Hydrodynamics of Direct Contact Condensation Process in Desuperheater
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Hydrodynamics of the Flow Regime, an Overview
3.2. Circulation Flow Ring and Vortical Structures Inside the Flow Regimes
3.3. Effect of Injection Time on the Instabilities inside the Flow Regime
3.4. Flow Hydrodynamics in the Region Far from the Steam Nozzle
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nkomo, J.C. Energy and economic development: Challenges for South Africa. J. Energy South Afr. 2016, 16, 11. [Google Scholar]
- Rosas-Flores, J.A.; Rosas-Flores, D.; Gálvez, D.M. Saturation, energy consumption, CO2 emission and energy efficiency from urban and rural households appliances in Mexico. Energy Build. 2011, 43, 10–18. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Fattahpour, V.; Roostaei, M.; Kotb, O.; Wang, C.; Nouri, A.; Sutton, C.; Fermaniuk, B. An Experimental Investigation into Sand Control Failure due to Steam Breakthrough in SAGD Wells. In Proceedings of the Society of Petroleum Engineers—SPE Canada Heavy Oil Technical Conference, CHOC 2018, Calgary, AB, Canada, 13–14 March 2018; Volume 2018. [Google Scholar]
- Australian Government, Infrastructure. 2010. Available online: www.infrastructure.gov.au (accessed on 14 August 2022).
- Aguilar, C.; White, D.J.; Ryan, D.L. Domestic Water Heating and Water Heater Energy Consumption in Canada; CBEEDAC: Edmonton, AB, Canada, 2005. [Google Scholar]
- Energy Efficiency Trends and Policies in the Household and Tertiary Sectors. An Analysis Based on the ODYSSEE and MURE Databases; Odyssee-MURE Project: Brussels, Belgium, 2015.
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy consumption and efficiency in buildings: Current status and future trends. J. Clean. Prod. 2015, 109, 118–130. [Google Scholar] [CrossRef]
- Hepbasli, A.; Kalinci, Y. A review of heat pump water heating systems. Renew. Sustain. Energy Rev. 2009, 13, 1211–1229. [Google Scholar] [CrossRef]
- Jaisankar, S.; Ananth, J.; Thulasi, S.; Jayasuthakar, S.T.; Sheeba, K.N. A comprehensive review on solar water heaters. Renew. Sustain. Energy Rev. 2011, 15, 3045–3050. [Google Scholar] [CrossRef]
- Shukla, A.; Buddhi, D.; Sawhney, R.L. Solar water heaters with phase change material thermal energy storage medium: A review. Renew. Sustain. Energy Rev. 2009, 13, 2119–2125. [Google Scholar] [CrossRef]
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Ullah, A.; Khan, A.; Sanaullah, K.; Ghazwani, H.A.; Alexandrovich, T.P. Effects of External Oscillations on Cocurrently Flowing Steam–Water in Pipes. J. Vib. Eng. Technol. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Linden, P.F. The interaction of a vortex ring with a sharp density interface: A model for turbulent entrainment. J. Fluid Mech. 1973, 60, 467–480. [Google Scholar] [CrossRef]
- Bhandari, P.; Prajapati, Y.K. Influences of tip clearance on flow and heat transfer characterstics of open type micro pin fin heat sink. Int. J. Therm. Sci. 2022, 179, 107714. [Google Scholar] [CrossRef]
- Maxworthy, T. Turbulent vortex rings. J. Fluid Mech. 1974, 64, 227–240. [Google Scholar] [CrossRef]
- Liess, C.; Didden, N. Experimente zum Einflußder Anfangsbedingungen auf die Instabilität von Ringwirbeln. ZAMM J. Appl. Math. Mech. Angew. Math. Mech. 1976, 56, T206–T208. [Google Scholar]
- Maxworthy, T. Some experimental studies of vortex rings. J. Fluid Mech. 1977, 81, 465–495. [Google Scholar] [CrossRef]
- Krutzsch, C.-H. {\ “U} about an experimentally observed appearance on vertebral rings during their translational movement in real liquids. Ann. Phys. 1939, 427, 497–523. [Google Scholar] [CrossRef]
- Maxworthy, T. The structure and stability of vortex rings. J. Fluid Mech. 1972, 51, 15–32. [Google Scholar] [CrossRef]
- Moore, D.W. A numerical study of the roll-up of a finite vortex sheet. J. Fluid Mech. 1974, 63, 225–235. [Google Scholar] [CrossRef]
- Widnall, S.E.; Bliss, D.B.; Tsai, C.Y. The instability of short waves on a vortex ring. J. Fluid Mech. 1974, 66, 35–47. [Google Scholar] [CrossRef]
- Widnall, S.E.; Sullivan, J.P. On the stability of vortex rings. Proc. R. Soc. Lond. A Math. Phys. Sci. 1973, 332, 335–353. [Google Scholar] [CrossRef]
- Liess, C.; Didden, N. Experiments on the influence of the initial conditions on the instability of ring vertebrae. ZAMM J. Appl. Math. Mech. Z. Appl. Math. Mech. 1976, 56, T206–T208. [Google Scholar]
- Moore, D.W.; Saffman, P.G. Axial flow in laminar trailing vortices. Proc. R. Soc. Lond. A Math. Phys. Sci. 1973, 333, 491–508. [Google Scholar] [CrossRef]
- Afrasyab, K.; Sanaullah, K.; Takriff, M.S.; Zen, H.; Fong, L.S. Inclined Injection of Supersonic Steam into Subcooled Water: A CFD Analysis. Adv. Mater. Res. 2013, 845, 101–107. [Google Scholar] [CrossRef]
- Khan, A.; Sanaullah, K.; Takriff, M.S.; Zen, H.; Rigit, A.R.H.; Shah, A.; Chughtai, I.R. Numerical and experimental investigations on the physical characteristics of supersonic steam jet induced hydrodynamic instabilities. Asia-Pacific J. Chem. Eng. 2016, 11, 271–283. [Google Scholar] [CrossRef]
- Khan, A.; Sanaullah, K.; Haq, N.U. Development of a Sensor to Detect Condensation of Super-Sonic Steam. Adv. Mater. Res. 2013, 650, 482–487. [Google Scholar] [CrossRef]
- Khan, A.; Sanaullah, K.; Sobri Takriff, M.; Hussain, A.; Shah, A.; Rafiq Chughtai, I. Void fraction of supersonic steam jet in subcooled water. Flow Meas. Instrum. 2016, 47, 35–44. [Google Scholar] [CrossRef]
- Khan, A.; Sanaullah, K.; Takriff, M.S.; Zen, H.; Fong, L.S.; Shah, A. CFD Based Hydrodynamic Parametric Study of Inclined Injected Supersonic Steam into Subcooled Water. In Proceedings of the International Engineering Conference, Energy and Environment (ENCON 2014), Beijing, China, 26–27 June 2014. [Google Scholar]
- Leibovich, S.; Randall, J.D. Solitary waves in concentrated vortices. J. Fluid Mech. 1972, 51, 625–635. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazwani, H.A.; Khan, A.; Taranenko, P.A.; Sinitsin, V.V.; Ghazwani, M.H.H.; Alnujaie, A.H.; Sanaullah, K.; Ullah, A.; Rigit, A.R.H. Hydrodynamics of Direct Contact Condensation Process in Desuperheater. Fluids 2022, 7, 313. https://doi.org/10.3390/fluids7090313
Ghazwani HA, Khan A, Taranenko PA, Sinitsin VV, Ghazwani MHH, Alnujaie AH, Sanaullah K, Ullah A, Rigit ARH. Hydrodynamics of Direct Contact Condensation Process in Desuperheater. Fluids. 2022; 7(9):313. https://doi.org/10.3390/fluids7090313
Chicago/Turabian StyleGhazwani, Hassan A., Afrasyab Khan, Pavel Alexanrovich Taranenko, Vladimir Vladimirovich Sinitsin, Mofareh H. H. Ghazwani, Ali H. Alnujaie, Khairuddin Sanaullah, Atta Ullah, and Andrew R. H. Rigit. 2022. "Hydrodynamics of Direct Contact Condensation Process in Desuperheater" Fluids 7, no. 9: 313. https://doi.org/10.3390/fluids7090313
APA StyleGhazwani, H. A., Khan, A., Taranenko, P. A., Sinitsin, V. V., Ghazwani, M. H. H., Alnujaie, A. H., Sanaullah, K., Ullah, A., & Rigit, A. R. H. (2022). Hydrodynamics of Direct Contact Condensation Process in Desuperheater. Fluids, 7(9), 313. https://doi.org/10.3390/fluids7090313