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Abstract: In this work we investigate the effectiveness of the Backward Euler-Backward Differentia-
tion Formula (BE-BDF2) in solving unsteady compressible inviscid and viscous flows. Furthermore,
to improve its accuracy and its order of convergence, we have equipped this time integration method
with the Richardson Extrapolation (RE) technique. The BE-BDF2 scheme is a second-order accurate,
A-stable, L-stable and self-starting scheme. It has two stages: the first one is the simple Backward
Euler (BE) and the second one is a second-order Backward Differentiation Formula (BDF2) that
uses an intermediate and a past solution. The RE is a very simple and powerful technique that can
be used to increase the order of accuracy of any approximation process by eliminating the lowest
order error term(s) from its asymptotic error expansion. The spatial approximation of the govern-
ing Navier–Stokes equations is performed with a high-order accurate discontinuous Galerkin (dG)
method. The presented numerical results for canonical test cases, i.e., the isentropic convecting vortex
and the unsteady vortex shedding behind a circular cylinder, aim to assess the performance of the BE-
BDF2 scheme, in its standard version and equipped with RE, by comparing it with the ones obtained
by using more classical methods, like the BDF2, the second-order accurate Crank–Nicolson (CN2)
and the explicit third-order accurate Strong Stability Preserving Runge–Kutta scheme (SSP-RK3).

Keywords: BE-BDF2 scheme; Richardson Extrapolation; discontinuous Galerkin method; unsteady
compressible inviscid and viscous flows

1. Introduction

To understand a physical phenomenon the mathematical model that mimics it needs
often to be discretized since its analytical solution is not available. Therefore, the numerical
techniques used to obtain an approximate solution of mathematical models have become
an indispensable part of modern science.

When modelling the behaviour of an unsteady flow, the Partial Differential Equations
(PDEs) that describe it often lead to a stiff problem, since the physical phenomenon is
characterised by a wide range of spatial and temporal scales, e.g., turbulent flows. In this
case, implicit methods are potentially a better choice with respect to explicit ones, due to
their better stability properties. Nevertheless, although very promising implicit methods
have been developed by mathematicians in the past and are well known in the literature,
see for example [1–4] just to name a few, their use within Computational Fluid Dynamics
(CFD) codes is somewhat limited. This is probably due to the greater computational
complexity of implicit methods with respect to explicit ones and to the greater CPU time
and memory requirements needed by each time-step to advance the solution in time, which
is a really important aspect when one has to deal with problems that involve a large number
of degrees of freedom (DOFs). Nevertheless, starting from implicit “classical” methods,
like the Backward Differentiation Formulae (BDF) [5] or the second-order accurate Crank–
Nicolson scheme (CN2) [6], many other variants have been developed in the past with the
aim to improve their performance. Some examples of methods that have been developed
to improve the stability region of the BDF schemes are the MEBDF [2,7,8] or the TIAS [3,9]
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schemes, that are in fact multi-stage methods A-stable up to order 4 and 6, respectively,
or the second derivative method proposed by Enright [1,10] that has obtained a single-stage
method A-stable up to order 4 by using a higher derivative of the solution. Another way
to improve the stability properties of the BDF schemes was found with the Composite-
Backward Differentiation Formulae (C-BDF) [4,11,12], which are schemes that inherit the
L-stability property of the second-order accurate BDF scheme and that, to the knowledge of
the author, have been mainly used until now for electromagnetic transient simulations [13]
and for thermal radiative diffusion problems [14], and only recently has their potential
in solving structural mechanics [15] and fluid dynamics [16] problems been investigated.
Furthermore, note that in the above cited references, the C-BDF schemes have been used
without the Richardson Extrapolation (RE) technique.

In view of this, the purpose of this article is to contribute to minimise the gap between
the mathematical formulation and the study of theoretical aspects of the C-BDF schemes
and their practical use to approximate unsteady compressible inviscid and viscous flows,
even when they are equipped with the RE technique. Please note that, to the best of
the author’s knowledge, the coupling of the C-BDF schemes with the RE technique is
investigated here for the first time. Among all the possible C-BDF schemes, in this work
we consider the implementation in a CFD code, based on a discontinuous Galerkin (dG)
method for the spatial approximation of the Backward Euler-Backward Differentiation
Formula (BE-BDF2) [11,17] (note that in these references, this scheme was named with the
more general acronym C-BDF2). The dG method is a high-order accurate method [18–20],
which is very well suited to cope with problems requiring a high accuracy solution and,
thanks to its compact form, for parallel computations. Furthermore, thanks to its favourable
dissipation and dispersion properties, the dG method has been proved to be very effective
to solve turbulent flows with both the Direct Numerical Simulation (DNS) [21,22] and the
Large Eddy Simulation (LES) [23,24]. The BE-BDF2 scheme is very similar to the TR-BDF2
scheme [4] and can be considered a variant of it. According to the Second Dahlquist
barrier [25], this scheme is only second-order accurate, but, as highlighted in this work,
this relatively low order of accuracy can be improved thanks to a very simple and efficient
numerical technique, known in the literature as Richardson Extrapolation (RE) [26,27].
The RE technique, named by Richardson himself as a “deferred approach to the limit”,
is able to dramatically improve the accuracy and raise the order of convergence of any
numerical method with a very simple idea. This simple idea is to compute two solutions
with the same numerical method, one on a coarse grid and one on a fine grid, and to use a
simple linear combination of these two approximations with the goal of eliminating the
lowest-order error term(s) of their asymptotic error expansion. The final result of the RE
technique is a better approximation of the final solution and an increasing of the order of
accuracy of the numerical method used.

To clearly determine and evaluate the effectiveness of the BE-BDF2 scheme, in its
standard form and equipped with the RE technique, in this work we present the numerical
results of the following test cases: (i) the inviscid isentropic vortex convection; (ii) the
laminar vortex shedding behind a circular cylinder. For the first test case, the performance
of the numerical schemes presented in this work will be compared with the ones obtained
with classical BDF2 and CN2 methods, highlighting that, for a fixed time-step size, the use
of these schemes allows us to achieve more accurate solutions, especially when equipped
with the RE technique. For the second test case, that is a stiff-problem, the BE-BDF2 and
BE-BDF2 & RE schemes will be compared with the explicit SSP-RK3, showing that the force
coefficients predicted by all the schemes are very similar, despite the very large time-step
used for the implicit schemes, which is about 220 times larger than the one employed by
the explicit scheme for stability reason.

In the next Section are reported the Navier–Stokes governing equations. Section 3
briefly describes the main building blocks of the dG spatial discretization. Section 4 is
devoted to the description of the BE-BDF2 and RE methods and to the main computational
aspects related to their implementation. The numerical results in Section 5 reveal the
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performance of the BE-BDF2 and BE-BDF2 & RE schemes. Findings, main conclusions and
possible future works are summarised in the last Section.

2. The Governing Equations

The equations governing the behaviour of viscous compressible flows, i.e., the Navier–
Stokes equations, can be written as:

∂ρ

∂t
+

∂

∂xj

(
ρuj
)
= 0,

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xj
+

∂τij

∂xj
, for i, j = 1, .., d

∂

∂t
(ρE) +

∂

∂xj

(
uj(ρE + p)

)
= −

∂qj

∂xj
+

∂

∂xj

(
uiτij

)
,

(1)

where ρ is the fluid density, p is the pressure, E is the total energy per unit mass, ui is the
ith component velocity and d is the number of geometrical dimensions. With τij and qj are
denoted the viscous stress tensor and the heat flux components, respectively, given by:

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij

)
,

qj = −
µ

Pr
∂

∂xj

(
E +

p
ρ
− 1

2
ukuk

)
,

(2)

where µ is the viscosity coefficient, Pr is the Prandtl number, here equal to 0.72, and
k = 1, . . . , d. Finally, for a perfect gas, p = (γ− 1)ρ[E− (uiui)/2], where γ = cp/cv is the
ratio of gas specific heats, here equal to 1.4.

In compact form, the system (1) can be written as:

∂q
∂t

+∇ · F(q,∇q) = 0, (3)

where q = {ρ, ρui, ρE} is the vector of the conservative variables, with q ∈ Rm and
m = d + 2 and F ∈ Rm ⊗Rd is the sum of inviscid and viscous flux functions.

3. The Spatial Discretization: Discontinuous Galerkin Method

The discontinuous Galerkin (dG) discretization is here only briefly presented for the
sake of conciseness. For a more exhaustive overview of dG methods, the interested reader
is referred to [19,20].

To perform the dG discretization of Equation (3), we consider an approximation Ωh
of the domain Ω, such as Ωh =

⋃
K∈Th

K, where Th = {K} is a set of non-overlapping
elements K of arbitrary shape. Moreover, we denote with F b

h the set of faces that belong to
the boundary of the discrete approximation and with F i

h the set of internal edges of the

mesh and Fh
def
= F b

h ∪ F
i
h. Now, we define the solution and test function space as:

Vh
def
= {vh ∈ L2(Ωh) : vh|K ∈ Pk(K)∀K ∈ Th}, (4)

where Pk(K) is the space of polynomial functions of degree at most k with no global
continuity requirement, i.e., they are continuous functions only inside each element K but
not on Fh.
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The dG formulation of Equation (3) consists in seeking qh ∈ Vh that, for an arbitrary
test function vh ∈ Vh, satisfies the following equation:∫

Ωh

vh ·
∂qh
∂t

dx−
∫

Ωh

∇vh : F(qh,∇qh + r([[qh]]))dx

+
∫

F∈Fh

[[vh]] : F̂
(

q±h , (∇qh + ηFrF([[qh]]))
±
)

dσ = 0.
(5)

In this equation, r and rF are the global and local lifting operators, respectively,
and ηF is a stability parameter [18]. The symbol [[·]] is a jump that takes into account
that the functions are discontinuous on a mesh face F ∈ Fh, and it is defined, for a generic
vector w, as:

[[wh]]
def
= w+

h ⊗ n+
F + w−h ⊗ n−F , (6)

where the ± superscripts indicate the traces of the solution over a face shared by two
adjacent elements K+ and K− and n−F and n+

F are the unit outward normals pointing
to K+ and K−, respectively. In the boundary integral of Equation (5), F̂ is the sum of the in-
viscid and viscous numerical flux functions defined at element interfaces and boundary faces.

The inviscid numerical flux has been computed in this work using the exact Riemann
solver of Gottlieb and Groth [28]. The discretization of the viscous terms is based on the
BR2 scheme presented in [29] and theoretically analyzed in [18,30].

4. The Temporal Discretization

This section describes the BE-BDF2 and the RE methods and the computational aspects
related to their implementation.

4.1. The BE-BDF2 Time Integration Method

Following the Method Of Lines (MOL), after that Equation (5) is numerically inte-
grated by using the Gauss quadrature rules, it results in the following system of Ordinary
Differential Equations (ODEs):

M
dQ
dt

+ R(Q) = 0, (7)

where M is the global block mass matrix, Q is the global vector of unknown degrees
of freedom and R(Q) is the vector of residuals resulting from the integrals of the dG
discretized space differential operators in Equation (5).

In this work, Equation (7) is advanced in time by using the second-order accurate BE-
BDF2 scheme [11,17]. This method can be considered a variant of the one-step, two-stages
TR-BDF2 scheme developed by Bank et al. [4]. In the TR-BDF2 scheme, a first solution
is computed over a portion of the time-step using the Trapezoid Rule and, in the second
stage, the solution at time level tn + ∆t is computed with the BDF2 method. The BE-BDF2
method, like the TR-BDF2 scheme, is a one-step, two-stages scheme, but in the first stage
the TR rule is replaced with the simpler BE method [17].

More precisely, The BE-BDF2 scheme consists in advancing Equation (7) in time from
a generic time level tn to the time level tn+1 = tn + ∆t, successively solving the following
two stages:

M
(
Qn+γ −Qn)+ γ∆tR

(
Qn+γ

)
= 0,

M
(

Qn+1 − 1− γ

γ
Qn+γ − 2γ− 1

γ
Qn
)
+ γ∆tR

(
Qn+1

)
= 0.

(8)

In these equations, Qn is a known solution at the time level tn, Qn+γ is an approxi-
mated solution computed at the time level tn + γ∆t, that, for γ ∈ ]0, 1[, is a generic time
level between tn and tn+1 and Qn+1 is an approximated solution computed at the time
level tn+1.
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The value of γ determines the stability function of the BE-BDF2 scheme. In particular,
in this work we have used γ = 1−

√
2/2, a value that minimises the local truncation error

of the approximation and that makes the BE-BDF2 scheme both A-stable and L-stable,
i.e., unconditionally stable and stiffly accurate for stiff problems. The stability function and
local truncation error of the BE-BDF2 scheme are reported in [11,17].

4.2. The Richardson Extrapolation Method

The Richardson Extrapolation (RE) is a very simple and powerful technique applicable
to any numerical method [26,27,31]. More precisely, once a numerical method has been
chosen for solving a system of ODEs, the application of RE results in a new numerical
method with new properties, i.e., a new order of accuracy, a new local truncation error and
a new stability function.

To understand the idea behind this technique it is described in its simplest form, which
is the one used in this work. It can be resumed in three steps:

1. Using a general time integration method of order p and a time-step size ∆t, an ap-
proximation of the exact solution at time level n is computed and denoted as Xn;

2. Using the same time integration method but a halved time-step size, i.e., ∆t/2, a bet-
ter approximation of the exact solution at the same time level n is computed and
denoted as Yn;

3. The final approximation at time n is given by:

Qn =
2pYn − Xn

2p − 1
. (9)

Equation (9) is just a linear interpolation of the two approximations computed at steps
1 and 2. For the BE-BDF2 scheme, since p = 2, the RE coefficients that multiply the solutions
obtained with the smaller and the larger time-step size are 4/3 and −1/3, respectively.

In what follows, the “origin” of Equation (9) is briefly described, but, for a more
comprehensive survey of RE, its application to several explicit and implicit methods and for
the derivation of the equations reported in this subsection, please refer to [27]. Assuming
that Zn is the exact solution at time tn, once that Xn and Yn have been computed with a
time integration method of order p, it is possible to write the two following equations:

Zn − Xn = ∆tpK + O
(

∆tp+1
)

,

Zn − Yn =

(
∆t
2

)p
K + O

(
∆tp+1

)
.

(10)

Note that in these equations K depends only on the time integration method chosen
and the problem to be solved, which are both the same in steps 1 and 2. The RE con-
sists in eliminating K from the above two equations, thus obtaining, with very simple
algebraic manipulations:

Zn − 2pYn − Xn

2p − 1
= O

(
∆tp+1

)
. (11)

Examining this equation, we can immediately notice that the second term on the left-
hand side is exactly the approximation calculated at step 3 with Equation (9), from which
it immediately follows that this approximation is of order p + 1. We can generalize this
result to iteratively use RE. In the previous example, in fact, only two numerical solutions
were involved, one with the time-step ∆t and the other with the time-step ∆t/2, but, if we
compute other approximations with more refined grids, and we apply the same principle,
an arbitrary high order accurate approximation can be found.

In the literature the RE technique is often used in two different ways: global or local
extrapolation. With global extrapolation, also called passive extrapolation, the values
obtained with the RE process are not used to advance the solution in time. With local
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extrapolation, also called active extrapolation, the values obtained with the RE process are
used to calculate the next time-step. In this work, the local/active Richardson extrapolation
is employed.

An important contribution to the extrapolation technique was given by Gragg [32]
by considering a symmetric method, like the midpoint or the trapezoidal rules, as the
“base method” for extrapolation. In this case in fact, the asymptotic error expansion of the
base method contains only even powers of ∆t and the extrapolation process is particularly
convenient since it eliminates two powers of ∆t at each iteration. For example, by using
a symmetric method with p = 2 and the extrapolation technique with only two grids,
the final method is of order p + 2.

The last aspect of the extrapolation technique is that it is particularly suitable for
parallel implementations, since the preliminary approximations necessary to evaluate the
final solution can be computed independently of each other. This last aspect is particularly
attractive for large-scale problems solved by GPUs, for which an extreme parallelism in
space is already employed, e.g., numerical weather prediction.

4.3. Implementation Details

In this work, since we use conservative variables and orthonormal shape functions
obtained with the Gram–Schmidt process [33], the mass matrix M, reported in Equation (8),
reduces to the identity matrix I and therefore has been omitted in what follows. Reformu-
lating Equation (8) in terms of a nonlinear residual function F and a constant vector b,
the nonlinear system of equations of a generic stage can be written in a more compact and
general form as:

F(Q) = b, (12)

with:

F(Q) = Q + γ∆tR(Q), (13)

b = −∑j αjQj, (14)

where Qj is a generic known solution calculated at time tj and αj are generic stage coefficients.
Applying Newton’s scheme to Equation (12), the following linear system of equations

is obtained:
Ai∆Qi = −F

(
Qi
)
+ b, (15)

where i is the index of the Newton iteration and Ai and ∆Qi are equal to:

Ai = ∂F
∂Q
(
Qi) = I− γ∆t ∂R

∂Q
(
Qi) (16)

∆Qi = Qi −Qi−1. (17)

Denoting with Pi a preconditioning matrix and by applying left preconditioning to
Equation (15), we solve:

PiAi∆Qi = Pi
(
−F

(
Qi) + b

))
. (18)

In particular, at each Newton iteration, we solve Equation (18) with the restarted
Generalized Minimum RESidual (GMRES) method, using a preconditioner that is based
on the ILU(0) decomposition of the analytically computed Ai matrix and on the classical
Block–Jacobi (BJ) approach for parallel computations. For GMRES, ILU(0) and BJ methods
we rely on the algorithms available in the PETSc library [34].

To reduce the CPU time required for updating the Jacobian J = ∂R
∂Q and for ILU(0)

preconditioning, we compute the matrix A only once per time-step. This last approxima-
tion greatly contributes to speed up the solution process, since the dG solver is typically
characterized by a large system matrix that is expensive to compute and factorize. However,
to avoid a too slow convergence of Newton’s algorithm, the Jacobian is recomputed when
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‖∆Qi−1‖L2
‖∆Qi‖L2

≤ 5. The maximum number of Newton iterations is itmax = 10 and the criterion

of convergence of the Newton procedure is εN = 10−8, a value chosen to minimize the
temporal discretization error for any time-step size used to perform the simulations [7,35].
The GMRES parameters used are a maximum number of Krylov-subspace vectors equal
to 240 with a number of restarts equal to 1 and a linear solver tolerance εGMRES = 10−2, a
value that minimizes the CPU time required by each time-step advancement [7].

Algorithms 1 and 2 provide the most important details of the BE-BDF2 and the BE-
BDF2 & RE implementation, respectively. Note that, for the sake of conciseness, Algorithm 1
describes the solution process of a generic stage, since the numerical strategies adopted for
both the BE-BDF2 stages are the same.

Algorithm 1 BE-BDF2

1: procedure BE-BDF2(∆t, A, Q0)
2: ‖∆Q0‖L2 ← 1 . Necessary value for i = 1
3: for i = 1, .., itmax do . itmax is the maximum number of Newton iterations
4: Solve Equation (18) to compute Qi

5: Compute and store ‖∆Qi‖L2
6: if ‖∆Qi‖L2 ≤ εN then . εN is the Newton’s method convergence criteria
7: Accept the solution and exit
8: end if
9: Compute η = ‖∆Qi−1‖L2

‖∆Qi‖L2
10: if η ≤ 5 then
11: A← I− γ∆t ∂R

∂Q . It avoids a too slow convergence of Newton’s method
12: end if
13: end for
14: end procedure

Algorithm 2 BE-BDF2 & RE

1: procedure BE-BDF2 AND RE(Qn, ∆t) . Compute Xn+1 and Yn+1 and then apply RE
2: Q0 ← Qn . Initial guess of Newton’s method
3: A← I− γ∆t ∂R

∂Q . Compute the system matrix
4: Qn+1 ← procedure BE-BDF2

(
∆t, A, Q0) . Compute the coarse solution

5: Xn+1 ← Qn+1

6: Q0 ← Qn . Initial guess of Newton’s method
7: Qn+1/2 ← procedure BE-BDF2

(
∆t/2, A, Q0) . Compute an intermediate solution

8: Q0 ← Qn+1/2 . Initial guess of Newton’s method
9: Qn+1 ← procedure BE-BDF2

(
∆t/2, A, Q0) . Compute the fine solution

10: Qn+1 ← Yn+1

11: Qn+1 = 4
3 Yn+1 − 1

3 Xn+1 . RE, see Equation (9)
12: end procedure

5. Numerical Results

The aim of this section is to show the behaviour and the performance of the BE-BDF2
scheme, with and without the RE technique, when employed to solve unsteady compress-
ible inviscid and viscous flows. To this end, the following test cases have been used:

1. The inviscid isentropic convecting vortex in Section 5.1;
2. The laminar vortex shedding behind a circular cylinder in Section 5.2.

The isentropic vortex [9,36,37] is a well-known test case that has an exact analytical
solution, here used to evaluate the accuracy and to assess the order of convergence of the
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investigated time integration methods. The computed order of convergence is evaluated
by means of the η error defined as:

η(◦, •re f ) = (Ωh)
−1/2 ‖ ◦ − •re f ‖L2, (19)

where ◦ and •re f are the numerical and the ”reference” solutions, respectively, with the
reference solution that is set equal to the L2–projection of the initial solution on the dG
polynomial space.

The laminar vortex shedding has been computed at a Reynolds number Re = 100
and a Mach number M∞ = 0.2. For this test case, since an exact solution is not available,
the accuracy of the time integration methods will be evaluated by comparing the results
with experimental data [38] and other numerical results [39–43].

In order to have a fair comparison, the same Newton and GMRES parameters were
used for all the implicit schemes (please see Section 4.3), and, for the explicit time integration
method here used as reference, the time-step employed is the largest one allowed by the
stability condition of the scheme.

5.1. The Isentropic Vortex Convection Problem

This test case consists of a uniform flow to which a perturbation is added. The initial
flow field is defined by:

u1 = U − αM∞

2π

(
x2 −

L
2

)
eβ(1−r2),

u2 = U +
αM∞

2π

(
x1 −

L
2

)
eβ(1−r2), (20)

T = 1− (αM∞)2(γ− 1)
16βγπ2 e2β(1−r2),

p = T
γ

γ−1 ,

where T is the temperature, U =
√

γ are the “free-stream” non dimensional velocity com-
ponents and r is the distance of a generic grid point, using coordinates (x1, x2), with respect
to the vortex center, which is initially placed in the middle of the computational domain.
The “free-stream” Mach number, denoted as M∞, is equal to

√
2, and α and β are set equal

to 5/
√

2 and 1/2, respectively. The computational domain is a square with side length
L = 10 that has been discretized with two uniform Cartesian grids with 25× 25 (coarse)
and 50× 50 (fine) elements. Boundary conditions are periodic and the simulations are
performed up to a non-dimensional final time t f = L, corresponding to one period of
vortex revolution using the P3 dG approximation. In what follows, the non-dimensional
time-step size is defined as ∆t = t f /ncyc, where ncyc is the total number of time-steps
necessary to reach the end time of the simulation.

Figure 1 compares the density contours computed by several time integration schemes
with the largest time-step here used, equal to ∆t = 0.5. In the plots the greater diffusion
and dispersion errors given by BDF2 and CN2 with respect to BE-BDF2 are evident; as it
is evident that, when this scheme is equipped with the RE technique, the accuracy of the
solution is greatly improved.

The better accuracy of BE-BDF2 & RE is evident even when using a smaller time-step
size, as highlighted in Figure 2a for ∆t = 0.25, while in Figure 2b, which shows the results
obtained with ∆t = 0.125, diffusion and dispersion errors are evident only for BDF2, which
is in fact the least accurate between all the schemes here reported.
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Figure 1. Vortex problem—simulations performed on the coarse grid using P3 dG approximation
and ∆t = 0.5. The plots show the density contours obtained with different time integration methods.

Figure 2. Vortex problem—simulations performed on the coarse grid using P3 dG approximation.
The plots show the density profiles, along the diagonal d of the computational domain, obtained
with different time-step sizes and time integration methods. The exact (analytical) solution is
reported as reference.

A more quantitative analysis is reported in Figure 3 and Tables 1 and 2, which summarize
the results of a time refinement study performed using the coarse and the fine grid. The plots
of Figure 3 report the η errors of all conservative variables. By looking at these plots, it is
evident that BE-BDF2 outperforms BDF2 and CN2. Furthermore, when this time integration
scheme is equipped with the RE technique, the higher accuracy obtained with a fixed time-step,
with respect to the BE-BDF2 scheme alone, is relevant, and becomes noticeable for smaller and
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smaller time-step sizes (for ∆t = 1.25 · 10−1 the η error of BE-BDF2 & RE is about two orders
of magnitude smaller than the one shown by BE-BDF2). This behaviour is obviously due
to the different orders of convergence of the time integration methods here investigated,
whose theoretical values of 2 and 3 have been reported in the plots. Finally, note that for
relatively small time-step sizes, when the spatial error overwhelms the temporal one, the η
error on each variable reaches a plateau regardless of the time scheme used, e.g., the lower
bound of η

(
ρ, ρre f

)
is around 2 · 10−5 for the coarse grid and 8 · 10−7 for the fine grid.

Figure 3. Vortex problem—time refinement study. Simulations performed on the coarse (C) and the
fine (F) grid using P3 dG approximation. The plots show the η errors of the conservative variables as
a function of the time-step for different time integration methods.

For a more precise analysis of the order of convergence shown by the simulations,
Tables 1 and 2 report the results of the time refinement study performed with the coarse
and the fine grid, respectively. In these tables have been listed the values of the η errors
and the related order of convergence only for the density variable, since the analysis for the
other variables came to the same conclusions. By looking at these values we can notice that,
while the schemes that are not equipped with RE reach the designed order of convergence
of 2 with a monotonic increasing slope, the BE-BDF2 & RE tends towards the designed
order of convergence of 3 with a monotonic decreasing slope.
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Table 1. Vortex problem—time refinement study. Simulations performed on the coarse grid using
P3 dG approximation. In the table are shown density errors and the related order of convergence of
different time integration methods.

Coarse Grid

∆t
BDF2 CN2 BE-BDF2 BE-BDF2 & RE

η
(

ρ, ρre f

)
Ord. η

(
ρ, ρre f

)
Ord. η

(
ρ, ρre f

)
Ord. η

(
ρ, ρre f

)
Ord.

5.0 · 10−1 5.80 · 10−2
0.47 5.93 · 10−2

1.42 3.38 · 10−2
1.60 3.01 · 10−3

3.65
2.5 · 10−1 4.20 · 10−2

1.19 2.20 · 10−2
1.85 1.12 · 10−2

1.91 2.41 · 10−4
3.19

1.25 · 10−1 1.84 · 10−2
1.68 6.11 · 10−3

1.98 2.97 · 10−3
1.99 2.63 · 10−5

0.46
6.25 · 10−2 5.74 · 10−3

1.92 1.55 · 10−3
2.00 7.48 · 10−4

1.99 1.91 · 10−5
−0.02

3.125 · 10−2 1.52 · 10−3
2.00 3.87 · 10−4

1.97 1.88 · 10−4
1.89 1.94 · 10−5

0.00
1.5625 ·

10−2 3.84 · 10−4
1.97 9.86 · 10−5

1.67 5.07 · 10−5
1.16 1.94 · 10−5

−−
7.8125 ·

10−3 9.81 · 10−5
1.67 3.10 · 10−5

0.61 2.27 · 10−5
0.21 −− −−

3.90625 ·
10−3 3.09 · 10−5

0.60 2.03 · 10−5
0.06 1.96 · 10−5

−− −− −−
2.00000 ·

10−3 2.04 · 10−5
0.07 1.95 · 10−5

−− −− −− −− −−
1.00000 ·

10−3 1.95 · 10−5 −− −− −−

Table 2. Vortex problem—time refinement study. Simulations performed on the fine grid using P3 dG
approximation. In the table are shown density errors and the related order of convergence of different
time integration methods.

Fine Grid

∆t
BDF2 CN2 BE-BDF2 BE-BDF2 & RE

η
(

ρ, ρre f

)
Ord. η

(
ρ, ρre f

)
Ord. η

(
ρ, ρre f

)
Ord. η

(
ρ, ρre f

)
Ord.

5.0 · 10−1 5.80 · 10−2
0.47 5.93 · 10−2

1.42 3.38 · 10−2
1.60 3.03 · 10−3

3.63
2.5 · 10−1 4.20 · 10−2

1.19 2.20 · 10−2
1.85 1.12 · 10−2

1.91 2.45 · 10−4
3.52

1.25 · 10−1 1.84 · 10−2
1.68 6.11 · 10−3

1.98 2.97 · 10−3
1.99 2.13 · 10−5

3.18
6.25 · 10−2 5.74 · 10−3

1.92 1.55 · 10−3
2.00 7.48 · 10−4

2.00 2.35 · 10−6
1.42

3.125 · 10−2 1.52 · 10−3
1.98 3.86 · 10−4

2.00 1.87 · 10−4
2.00 8.78 · 10−7

0.05
1.5625 ·

10−2 3.84 · 10−4
2.00 9.66 · 10−5

2.00 4.68 · 10−5
2.00 8.49 · 10−7

0.00
7.8125 ·

10−3 9.62 · 10−5
2.00 2.42 · 10−5

1.99 1.17 · 10−5
1.94 8.50 · 10−7

−−
3.90625 ·

10−3 2.41 · 10−5
1.92 6.10 · 10−6

1.76 3.05 · 10−6
1.46 −− −−

2.00000 ·
10−3 6.37 · 10−6

1.83 1.80 · 10−6
−− 1.15 · 10−6

0.39 −− −−
1.00000 ·

10−3 1.79 · 10−6 −− 8.73 · 10−7 −−

5.2. The Laminar Vortex Shedding behind a Circular Cylinder

In this section are shown the results of the numerical investigation performed for the
laminar flow around a two-dimensional circular cylinder with Re = 100 and M∞ = 0.2.

The computational grid used, shown in Figure 4, is a quadratic mesh obtained with
the Gmsh software [44]. It is composed of 3690 quadrilateral elements, with 72 elements
lying on the cylinder surface and a wall distance of the first grid nodes around the cylinder
that is approximately 5% of the cylinder radius. The boundary conditions imposed are a
zero-heat flux no-slip condition at the wall and the far-field boundary conditions, based on
the characteristic variables, for the other boundaries. Furthermore, we have verified that
the position of the far-field boundary does not significantly influence the accuracy of the
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numerical solution. This has been achieved by performing a numerical simulation with a
computational domain that has been extended to about 700 diameters in radial direction
and comparing the data obtained using this last grid with the ones shown in this section.

Figure 4. Cylinder problem—the plots show the computational domain and the grid used.

Starting with an already periodic initial flow field, obtained with P3 dG approximation
and the explicit third order accurate SSP-RK3 scheme [45], the flow was then simulated for
about 20 vortex-shedding periods using different time integration methods. In particular,
the results of BE-BDF2 have been compared with respect to the ones obtained with SSP-RK3,
since, due to the low Mach number of the flow, this case can be considered a mildly stiff
problem for which the explicit schemes are well known to be very inefficient due to
their stringent time-step restrictions. For the simulations performed with SSP-RK3, the
maximum time-step allowed by stability condition has been used, i.e., about tvs/11, 000 being
tvs the vortex shedding period, while for implicit schemes the time-step size has been set as
equal to tvs/50. From these data it is evident the considerable saving of iterations that can
be obtained by using the implicit schemes. Note, in fact, that the time-step size used for the
BE-BDF2 and BE-BDF2 & RE schemes is about 220 times larger than the one employed for
the explicit scheme.

In Figure 5 are reported the velocity magnitude contours obtained at the final simula-
tion time. The comparison of these plots highlights that there are no significant differences
between the wake flow patterns computed with the different time integration methods.

Figure 5. Cylinder problem—the plots show the velocity magnitude contours obtained using P3 dG
approximation and different time integration methods.

Figure 6 shows the time histories of lift and drag coefficients with a close-up of the last
computed vortex-shedding period on the right plots, which demonstrate that, after about
20 vortex-shedding cycles, implicit time histories present no significant differences in phase
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and amplitude with respect to the corresponding explicit data, with the BE-BDF2 & RE data
that are slightly closer to the explicit ones with respect to the data obtained with BE-BDF2.

A quantitative comparison is reported in Table 3 in which are listed the mean values of
lift and drag coefficients and the Strouhal numbers obtained for the last 10 vortex-shedding
cycles. We note that the force coefficients and the Strouhal numbers given by explicit and
implicit schemes are almost the same and are in agreement with the ones obtained by
other flow solvers [39–43]. Furthermore, the computed Strouhal values are also close to
the experimental values, since, as shown in [38], the experimental measurements can be
approximated with the equation Str = 0.212

(
1− 21.2

Re

)
. What can be concluded is that the

vortex-shedding phenomenon is well-predicted using both BE-BDF2 and BE-BDF2 & RE
time integration methods despite the very large time-step size here employed.

Figure 6. Cylinder problem—the plots show the computed time histories of lift (top) and drag
(bottom) coefficients obtained using P3 dG approximation and different time integration methods.
In the right plots is reported the time history of the last computed vortex-shedding period.

Table 3. Cylinder problem—in the table are reported the mean values of lift and drag coefficients and
Strouhal numbers obtained with P3 dG approximation and different time integration methods.

C̄d C̄l Str

SSP-RK3 1.364 −1.18 · 10−4 0.1615
BE-BDF2 1.366 −1.96 · 10−4 0.1611

BE-BDF2 & RE 1.366 −3.24 · 10−4 0.1612
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6. Conclusions

In this paper we have investigated the potential of the BE-BDF2 scheme for solving
unsteady compressible flows, while also considering it in combination with the Richardson
Extrapolation (RE) technique. For the isentropic vortex test case, the numerical investigation
shows that BE-BDF2 outperforms in accuracy the more classical BDF2 and CN2 methods,
and that, when equipped with RE, the gain in accuracy is remarkable. For the cylinder test
case, considered here to evaluate the performance of BE-BDF2 and BE-BDF2 & RE for stiff-
problems, the numerical investigation has shown that the vortex-shedding phenomenon and
the force coefficients on the cylinder are well-predicted despite the very large time-step used,
which was about 220 times larger than the one employed by the explicit SSP-RK3 scheme.
These results, together with the theoretical aspects related to the BE-BDF2 formulation,
have led to the following conclusions about this scheme:

• It is well suited for stiff problems thanks to its stability properties;
• Even if it is composed of two stages, the coefficient that multiplies the two Jacobian

matrices is the same, i.e., γ∆t, therefore, in particular when it is coupled with a Matrix-
Free approach and a Frozen Preconditioner strategy [8], the CPU time and memory
required to advance the solution in time can be greatly reduced;

• Extrapolated values can be easily computed, exploiting the previous known solutions,
and can be used as very good initial guesses for both the stages, thus accelerating the
convergence of Newton’s method.

The main drawback of BE-BDF2 is that it is only second-order accurate, but this aspect
can be overcome if it is used in combination with RE.

The positive aspects of BE-BDF2 & RE are:

• It is third-order accurate;
• It dramatically improves the accuracy of the solution with respect to BE-BDF2, espe-

cially for high precision requirements;
• It allows the incorporation of a strategy to adapt the time-step size, since it immediately

provides error estimators evaluated on several approximation levels;
• Even if it requires the computation of two solutions, these solutions can be computed

in parallel.

Encouraged by the preliminary results obtained in the present study and by the promising
directions listed above, future works could contribute to the advancement of numerical
simulations of unsteady flows by exploring the potential of the BE-BDF2 & RE scheme for less
regular solutions and geometries, e.g., turbulent flows and real-world applications.
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Abbreviations
The following abbreviations are used in this manuscript:

BDF2 Backward Differentiation Formula second-order accurate
BE Backward Euler
BE-BDF2 Backward Euler-Backward Differentiation Formula second-order accurate
BJ Block–Jacobi
BR2 Bassi and Rebay second scheme
C-BDF2 Composite-Backward Differentiation Formulae second-order accurate
CFD Computational Fluid Dynamics
CN2 Crank–Nicolson scheme second-order accurate
CPU Central Processing Unit
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dG discontinuous Galerkin
DOFs Degrees Of Freedom
GMRES Generalized Minimum RESidual
GPU Graphics Processing Unit
ILU(0) Incomplete Lower-Upper factorization with zero level of fill-in
MEBDF Modified Extended Backward Differentiation Formulae
MOL Method Of Lines
ODEs Ordinary Differential Equations
PDEs Partial Differential Equations
PETSc Portable, Extensible Toolkit for Scientific Computation
RE Richardson Extrapolation
SSP-RK3 Strong Stability Prerserving Runge–Kutta scheme third order accurate
TIAS Two Implicit Advanced Step-point
TR-BDF2 Trapezoidal Rule-Backward Differentiation Formula second-order accurate
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