013, 13, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Martel, J.M.; Toner, M. Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 2014, 16, 371. [Google Scholar] [CrossRef]
- Tan, Y.-C.; Fisher, J.S.; Lee, A.I.; Cristini, V.; Lee, A.P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 2004, 4, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Braff, W.A.; Bazant, M.Z.; Buie, C.R. Inertial effects on the generation of co-laminar flows. J. Fluid Mech. 2015, 767, 85–94. [Google Scholar] [CrossRef]
- Bazaz, S.R.; Mashhadian, A.; Ehsani, A.; Saha, S.C.; Krüger, T.; Warkiani, M.E. Computational inertial microfluidics: A review. Lab A Chip 2020, 20, 1023–1048. [Google Scholar] [CrossRef]
- Sajeesh, P.; Sen, A.K. Particle separation and sorting in microfluidic devices: A review. Microfluid. Nanofluid. 2014, 17, 1–52. [Google Scholar] [CrossRef]
- Di Carlo, D. Inertial microfluidics. Lab A Chip 2009, 9, 3038–3046. [Google Scholar] [CrossRef]
- Nasiri, R.; Shamloo, A.; Ahadian, S.; Amirifar, L.; Akbari, J.; Goudie, M.J.; Lee, K.; Ashammakhi, N.; Dokmeci, M.R.; Di Carlo, D. Microfluidic-based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications. Small 2020, 16, 2000171. [Google Scholar] [CrossRef]
- Shields IV, C.W.; Reyes, C.D.; López, G.P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015, 15, 1230–1249. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, E.; Patowari, P.K.; Pati, S. Numerical investigation of mixing performance in spiral micromixers based on Dean flows and chaotic advection. Chem. Eng. Processing-Process Intensif. 2021, 169, 108609. [Google Scholar] [CrossRef]
- Asmolov, E.S.; Dubov, A.L.; Nizkaya, T.V.; Harting, J.; Vinogradova, O.I. Inertial focusing of finite-size particles in microchannels. J. Fluid Mech. 2018, 840, 613–630. [Google Scholar] [CrossRef]
- McNamara, G.R.; Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 1988, 61, 2332. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Tang, W.; Xiang, N.; Ni, Z. Numerical simulation of particle focusing in a symmetrical serpentine microchannel. RSC Adv. 2016, 6, 57647–57657. [Google Scholar] [CrossRef]
- Schaaf, C.; Stark, H. Particle pairs and trains in inertial microfluidics. Eur. Phys. J. E 2020, 43, 1–13. [Google Scholar] [CrossRef]
- Kotsalos, C.; Latt, J.; Chopard, B. Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow. J. Comput. Phys. 2019, 398, 108905. [Google Scholar] [CrossRef]
- Sonmez, U.; Jaber, S.; Trabzon, L. Super-enhanced particle focusing in a novel microchannel geometry using inertial microfluidics. J. Micromech. Microeng. 2017, 27, 065003. [Google Scholar] [CrossRef]
- Gou, Y.; Jia, Y.; Wang, P.; Sun, C. Progress of inertial microfluidics in principle and application. Sensors 2018, 18, 1762. [Google Scholar] [CrossRef]
- Amini, H.; Lee, W.; Di Carlo, D. Inertial microfluidic physics. Lab Chip 2014, 14, 2739–2761. [Google Scholar] [CrossRef]
- Hou, H.W.; Warkiani, M.E.; Khoo, B.L.; Li, Z.R.; Soo, R.A.; Tan, D.S.-W.; Lim, W.-T.; Han, J.; Bhagat, A.A.S.; Lim, C.T. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 2013, 3, 1259. [Google Scholar] [CrossRef] [Green Version]
- Nivedita, N.; Papautsky, I. Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 2013, 7, 054101. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Namgung, B.; Lim, C.T.; Bae, J.-E.; Leo, H.L.; Cho, K.S.; Kim, S. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid. J. Chromatogr. A 2015, 1406, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; A Khan, Z.; Barakat, E.; Park, S. Label-free electrochemical microfluidic chip for the antimicrobial susceptibility testing. Antibiotics 2020, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Weddemann, A.; Wittbracht, F.; Auge, A.; Hütten, A. Positioning system for particles in microfluidic structures. Microfluid. Nanofluid. 2009, 7, 849–855. [Google Scholar] [CrossRef]
- Mogi, K.; Fujii, T. A microfluidic device for stepwise size-based capturing of suspended particles. J. Micromech. Microeng. 2010, 20, 055015. [Google Scholar] [CrossRef]
- Martel, J.M.; Toner, M. Particle focusing in curved microfluidic channels. Sci. Rep. 2013, 3, 3340. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Kuntaegowdanahalli, S.S.; Papautsky, I. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 2008, 8, 1906–1914. [Google Scholar] [CrossRef]
- Park, J.-S.; Song, S.-H.; Jung, H.-I. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 2009, 9, 939–948. [Google Scholar] [CrossRef]
- Nieuwstadt, H.A.; Seda, R.; Li, D.S.; Fowlkes, J.B.; Bull, J.L. Microfluidic particle sorting utilizing inertial lift force. Biomed. Microdevices 2011, 13, 97–105. [Google Scholar] [CrossRef]
- Guide, I. Comsol Multiphysics; Version 5.6, COMSOL AB; COMSOL Inc.: Stockholm, Sweden, 1998; pp. 204–208. [Google Scholar]
- Lagerstrom, P.A. Laminar Flow Theory; Princeton University Press: Princeton, NY, USA, 1996. [Google Scholar]
- Mashhadian, A.; Shamloo, A. Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel. Anal. Chim. Acta 2019, 1083, 137–149. [Google Scholar] [CrossRef]
- Palumbo, J.; Navi, M.; Tsai, S.S.; Spelt, J.K.; Papini, M. Inertial particle separation in helical channels: A calibrated numerical analysis. AIP Adv. 2020, 10, 125101. [Google Scholar] [CrossRef]
- Ni, C.; Jiang, D. Three-dimensional numerical simulation of particle focusing and separation in viscoelastic fluids. Micromachines 2020, 11, 908. [Google Scholar] [CrossRef] [PubMed]
- Multiphysics, C. Introduction to Comsol Multiphysics®; COMSOL Multiphysics; COMSOL Inc.: Stockholm, Sweden, 1998; Volume 9, p. 32. [Google Scholar]
- Kuzmin, D.; Mierka, O.; Turek, S. On the Implementation of the k-[Epsilon] Turbulence Model in Incompressible Flow Solvers Based on a Finite Element Discretization. Int. J. Comput. Sci. Math. 2007, 1, 193–206. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.C.; Francis, I.; Nassir, T. Computational Inertial Microfluidics: Optimal Design for Particle Separation. Fluids 2022, 7, 308. https://doi.org/10.3390/fluids7090308
Saha SC, Francis I, Nassir T. Computational Inertial Microfluidics: Optimal Design for Particle Separation. Fluids. 2022; 7(9):308. https://doi.org/10.3390/fluids7090308
Chicago/Turabian StyleSaha, Suvash C., Isabella Francis, and Tanya Nassir. 2022. "Computational Inertial Microfluidics: Optimal Design for Particle Separation" Fluids 7, no. 9: 308. https://doi.org/10.3390/fluids7090308
APA StyleSaha, S. C., Francis, I., & Nassir, T. (2022). Computational Inertial Microfluidics: Optimal Design for Particle Separation. Fluids, 7(9), 308. https://doi.org/10.3390/fluids7090308