Implementation of Flux Limiters in Simulation of External Aerodynamic Problems on Unstructured Meshes
Abstract
:1. Introduction
2. Governing Equations
3. Numerical Method
4. Flux Limiters
- If , where and are Mach numbers on the left and on the right of the facet, then
- If , then
5. Implementation of Flux Limiters
6. Results and Discussion
6.1. Flow in a Channel with Wedge
6.2. Flow around Airfoil
6.3. Flow around Bullet
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kozelkov, A.S.; Krutyakova, O.L.; Kurulin, V.V.; Lashkin, S.V.; Tyatyushkina, E.S. Application of numerical schemes with singling out the boundary layer for the computation of turbulent flows using eddy-resolving approaches on unstructured grids. Comput. Math. Math. Phys. 2017, 57, 1036–1047. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Lashkin, S.V.; Efremov, V.R.; Volkov, K.N.; Tsibereva, Y.A.; Tarasova, N.V. An implicit algorithm of solving Navier–Stokes equations to simulate flows in anisotropic porous media. Comput. Fluids 2018, 160, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Sharma, A.; Singh, R.K. Central upwind scheme based immersed boundary method for compressible flows around complex geometries. Comput. Fluids 2020, 196, 104349. [Google Scholar] [CrossRef]
- Pirozzoli, S. Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 2011, 43, 163–194. [Google Scholar] [CrossRef]
- Du, X.; Corre, C.; Lerat, A. A third-order finite-volume residual-based scheme for the 2D Euler equations on unstructured grids. Comput. Phys. 2011, 230, 4201–4215. [Google Scholar] [CrossRef]
- Zhu, W.; Xiao, Z.; Fu, S. Studies of flight-velocity effects on near-field and intermittent properties of a subsonic jet. Comput. Fluids 2020, 196, 104351. [Google Scholar] [CrossRef]
- Van Albada, G.D.; Van Leer, B.; Roberts, W.W., Jr. A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 1982, 108, 76–84. [Google Scholar]
- Venkatakrishnan, V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 1995, 118, 120–130. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Kurulin, V.V.; Lashkin, S.V.; Shagaliev, R.M.; Yalozo, A.V. Investigation of Supercomputer Capabilities for the Scalable Numerical Simulation of Computational Fluid Dynamics Problems in Industrial Applications. Comput. Math. Math. Phys. 2016, 56, 1506–1516. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Pogosyan, M.A.; Strelets, D.Y.; Tarasova, N.V. Application of mathematical modeling to solve the emergency water landing task in the interests of passenger aircraft certification. AS 2021, 4, 75–89. [Google Scholar] [CrossRef]
- Kozelkov, A.S. The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations. J. Appl. Mech. Tech. Phys. 2017, 58, 1192–1210. [Google Scholar] [CrossRef]
- Tyatyushkina, E.S.; Kozelkov, A.S.; Kurkin, A.A.; Pelinovsky, E.N.; Kurulin, V.V.; Plygunova, K.S.; Utkin, D.A. Verification of the LOGOS Software Package for Tsunami Simulations. Geosciences 2020, 10, 385. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, V.M. Theoretical physics. In Hydrodynamics; Nauka: Moscow, Russia, 1988; Volume IV, 736p. [Google Scholar]
- Loytsyanskiy, L.G. Mechanics of Fluids and Gases; Nauka: Moscow, Russia, 1979; 904p. [Google Scholar]
- Shlikhting, G. Theory of a Boundary Layer; Nauka: Moscow, Russia, 1974; 712p. [Google Scholar]
- Spalart, P.R.; Allmaras, S.R. A One-Equation Turbulence Model for Aerodynamic Flows; No. 0439; AIAA Paper: Reno, NV, USA, 1992. [Google Scholar]
- Shur, M.; Strelets, M.; Travin, A.; Spalart, P.R. Turbulence modeling in rotating and curved channels: Assessment of the Spalart—Shur correction term. AIAA J. 2000, 38, 784–792. [Google Scholar] [CrossRef]
- Deryugin, Y.N.; Zhuchkov, R.N.; Zelenskiy, D.K.; Kozelkov, A.S.; Sarazov, A.V.; Kudimov, N.F.; Lipnickiy, Y.M.; Panasenko, A.V.; Safronov, A.V. Validation Results for the LOGOS Multifunction Software Package in Solving Problems of Aerodynamics and Gas Dynamics for the Lift-Off and Injection of Launch Vehicles. Math. Model. Comput. Simul. 2015, 7, 144–153. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Struchkov, A.V.; Strelets, D.Y. Two Methods to Improve the Efficiency of Supersonic Flow Simulation on Unstructured Grids. Fluids 2022, 7, 136. [Google Scholar] [CrossRef]
- Roe, P.L. Characteristic Based Schemes for the Euler Equations. Annu. Rev. Fluid Mech. 1986, 18, 337–365. [Google Scholar] [CrossRef]
- Liou, M.-S. A Sequel to AUSM: AUSM+. J. Comput. Phys. 1996, 129, 364–382. [Google Scholar] [CrossRef]
- Rodionov, A.V. Artificial viscosity to cure the carbuncle phenomenon: The three dimensional case. J. Comput. Phys. 2018, 361, 50–55. [Google Scholar] [CrossRef]
- Kotov, D.V.; Surzhikov, S.T. Calculation of Viscous and Inviscid Gas Flows on Unstructured Grids Using the AUSM Scheme. Fluid Dyn. 2011, 46, 809–825. [Google Scholar] [CrossRef]
- Shingo, M. Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow. Comput. Fluids 2014, 91, 130–143. [Google Scholar]
- Jan, V.; Bart, M.; Erik, D. Blended AUSM+ Method for All Speeds and All Grid Aspect Ratios. AIAA J. 2001, 39, 2278–2282. [Google Scholar]
- Kim, K.H.; Ch, K.; Rho, O.-H. Methods for the accurate computations of hypersonic flows. I AUSMPW+ scheme. J. Comput. Phys. 2001, 174, 38–80. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Peric, M. Computational Method for Fluid Dynamics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flow. Ph.D. Thesis, Department of Mechanical Engineering, Imperial College of Science, London, UK, 1996. [Google Scholar]
- Sweby, P.K. High resolution using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 1984, 21, 995–1011. [Google Scholar] [CrossRef]
- Darwish, M.S.; Moukalled, F. TVD schemes for unstructured grids. Int. J. Heat Mass Transf. 2003, 46, 599–611. [Google Scholar] [CrossRef]
- Balcázar, N.; Jofre, L.; Lehmkuhl, O.; Castro, J.; Rigola, J. A finite-volume/level-set method for simulating two-phase flows on unstructured grids. Int. J. Multiph. Flow 2014, 64, 55–72. [Google Scholar] [CrossRef]
- Li, L.-X.; Liao, H.-S.; Qi, L.-J. An improved r-factor algorithm for TVD schemes. Int. J. Heat Mass Transf. 2008, 51, 610–617. [Google Scholar] [CrossRef]
- Hou, J.; Simons, F.; Hinkelmann, R. Improved total variation diminishing schemes for advection simulation on arbitrary grids. Int. J. Numer. Meth. Fluids 2012, 70, 359–382. [Google Scholar] [CrossRef]
- Denner, F.; van Wachem, B. TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness. J. Comput. Phys. 2015, 298, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Balcázar, N.; Antepara, O.; Rigola, J.; Oliva, A. A level-set model for mass transfer in bubbly flows. Int. J. Heat Mass Transf. 2019, 138, 335–356. [Google Scholar] [CrossRef]
- Gradient Computation. Available online: http://www.cfd-online.com/Wiki/Gradient_computation (accessed on 25 August 2019).
- Barth, T.J.; Jespersen, T.J. The Design and Application of Upwind Schemes on Unstructured Grids; No. 89-0366; AIAA Paper: Reno, NV, USA, 1989. [Google Scholar]
- Venkatakrishnan, V. On the Accuracy of Limiters and Convergence to Steady State Solution; No. 93-0880; AIAA Paper: Reno, NV, USA, 1993. [Google Scholar]
- Povkh, I.L. Technical Hydromechanics; Mashinostroenie: Leningrad, Russia, 1976; 504p. [Google Scholar]
- Kolesnikov, G.A.; Markov, V.K.; Mikhaykyuk, A.A. Aerodynamics of Flying Vehicles; Mashinostroeniye: Moscow, Russia, 1993; 544p. [Google Scholar]
- Pilipenko, A.A.; Polevoy, O.B.; Prihodko, A.A. Numerical simulation of Mach number and attack angle as they influence the modes of trans-sonic turbulent overflowing of aerodynamic airfoils. Tech. Notes TsAGI 2012, XLIII, 1–110. [Google Scholar]
- Chang, P. Separated Flow; Mir: Moscow, Russia, 1973; Volume 3, 335p. [Google Scholar]
No | Computation | α = 1.489° | α = 3.046° | ||
---|---|---|---|---|---|
0 | Experiment | 0.00819 | – | 0.01267 | – |
1 | Without limiter | 0.00848 | 3.6 | 0.01423 | 12.3 |
2 | ε (33) at K = 0.001 | 0.00850 | 3.7 | 0.01425 | 12.5 |
3 | ἐ (35) at K = 0.01 | 0.00838 | 2.3 | 0.01382 | 9.1 |
No | Computation | M = 1.05 | M = 1.6 | ||
---|---|---|---|---|---|
1 | Experiment | 0.449 | – | 0.385 | – |
2 | ε (33) at K = 0.001 | 0.4589 | 2.2 | 0.4219 | 9.6 |
3 | ἐ (35) at K = 0.01 | 0.4524 | 0.7 | 0.4121 | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Struchkov, A.V.; Kozelkov, A.S.; Zhuchkov, R.N.; Volkov, K.N.; Strelets, D.Y. Implementation of Flux Limiters in Simulation of External Aerodynamic Problems on Unstructured Meshes. Fluids 2023, 8, 31. https://doi.org/10.3390/fluids8010031
Struchkov AV, Kozelkov AS, Zhuchkov RN, Volkov KN, Strelets DY. Implementation of Flux Limiters in Simulation of External Aerodynamic Problems on Unstructured Meshes. Fluids. 2023; 8(1):31. https://doi.org/10.3390/fluids8010031
Chicago/Turabian StyleStruchkov, A. V., A. S. Kozelkov, R. N. Zhuchkov, K. N. Volkov, and D. Yu. Strelets. 2023. "Implementation of Flux Limiters in Simulation of External Aerodynamic Problems on Unstructured Meshes" Fluids 8, no. 1: 31. https://doi.org/10.3390/fluids8010031
APA StyleStruchkov, A. V., Kozelkov, A. S., Zhuchkov, R. N., Volkov, K. N., & Strelets, D. Y. (2023). Implementation of Flux Limiters in Simulation of External Aerodynamic Problems on Unstructured Meshes. Fluids, 8(1), 31. https://doi.org/10.3390/fluids8010031