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Abstract: This article takes insights from a previously derived mathematical framework for the
free settling velocity of particles of any shape to model analytical constructs to solve the hindered
settling velocity of hard particles of any shape. Because the geometry of the physical environment
and continuity can be strictly enforced in the construct model, the relative velocity of the fluid front
pumped upward by the settling particles can be found, thus allowing for calculation by subtracting
the front velocity from the calculated velocity.
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1. Introduction

This article concerns the physical environment formed by small solid particles sus-
pended in a Newtonian fluid, and with how the quantitative volume–mass relationships
between the phase of solid particles and the fluid phase influence the settling velocity of
the suspended particles. The dispersed phase settles at a rate that is reduced or hindered
when the relative volume of particles is higher.

The ratio of hindered settling velocity Vh to the settling velocity of an isolated particle
Vo can be defined as Vh/Vo. The pursuit of this article is to find a ratio that is directly based
on a single mathematical framework that captures the magnitude of both velocities.

The mathematical framework is summarized in [1] where it was evaluated to solve
analytically the effect of shape on Vo in the context of the sedimentation of a single particle
in quiescent fluid, and in the context of the motion of a particle that settles in a fluid
that moves horizontally as a whole. The part of the above pursuit concerned with the
denominator of the ratio was assumed to have been met.

The numerator part of the ratio is fundamental in multiphase flow, but yet not well-
understood. Much research has been performed over the course of many years to elucidate
the intricate relationships controlling Vh. A set of comparable work could be obtained by
applying the following filters:

1. Reynolds number: the maximal particle Reynolds number calculated on the spheres of
naturally occurring materials is approximately 0.2. However, the maximal Reynolds
number for mineral particles of a high aspect ratio (up to 15) can be as high as 2.

2. When considering datasets, the concentration of solids is at least 5% for natural
minerals in water.

3. The examined problem is for hard particles without surface roughness.
4. Where the particles influence neighboring particles, only the effect of voidage (or its

inverse) is considered, and the problem is studied on the physics of a single particle.
Voidage within the range of the validity of the Richarson and Zaki (RZ) equation [2],
in the range from 0.5 to 0.9, is generally acceptable. This filter generally removes batch
sedimentation under Kynch theory because “The settling process is then determined
entirely by a continuity equation, without knowing the details of the forces on the
particle” [3].
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5. When comparing the experimental data, the particle’s geometry was characterized
with sufficient detail.

These filters were applied with a degree of flexibility here. The flexibility was mostly
related to the Reynolds number, as indicated by Hinch [4]: “Note that the Reynolds
number for the bulk macro-scale flow need not be small, because at the macro-scale the
velocity differences and length scales are much larger than at the micro-scale around the
particles”. As such, some studies involving microscale flow in fluidization and transport
are permissibly comparable. For instance, the flow of a suspension through a funnel-like
structure can have a large Re, while the magnitude of the velocity difference between the
fluid phase and the particles can be very small.

The mathematical framework presented in this paper can be considered to be part of
the discussions in the set that falls within the following categories:

(A) Recent research: It is useful to note how active this area of research is today.
(B) Analytical studies concerning the hindered settling velocity of spheres.
(C) Empirical studies concerning the hindered settling velocity of spheres.
(D) Analytical studies concerning the hindered settling velocity of NSPs.
(E) Empirical studies concerning the hindered settling velocity of NSPs.

Some recent studies on this topic (Category A) are those by Ghatage et al. [5], who
conducted Eulerian–Eulerian simulations using a dynamic mesh approach to study the
impact of turbulence on the motion of a settling particle in a monodisperse solid–liquid
fluidized bed. Comparing the obtained results via simulations with those of an earlier
experimental study [6] revealed that this numerical model can properly predict the settling
velocity for low-voidage fluidization in 2D and 3D simulations. Ardekani et al. [7] con-
ducted direct numerical simulations to investigate the impact of vertical density gradients
on the sedimentation of particles in water columns. They discovered that stratification
significantly affects the settling dynamics of a particle, the interaction between a pair of
particles, settling rates, and the microstructure of the suspension of particles.

George Batchelor (8 March 1920–30 March 2000) is the most influential figure in the an-
alytical treatment of the physics controlling the settling behavior of the suspensions of fine
particles (Categories B and D). His work is mostly theoretical [4] and has found application
in computer simulations involving calculations on the scores of spherical particles [8–10].
These theoretical advances have attracted interest in the interpretation of unresolved phe-
nomena involving the low Reynolds number of the flow around particles such as settling
velocity fluctuations [11–14], particle- and bubble-induced drag reduction [15,16], and skin
friction reduction [17]. For instance, Cunha et al. [12] implemented a computational scheme
to calculate the average hindered settling velocity, velocity fluctuations, and particle veloc-
ity correlations. His implementation involved far-field interactions via mobility tensors, an
artificial short-range force, a restoring force for collisions, the calculation of the particle’s
trajectories, and appropriate boundary conditions for the velocity components to reach
a general form of the velocity of the particle. Then, they validated the model using the
empirical correlations of Sangani and Acrivos [18], and Richardson and Zaki [2], and the
analytical solutions by Batchelor and Wen [19], and Davis and Hatice [20].

Batchelor’s work involving non-Brownian spheres and polydisperse systems [19,21]
was also consistent with the empirical correlation by Richardson and Zaki. Some additional
developments in the theoretical treatment of hindered suspensions of nonspherical particles
(Category D) are those of Hinch and Leal [22], and Koch and Shaqfeh [23].

Some empirical approaches to the hindered settling velocity of spheres (Categories
C and E) were published by Steinour H. H. [24], Barnea and Mizrahi [25], Sangani and
Acrivos [18], and Takacs et al. [26]. However, the approach by Richardson and Zaki [27]
is the most widely used. In fact, numerous studies sought to improve its accuracy by
developing expressions for the exponent in the RZ equation [28–32]. Davis and Acrivos [33]
discussed some of these developments. Empirical approaches to NSPs (Category E) were
published in [34–38]. These approaches focus on the effect of the particle shape on hin-
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dered settling exponents envisioned in the RZ equation. The RZ equation for spheres is
presented below:

Vh
Vo

= (1− φ)m (1)

where Vh is the hindered settling velocity, Vo is the settling velocity at infinite dilution from
Stokes’ law, φ is the ratio of the volume of solids Vsolids divided by the total volume of the
suspension of fluids and solids Vtotal . The exponent m of 4.6 is generally used for spheres
in the Reynolds number considered in this study.

Equation (1) was considered to be a valid benchmark, as many of the most rigorous
analyses mentioned above have sought validation on the basis of its calculation and the
deviations found in experimental studies. Even under some of the most rigorous of
Batchelor’s analytical developments, the end result suggests a form that is very similar to
that of Equation (1) and no additional variables. The developments in this article reference
the results to the output of (1) and the deviations reported in the literature as many other
previous studies.

In spite of the research effort briefly overviewed above, Silva et al. [39], regarding
settling suspensions, note: “their inherent complexity has yet to be properly predicted by a
unified numerical model or empirical correlation”. This article proposes an examination of
the potential of this mathematical framework to reduce the burden of this deficiency. The
framework is unified in a coherent analytical connection between the physics controlling
the terminal settling velocity of spheres to the physics controlling the settling velocity of
nonspherical particles and the transport mechanisms for any particle shape with relatively
minimal assumptions. The framework also highlights the deficiency resulting from the
omission of the accurate characterization of the specific surface area of particles as the most
influential physical quantity in processes undoubtedly connected with the dynamics of
viscosity. Future experimental work may well benefit from the establishment of the specific
surface area as a fundamental measure of the of the driving forces influencing the behavior
of settling particles.

2. Mathematical Framework

This article is not concerned with developing the mathematical framework; it is
concerned with the application of the framework to present solutions to the hindered
settling velocity of particles, and to subject the solutions to validations on the basis of
published data. Although a thorough explanation of the framework was presented in [1],
the development of equations can be better understood from [40,41], and the reader is
encouraged to become familiar with those developments. Thus, the subsections below are
intended to summarize the framework, as this single article is insufficient to present the
entirety of the developments forming the framework.

2.1. Spheres

Consider a sphere of radius rs settling in quiescent fluid as a sphere influencing a
spherical portion of the radius r of the ambient fluid concentric with the settling sphere.
The fluid is quiescent beyond this sphere of influence. Consider a rational construction
defining the radius R of this sphere of influence. A boundary limit. Equation (1) captures
the computation of the velocity u profile due to the dynamics of viscosity µ in the spherical
ambient expansion to mobilize the driving force exerted by the particle to the fluid. Because
the sphere is sufficiently small, its submerged weight is transferred to the fluid via its τw.
τw is simply its submerged weight divided by its area.

u =
∇Pf

2µ
(

r2

3
+

2R3

3r
− R2) (2)
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τw is not explicitly expressed in Equation (2). Potential pressure gradient ∇Pf results
from the fraction defined by τw divided by the volume of fluid per square meter that is due
to mobilize it as follows:

τw

( r3
s−R3

3r2
s

)
= ∇Pf (3)

∇Pf can also be derived from the fluid properties (viscosity µ and density ρ f ) as follows:

∇Pf =
µρ f

θ
(4)

with the tributary mass per unit velocity gradient θ calculated to be 1.148× 10−3 (kg-s)/m2 at
different temperatures in water and put to further validation in water, cyclohexane, and
toluene [41].

Because∇Pf in Equation (2) can be obtained from Equation (4) and R also in Equation (2)
can be obtained from Equation (3), the velocity profile from Equation (2) can be computed.

The value of the velocity at the wall is the settling velocity Vs. Thus,

Vs =
∇Pf

2µ
(

r2
s
3
+

2R3

3rs
− R2) (5)

This can also be written in the following form:

Vs =
∇Pf r2

s

2µ
(1 +

2emax

3
− (1 + emax)

2/3) (6)

because the volumetric relationships in Equation (2) imply that a dimensionless maximal
tributary ratio emax, defined as the volume of the ambient fluid divided by the volume of
the particle, is related to the radius of the particle and the ambient fluid via the follow-
ing relationships:

emax =
4/3πR3 − 4/3πr3

s

4/3πr3
s

=
R3 − r3

s

r3
s

(7)

Hence:
R = rs(1 + emax)

1/3 (8)

and
R− rs = rs((1 + emax)

1/3 − 1) (9)

The equilibrium of forces in the fluid with the forces mobilized by the particle also
implies that emax can be obtained as follows:

emax =
(ρs − ρ f )g
∇Pf

(10)

On the basis of some insights provided in [1,41], the limit of applicability of these rela-
tionships was estimated to be a 155 s−1 velocity gradient (τw/µ) and 0.01126 P− s viscosity.

2.2. Nonspherical Particles (NSP)

The mathematical volume and area relationships defining a NSP are necessarily based
on at least two physical dimensions. It is simple to define a sphere of radius rs,eq having
the same area Ansp as that of the NSP. The problem with this is that a sphere so defined
holds a much greater volume (and weight) than the original volume Bnsp of the NSP. For
the sphere so defined, it is, however, simple to define a density ρs,eq that makes it weigh as
much as the NSP. In essence, the goal of the framework is to use Equation (6) to compute
the velocity Vnsp of a NSP by transforming the NSP into a sphere having the same area
and weight (and, thus, the same τw) as those of the NSP. This transformation is much more
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than it seems. Consider Figure 1 as a cross-section of a spherical cone identical on two
perpendicular planes.

Figure 1. Tributary volumes of same magnitude and different shape (microns) for same τw.

The transformation tells us what the effect of changing the shape is. τw does not by
itself define the velocity. The “flatter” tributary volume of the NSP due to its large area
increases the velocity with respect to a sphere having the same τw. This was validated with
experimental measurements for high NSPs.

The equivalent sphere is, thus, implemented by defining rs,eq from the area Ansp of the
NSP as follows:

rs,eq =

(
Ansp

4π

)1/2
(11)

and by extracting the equivalent density ρs,eq from the following relationship:

4/3πr3
s.eqρs,eqg = Bnspρsg (12)

The volumetric relationship between the ambient spherical expansion and the volume
of the equivalent sphere also changes, so that emax turns into emax,eq as follows:

emax,eq =
(ρs,eq − ρ f )g
∇Pf

(13)

Equation (6) for the settling velocity is used for the settling velocity Vnsp of the NSP in
the following form:

Vnsp =
∇Pf r2

s,eq

2µ
(1 +

2emax,eq

3
− (1 + emax,eq)

2/3) (14)

emax,eq can also be obtained for an NSP of volume Bnsp as follows:

emax,eq =
emaxBnsp

4/3πr3
s,eq

(15)

3. The Hindered Settling Velocity of Spheres

Consider settling velocity Vs in a quiescent Newtonian fluid of a sphere of radius rs
falling within an ambient expansion of volume emax times the volume of the settling sphere:

From the standpoint of the mechanics leading to Equation (6), one can be tempted
to use Equation (6) to model the dynamics of hindered settling velocity with a reasoned
adjustment of the mechanics. Such an ambition does not appear to be unjustified: the
velocity profile implied in it bears a volumetric relationship with the solid particle, in a
sense that it is very similar to φ in Equation (1). The challenges that are visible do not
seem difficult to overcome, but the displaced fluid moves upwards, so that if a successful
attempt is performed, the value of the calculated velocity Vcalc from the construction of
the mechanics using Equation (6) would be with reference to a fluid front that is moving
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upward at velocity Vf ront. If so, one can expect that the real hindered settling velocity Vh
with respect to a fixed point is the difference between Vcalc and Vf ront:

Vh = Vcalc −Vf ront (16)

The constructions leading to these velocities are presented below, and the results are
compared with Equation (1).

Because solid volume fraction φ is defined as the volume of solids divided by the total
volume, one can define φ for a single particle of volume Bp within fluid of volume B f as
Bp/(B f + Bp), and since emax is defined as the volume of fluid in the bulk fluid region B f
divided by the volume of the solid particle Bp, φ can be expressed as follows:

φ =
1

emax + 1
(17)

for a single particle. One can, thus, define a hindered tributary ratio eh as

eh =
1
φ
− 1 (18)

associated with φ, which simply defines a spherical tributary volume in which a velocity
profile exists whose boundary value of velocity Vcalc at the wall of the solid sphere can be
calculated using Equation (6). As eh is physically limited externally due to the limited space
where the solid concentration increases, Equation (10), written as

∇Ph =
(ρs − ρ f )g

eh
, (19)

computes pressure gradient ∇Ph in the limited space. Vcalc is, thus,

Vcalc =
∇Phr2

s
2µ

(1 +
2eh
3
− (1 + eh)

2/3), (20)

which can be verified to compute a value of Vh greater than Equation (1), confirming that
the ambition that triggered this discussion is justified. Hindered pressure gradient ∇Ph is,
in fact, an increased pressure gradient. Subscript h and the term “hindered” are maintained
below for view of the context in which they occurs.

The task of reaching reasoned mechanics to derive a construction to compute Vf ront
either separately or by means of mechanics to be captured in Equation (20) seemed daunting
at some point. In essence, Equation (20) tests a hypothesis: with the understanding that
there is of the mechanics, the constructions leading to Equation (20) should calculate a
slightly greater velocity than that suggested by Equation (1). If this failed, a real daunting
challenge would have been imposed; if it succeeded, continuity would be able to supply a
relatively easy answer for Vf ront: because of continuity when a spherical particle settles a
distance 2rs, it pumps a volume that is exactly the volume of the particle back behind the
particle. This fact leads to the constructions presented below to compute Vf ront.

From the standpoint of this work, Vcalc is the only velocity there is to calculate from the
mechanics. There is a fact that needs to be examined from Equation (2), written as follows:

u =
∇Pf

2µ
(

r2

3
+

2R3

3r
− R2) (21)

for free settling particles or as follows:

ucalc =
∇Phs

2µ
(

r2

3
+

2R3
h

3r
− R2

h) (22)
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for the calculation of the boundary value of the settling velocity ucalc. There exists a tributary
volume of radius Rh = rs(1 + eh)

1/3 for which Equation (20) calculates the boundary value
of the velocity at the wall of the solid sphere and for which the flow can be computed [42].
The flow occurs through equatorial area Aring enclosed by radius Rh and radius rs, which
can be calculated from the volumetric relationships as follows:

Aring = πR2
h − πr2

s = π(rs(1 + eh)
1/3)2 − πr2

s = πr2
s ((1 + eh)

2/3 − 1) (23)

The requirement of continuity for a particle that settles a distance 2rs is that it strictly
pumps 4/3πr3

s upward through A. Regardless of the dynamics, where Vf ront is the average
velocity upward, the front advances upward a distance D f ront as

D f ront =
4/3πr3

s
πr2

s ((1 + eh)2/3 − 1)
=

4rs

3((1 + eh)2/3 − 1)
(24)

when the particle settles the 2rs distance. At the same time during which the front t
advances D f ront, the particle advances the real 2rs distance. Vf ront is, thus,

Vf ront =
D f ront

t
(25)

and

Vcalct−Vf rontt = 2rs ⇒ t =
2rs +

4rs
3((1+eh)2/3−1)

Vcalc
(26)

If not obvious, which renders Vf ront and Vh available from Equations (16) and (25),
respectively, and the ratio Vh/Vo is also available from Equations (6) and (16).

Comparison with the R. Z. Equation

Equation (1) yields 0.62 and 0.27 for Vh/Vo with φ equal to 0.1 and 0.25, respectively,
whereas Vh/Vo using Equations (6) and (16) yields 0.67 and 0.34, respectively, for a 2.65 spe-
cific gravity particle 10 µm diameter in water at 20 degrees. Any correlation for spheres via
Equation (1) would have been performed using Stokes’ relationship. To render the reported
observations comparable with the calculation of Vh from Equation (16), Vo must be the
value computed from Stoke’s law. The calculations, thus, yield 0.5 and 0.25 for φ, equal to
0.1 and 0.25, respectively. This is an interesting result when noting that the experimental
hindered settling velocity was reported [30,31,43] to be less than that predicted under the
RZ equation. It is fair to say that the correlation in Equation (1) has all the merits of the
correlations that could be performed with the limited number of quantities accounted
for in it; however, the mechanics here derived are a robust approach to the problem that
lends meaningful insight to embrace the hindered settling velocity Vh,nsp for the NSPs
presented below.

4. Hindered Settling Velocity of Nonspherical Particles

Consider the goals established in developing Equation (16) to be the same for NSPs.
The development of relationships defining the hindered settling velocity Vcalc,nsp of NSPs
follows a similar logic as that of spheres, with the difference that it builds on the relation-
ships for NSPs. Summarized steps with some distinct remarks are presented below.

Where the surface area of the NSP is Ansp, rs,eq is

rs,eq = (
Ansp

4π
)1/2 (27)

because φ is defined by the real volume of the NSPs, and eh is simply eh, as defined by
Equation (18), copied below for ease of reference.
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eh =
1
φ
− 1 (28)

The same applies to the hindered pressure gradient for the NSP for the same reason.
The hindered pressure gradient for the NSP∇Ph is, thus,∇Ph from Equation (19) as follows:

∇Ph =
(ρs − ρ f )g

eh
(29)

The hindered equivalent tributary ratio eh,eq for the NSP having volume Bnsp given
the construction of the rs,eq radius particle from Equation (15) can be written as follows:

eh,eq =
ehBnsp

4/3πr3
s,eq

, (30)

which yields the following equation to solve Vcalc,nsp:

Vcalc,nsp =
∇Phr2

s,eq

2µ
(1 +

2eh,eq

3
− (1 + eh,eq)

2/3) (31)

τnsp and the geometry of the NSP can be verified to be considered in Equation (31) from

τnsp =
rs,eq

3
eh,eq∇Ph (32)

As proposed above, the aim is to compute D f ront, the dimension defining the passing
of the entire particle (and its entire volume) across a horizontal plane is 2rs; however,
such a dimension is not defined for a NSP. As there are many falling particles, it is not
unreasonable to assume that the average dimension defining the passing of the entire
volume Bnsp of the NSP is that of a sphere having the same volume of the NSP. Radius
rvol,nsp so defined can be

rvol,nsp = (
Bnsp

4/3π
)1/3, (33)

where 2rvol,nsp defines the distance that the particle travels to displace a volume of fluid
equal to Bnsp of the NSP, and the displacement of fluid occurs through the interstice of the
ambient fluid defined by areas Ansp and eh,eq. Such an interstice is, thus, defined by the
area Aring of the equatorial ring around the particle of rs,eq radius and the eh,eq volumetric
relationship as

Aring = πR2
h − πr2

s,eq = π(rs,eq(1 + eh,eq)
1/3)2 − πr2

s,eq = πr2
s,eq((1 + eh,eq)

2/3 − 1) (34)

The displacement Dnsp
f ront of the front velocity of the NSP when the particle settles

2rvol,nsp is, thus,

Dnsp
f ront =

Bnsp

πr2
s,eq((1 + eh,eq)2/3 − 1)

(35)

The time t for the displacement Dnsp
f ront becomes

Vcalc,nspt − Vf ront,nspt = 2rvol,nsp ⇒ t =
2rvol,nsp +

Bnsp

πr2
s,eq((1+eh,eq)2/3−1)

Vcalc,nsp
(36)

to compute the front velocity Vf ront,nsp for the NSP as follows:

Vf ront,nsp =
Dnsp

f ront

t
(37)
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and the hindered settling velocity Vh,nsp of the NSP is found as follows:

Vh,nsp = Vcalc,nsp −Vf ront,nsp (38)

As an example, with φ equal to 0.1, a disklike particle with an aspect ratio of 8 having
the same specific gravity and τw as those of the 10 µm particle above yields Vh,nsp/Vo = 0.59
(as opposed to 0.67 for the sphere). For a given specific gravity, NSPs with τw equal to a
sphere are heavier particles with flatter tributary volumes, so they settle faster. As such.
the disk mentioned above settles faster at 3.03× 10−4 m/s (compared to 1.79× 10−4 m/s
for the sphere). The lesser ratio is because of the greater value of Vo and the relationships.

On the basis of directly derived constructs from the framework, the difference of the
ratio Vh/Vo between spheres and any nonspherical particle can be rationalized and estab-
lished without the need to create exponents for the R. Z. equation or other relationships.

5. Conclusions

The mathematical framework presented in this article enabled a unification of concepts
to predict not only the hindered settling velocity of particles, but also the magnitude of the
back-flow by means of a simple application of the principle of continuity. The calculated
predicted velocities were less than those predicted with the RZ equation, which is consistent
with the reported observation that the experimental velocities are less than those predicted
by the RZ equation.

A key aspect of the capabilities enabled by this framework is its ability to provide a
rationalization to develop constructs to establish the difference of the ratio Vh/Vo between
spheres and any nonspherical particle. Establishing this difference via empirical correlations
remains a challenging task in this field.

The concepts in the framework could be useful in reducing deficiencies in the pre-
dictions of other problems such as polydisperse suspensions, the translational motion of
particles, and the sedimentation of aggregates.
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