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Abstract: The transverse flow-induced vibration (FIV) of an elastically-supported cylinder-plate
assembly (viz., a rigid splitter-plate attached to the downstream side of a circular cylinder) with a
low mass ratio of 10 and zero structural damping is investigated using numerical simulations at
a Reynolds number of 100. The structural oscillations and characteristics of the flow around the
structure are analyzed in terms of the vibration characteristics and the fluid forces as a function of
the plate length LSP and the reduced velocity Ur. These investigations involve a wide range of plate
lengths LSP/D = 0–4 (where D is the cylinder diameter) over an extensive span of reduced velocities
Ur = 2–30. For LSP/D ≤ 0.5, self-limiting oscillations are induced in the assembly—these oscillations
correspond to either a vortex-induced vibration (VIV) or an integrated VIV-galloping response. For
LSP/D ≥ 0.75, the amplitude response is no longer self-limiting in the sense that the oscillation
amplitude increases linearly with increasing Ur—these oscillations correspond to either a strongly
correlated VIV-galloping regime (for LSP/D = 0.75), or two clearly separated regimes: namely, a VIV
regime with small-amplitude oscillation and a non-limiting galloping regime (for LSP/D > 0.75).

Keywords: flow-induced vibration (FIV); vortex-induced vibration (VIV); galloping; cylinder-plate
assembly

1. Introduction

Flow-induced vibration (FIV) of a bluff body has been investigated extensively over
the past several decades owing to its significance in engineering and industrial applications.
As a classical bidirectional flow-structure interaction (FSI) problem, FIV phenomena require
a fundamental understanding of fluid dynamics and structure vibrations. This physical
understanding is critical for a wide range of industrial applications such as the safety of
engineering structures exposed to wind, tidal waves, or river flow (e.g., large-span bridges,
transmission lines, marine cables, riser pipes [1,2]). One of the most well-known incidents
involving FIV phenomena is the collapse of the Tacoma bridge, which is believed to be
caused by the occurrence of vortex-induced vibration (VIV) of the structure [3]. Recently,
a new impetus in research on the FIV of bluff bodies has arisen from the development of
novel vibration-based energy harvesting technologies whose objective is to capture wind,
tidal, or hydraulic energy through structural oscillations and to convert these motions
into electricity. In view of these developments, a deeper understanding of the FIV of a
bluff body has important implications for a wide range of applications, especially in the
utilization of vibration of structures for energy harvesting.

Investigations of FIV-based energy harvesting have shown that the configuration of a
rigid splitter plate attached to a circular cylinder seems to be comparable or even potentially
superior to other shapes in terms of energy harvesting owing to the synergy of VIV and
galloping [4–6]. In fact, the dynamic response of a cylinder-plate assembly depends on a
number of factors—how the assembly is constrained (fixed or movable), the plate material
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(rigid or flexible), and the location of the plate relative to that of the cylinder (attached or
detached). Furthermore, various geometric characteristics of the cylinder-plate assembly
influence the structural vibrations and flow dynamics of this structure [7,8]. To fully
understand the complex dynamics of cylinder-plate assembly, it is necessary to briefly
review this special dynamical system for various configurations.

The most basic configuration is a rigid splitter plate attached to a stationary cylinder,
in which the former functions as a wake stabilizer to divide the shear flow and eliminate
the vortex shedding—as a result, the system oscillations are inhibited at the source. Some
earlier studies demonstrated that introducing a splitter plate can significantly result in a
narrower width of the near-wake flow, increase the base pressure, reduce the drag force
up to about 30–36% and alter the Strouhal number St of the stationary cylinder [9–11].
Moreover, the critical plate length above which the vortex shedding can be completely
suppressed to give a minimum drag force on the cylinder is dependent on the Reynolds
number [11]. If placing a splitter plate in the near wake (completely detached from the
cylinder), the system vibration is also significantly suppressed owing to the weakening
of the vortex strength and the reduction of the fluid force [12–14]. The drag reduction
and oscillations suppression in the cylinder-plate assembly are essentially unchanged,
regardless of the number and the location of the splitter plate(s) in the assembly (e.g.,
asymmetric arrangement of the plates [15,16], two downstream plates [16,17], two plates
with one placed upstream and the other downstream [18]). Another common configuration
is that of a freely rotating cylinder-plate assembly which mimics a practical real-world
scenario involving a multi-directional free stream. More specifically, rather than being
aligned in the direction of the incident free stream, the splitter plate in this case can rotate
to an off-axis equilibrium position (symmetry-breaking bifurcation) in order to give a drag
force reduction and a suppression of the vortex shedding, as observed in experimental
studies [17,19,20] and numerical investigations [21–24].

In practice, many engineering structures are free to oscillate (e.g., bridges, high-rise
buildings, power lines, marine risers). An elastically-supported cylindrical structure can
be used to model this scenario with either a flexible (free to continuously deform along
its length) or a rigid splitter plate attached to it. Shukla et al. [25] experimentally showed
that periodic travelling-wave type deformations can be induced on a flexible plate with a
specific length, Reynolds number and flexural rigidity. Lee et al. [26] numerically showed
that the flexibility of a splitter plate can reduce the drag and lift forces acting on the
cylinder, as well as promote oscillations in the plate. Wu et al. [27] reported increased drag
reduction and vortex suppression for both a fixed and an elastically mounted cylinder
with a long flexible splitter plate compared to that of a rigid splitter plate. A number
of researchers investigated the dynamic response of a rigid splitter plate attached to an
elastically mounted cylinder and noted an interesting phenomenon: namely, the occurrence
of a galloping-type instability. Consequently, this configuration has the potential to be one
of the most promising candidates for a high-performance fluid energy harvester. Some
earlier studies demonstrated that a circular cylinder with a long splitter-plate (viz., with a
length of about 10D where D is the cylinder diameter) is susceptible to galloping at a large
flow velocity [28,29], which might arise from a negative aerodynamic damping associated
with the rolling up of the shear layer and its subsequent reattachment on the splitter plate.

Nakamura et al. [30] replaced a circular cylinder with a rectangular prism of various
side ratios and demonstrated that any short bluff cylinder, whether sharp-edged or smooth,
can exhibit galloping in the presence of a long splitter-plate. Stappenbelt [31] systematically
studied the influence of plate length LSP/D (from 0–4) on the nature of the response
of a freely-oscillating cylinder, by undertaking a number of still-water experiments at
high Reynolds numbers in the range from Re = 12, 600–84,000. The author classified
the dynamic instabilities into three categories: namely, (1) vibrations dominated by VIV
(for LSP/D = 0.34–0.5); (2) vibrations dominated by galloping (for LSP/D = 1–2.4); and,
(3) no vibrations (for LSP/D = 2.8–4). Recently, Sun et al. [32] performed laminar flow
simulations to investigate the dynamic behavior of a cylinder-plate assembly with plate
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lengths ranging from 0 to 1.5D. With increasing plate length, these investigators observed
three distinct response modes: namely, (1) pure VIV for LSP/D = 0–0.5; (ii) coupled VIV-
galloping for LSP/D = 0.75; and, (3) separate VIV and galloping for LSP/D = 1–1.5D.
Sun et al. [32] further explained the transition from VIV to galloping as arising from the
competition between the lift forces on the plate (which promotes galloping) and cylinder
(which suppresses galloping). In addition to plate length, Sahu et al. [33] numerically
investigated the effect of the mass ratio m∗ (2–1000) and the Reynolds number (92–150) on
the dynamic response of cylinder-plate assembly. Some variants of the rigidly-connected
splitter plate can also induce a galloping-type instability on an elastically mounted cylinder
such as a detached plate [34,35] and a porous plate (solid and slotted) [36], but some
appendages cannot, such as a fairing or a C-shaped attachment [37]. Rather than focusing
on the translational vibration of a cylinder-plate assembly, Zhang et al. [23] investigated
numerically the torsional vibration of an elastically mounted circular-plate assembly in
a laminar flow. These researchers reported the presence of an amplified torsional VIV
and a symmetry-breaking bifurcation at small and large values of the reduced velocities,
respectively. In a subsequent study, Zhang et al. [38] investigated a three-degree-of-freedom
(in-line, cross-flow, and torsional) coupled FIV of a cylinder-plate assembly in which
the vibration dynamics was found to be strongly dependent on the torsional-to-vertical
frequency ratios.

In the review above, it is evident that there is currently a dearth of research concerning
the FIV response of a free-vibrating cylinder-plate assembly. In particular, there has been no
systematic investigation of the combined effects of plate length LSP and reduced velocity Ur
(over a large range of values of LSP and Ur) on the FIV response of a cylinder-plate assembly.
Recognizing this knowledge gap, the objective of the current investigation is to study
numerically the free vibrations of a circular cylinder with a splitter-plate attachment. The
novelty of the present study is that we provide a comprehensive set of numerical simulations
for a cylinder-plate assembly covering a large range of splitter-plate lengths (LSP/D = 0–−4)
and reduced velocities (Ur = 2–−30) that have not been numerically investigated previously.
In particular, the range of lengths of the splitter plate (0 ≤ LSP/D ≤ 4) investigated herein
numerically is the same as that used in the experiments conducted by Stappenbelt [31]. It
should be noted that numerical simulations of three-dimensional turbulent flows at high
Reynolds number in the context of FIV of a structure is prohibitively computationally
expensive. In consequence, all the computations reported herein are conducted for a
laminar flow at a Reynolds number of Re = 100, in order to effectively acquire the large
number of numerical results needed to conduct a systematic study of the influence of the
plate length and the reduced velocity on the oscillatory dynamics of the structure.

The paper is organized as follows. The mathematical and numerical modelling of FIV
of an elastically mounted cylinder-plate assembly are described in Section 2. The depen-
dence of the numerical simulations on the mesh and validation of our numerical results
are presented in Section 3. The main results of the numerical simulations are analyzed and
discussed in detail in Section 4. Finally, conclusions of the study are provided in Section 5.

2. Problem Description

The problem investigated in this study is the one-degree-of-freedom vibration of an
cylinder-plate assembly that is free to move only in the cross-flow direction (viz., along
the y-axis). As shown in Figure 1, a rigid splitter plate with a length of LSP and a width
WSP = 0.06D is attached to the afterbody midpoint of a circular cylinder with a diameter
D and oriented in the streamwise direction (viz., along the x-axis). The elastic spring
supporting the cylinder is characterized by the spring stiffness k and a mechanical damping
coefficient c. The uniform velocity of free stream is U. In our simulations, both U and D
are assumed to be unity.
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Figure 1. Sketch of a splitter plate attached to an elastically mounted circular cylinder constrained to
oscillate in the transverse (y-) direction.

2.1. Mathematical Modeling

The flow past the cylinder-plate assembly is usually laminar at a low Reynolds num-
ber (Re ≡ UD/ν where ν is the kinematic fluid viscosity), consequently, the flow dy-
namics is governed by the two-dimensional (2D) unsteady incompressible Navier-Stokes
(NS) equations:

∂ui
∂xi

= 0 , (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
, (2)

where the subscript i refers to the Cartesian component of a vector in the i-th direction with
i = 1, 2 for a two-dimensional problem; x1 ≡ x and x2 ≡ y are the Cartesian components of
the position vector in the streamwise and transverse directions, respectively; u1 ≡ u and
u2 ≡ v are the components of the velocity vector in x- and y-directions, respectively; p, ρ
and ν are the pressure, fluid density, and fluid kinematic viscosity; and, t is time. In the
numerical simulations conducted herein, ρ = 1.225 kg m−3 and ν = 0.01 m2 s−1.

The transverse vibration of cylinder-plate assembly, driven by the unsteady hydrody-
namic fluid forces acting on it, can be modelled by a mass-spring-damper system, which
assumes the following form:

mÿ + cẏ + ky = Fy(t) , (3)

where y, ẏ and ÿ represent the displacement (in m), velocity (in m s−1) and acceleration
(in m s−2) of the moving body in the cross-flow direction, respectively; m is the total
oscillating mass per unit length (in kg m−1); c and k are structural damping coefficient per
unit length (in N s m−2) and spring stiffness per unit length (in N m−2), respectively; Fy(t)
denotes the fluctuating transverse force per unit length acting on the vibrating system (in
N m−1). Other non-dimensional quantities used in this study include: the dimensionless
transverse displacement Y ≡ y/D; the reduced velocity Ur ≡ U/( fnD) defined in terms of
the structural natural frequency fn in a quiescent fluid; the damping ratio ζ ≡ c/(2

√
km);

and, the mass ratio m∗ defined as the ratio of the total structural mass to the fluid mass
displaced by the moving body. The instantaneous lift and drag coefficients are defined
as CL(t) ≡ 2Fy(t)/(ρU2D) and CD(t) ≡ 2Fx(t)/(ρU2D), respectively. Here, Fy and Fx are
force components in the cross-flow and in-line directions, respectively. The dimensionless
time τ is defined as τ ≡ tU/D—since D = 1 m and U = 1 m s−1, the dimensional time t
has the same numerical value as τ so, for simplicity, we will henceforth use t to refer to both
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the dimensional and dimensionless time. Finally, in the numerical simulations conducted
herein, the structural damping coefficient per unit length c = 0 N s m−2 (viz., there was no
structural damping in the system dynamics).

2.2. Numerical Modelling

The two-dimensional numerical simulations in this study are performed using Open-
FOAM, an open-source computational fluid dynamics (CFD) software system library
implemented in C++.

2.2.1. Simulation Set-Up

As shown in Figure 2, the elastically mounted cylinder-plate assembly is located at
the origin of a rectangular Cartesian computational domain, the dimensions of which are
Lu + Ld (where Lu and Ld are the distance from cylinder center to inlet and outlet planes,
respectively) in the x-direction and W in the y-direction. The center of the cylinder (in
the equilibrium position) is equidistant (W/2) from the top and bottom boundaries of the
domain. Considering that large-amplitude transverse oscillations may occur, the size of
computational domain is chosen carefully to ensure that the four (artificial) boundaries
of the domain do not have an effect on the motion of structure. The choice of an optimal
computational domain size to satisfy this condition is described in Section 3.1.

Figure 2. Sketch definition of computational domain and boundary conditions used in the numeri-
cal simulations.

Figure 2 also summarizes the boundary conditions in our numerical simulations.
A Dirichlet boundary condition is applied for the two velocity components (u and v) at
the inlet plane and along the cylinder-plate assembly surface as well as for fluid pressure
(P) at the outlet plane. A Neumann boundary condition [32,33,37] is imposed for the fluid
pressure at the inlet plane and along the cylinder-plate assembly surface and for velocity
components at the outlet plane. The specified boundary conditions and the corresponding
mathematical expressions of these boundary conditions are summarized in Table 1. The
initial velocity and pressure fields in the computational domain are set to zero.
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Table 1. Boundary conditions and their corresponding mathematical expressions.

Boundary Velocity Pressure

Inlet Uniform velocity (u = 1, v = 0) Zero pressure gradient normal to
boundary (∂P/∂x = 0)

Outlet Zero velocity gradients normal to
boundary (∂u/∂x = 0, ∂v/∂x = 0) Zero average reference pressure (P = 0)

Top/Bottom (symmetry plane) Zero velocity and zero velocity gradient
normal to boundary (∂u/∂y = 0, v = 0)

Zero pressure gradient normal to
boundary (∂P/∂y = 0)

Cylinder/splitter-plate walls No-slip wall condition (u = 0, v = 0) Zero pressure gradient normal to walls
(∂P/∂n = 0)

In this study, the proprietary software package Ansys ICEM CFD is used to gen-
erate a two-dimensional structured hexahedral grid to cover the entire computational
domain—this structured grid design is used to reduce the computational time and to ob-
tain more accurate results. As depicted in Figure 3, the grid cells surrounding the cylinder
and the splitter plate are refined and the entire mesh covering the computational domain
is of high quality—more specifically, the quality of the mesh used in our numerical sim-
ulations is between 0.95 to 1 as confirmed using the mesh check tool in the Ansys ICEM
CFD package.

Figure 3. Computational mesh used to discretize the computational domain. Mesh partitioning of
whole domain and local mesh refinement close to the surface of the bare circular cylinder (a,c) and
the cylinder-plate assembly (b,d).

2.2.2. Numerical Discretization

The numerical schemes used to discretize the various terms in the NS equations are as
follows: (1) temporal derivative term is discretized using a second-order accurate implicit
backward scheme; (2) spatial discretization of the convective term uses a second-order
accurate Gaussian linear upwind scheme; and, (3) the diffusion term is discretized using a
second-order accurate Gauss linear corrected scheme. After the discretization of the NS
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equations, an iterative method is used to solve the linear algebraic equation system. To this
purpose, the smoothSolver with symGaussSeidel smoother and the geometric-algebraic
multi-grid (CAMG) with GaussSeidel smoother in OpenFOAM are used to solve the
discretized systems of equations for velocity and pressure, respectively. The fluid dynamics
is addressed using the transient pimpleFOAM solver which the PIMPLE algorithm—a
hybrid between the steady SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
and transient PISO (Pressure Implicit with Splitting Operators)—is used to deal with the
pressure-velocity coupling of the continuity and momentum equations. The pimpleFOAM
solver allows a larger time step size to be used in the numerical simulations. In order to
ensure a stable and convergent calculation at every time step, the time step is adjusted to
control the maximum Courant-Friedrichs-Lewy (CFL) number which, for our numerical
simulations, is specified to have a value of 0.8 at each time step.

With respect to the structural motion, the implicit Newmark-β scheme (γ = 0.5,
β = 0.25) is utilized to numerically solve the mass-spring-damper equation of motion
(Equation (3)) to give the displacement, velocity and acceleration of the cylinder-plate
assembly at each time step.

2.2.3. Grid Update

Owing to the oscillatory motion of the cylinder-plate assembly, a dynamic meshing
methodology which can accommodate a changing geometry due to this motion is utilized
in our numerical simulations. To this purpose, the whole computational domain is di-
vided into three distinct regions through the definition of two parameters—innerDistance
and outerDistance—which (1) allows the moving mesh zone between the body surface
and innerDistance to move with the cylinder-plate assembly without any deformation;
(2) defines a mesh morphing zone between innerDistance and outerDistance, allowing the
mesh in this zone to be deformed and updated at each time step using a spherical linear
interpolation scheme (SLERP); and, (3) specifies the static mesh zone beyond outerDistance.
The partitioning of computational domain into three regions through the specification of in-
nerDistance and outerDistance is displayed in Figure 4. The existence of a directly moving
mesh zone can effectively improve the simulation accuracy in the mesh region surrounding
the cylinder-plate assembly, and guarantee the computational stability of the numerical
solution, particularly when the structure undergoes a significant displacement [1].

Figure 4. Partitioning of the computational domain into three regions by the specification of two
parameters (innerDistance and outerDistance) in the dynamic meshing methodology.

In order to achieve a two-way FSI during the simulation, the original NS equa-
tions are reformulated in the framework of the arbitrary Lagrangian Eulerian (ALE)
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methodology—this involves the inclusion of the relative velocity between the fluid and
mesh in the convective term of momentum transport equation (Equation (2)) to give

∂ui
∂t

+
(

uj − uj,mesh

)∂ui
∂xj

= −1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
. (4)

Here, uj,mesh is j-th component of the grid velocity vector characterizing the mov-
ing mesh.

An explicit FSI algorithm is applied in our numerical simulations, for which the
governing equations for the fluid and structure are solved successively at each time step.
More precisely, the numerical solution of the FSI problem uses the following three-step
procedure: namely, (1) solve the ALE-based NS equations (Equations (1) and (4)) to obtain
the flow field information, so that the fluid force acting on the structure can be calculated
by integrating the pressure and viscous friction on its surface; (2) substitute the computed
fluid force into the right-hand side of Equation (3) as the forcing term and numerically
solve the resulting equation to obtain the displacement, velocity and acceleration of the
vibrating structure; and, (3) update the mesh (both the directly moving and morphing
regions) based on the state of motion determined in step (2).

3. Numerical Model

The numerical simulations are influenced by a number of factors such as the computa-
tional domain size, the grid resolution and the dimensionless time step. A careful study has
been undertaken to determine the most appropriate configuration of these critical factors
in order to conduct the large number of simulations required with the least computational
cost, while achieving an acceptable level of accuracy. The typical benchmark case of a
one-degree-of-freedom VIV of a circular cylinder is used in sensitivity tests—in these tests,
the Reynolds number, the mass ratio and the structural damping ratio are fixed at Re = 150,
m∗ = 2.5465 and ζ = 0. The tests were conducted for a range of reduced velocities Ur from
4–9, inclusive. The quantities of interest used to assess the computational accuracy include
the maximum amplitude Ymax, root-mean-square (RMS) of the lift coefficient CL,rms and
mean of the drag coefficient CD,mean. After the sensitivity studies, the present numerical
model is validated.

3.1. Sensitivity Study of Domain

The sensitivity of the numerical solution to the size of the computational domain is
investigated by varying the distance from the cylinder center to the outlet plane (Ld/D = 25,
45, and 65) and the width of the domain (W/D = 30, 40, 50, and 60) for a fixed distance
from the cylinder center to the inlet plane (Lu/D = 15)—Lu is fixed owing to the fact
that the flow information “propagates” in the downstream direction so the impact of this
dimension is negligible on the numerical solution. To investigate the influence of the
computational domain size, we fixed the grid-stretching ratio around the cylinder to a
value of 1.06, the number of mesh elements (cells) around the circumference of the cylinder
to a value of Nc = 160 and the total number NE of cell elements used to discretize the
computational domain to a value of about 20,000. Moreover, the time step used in domain
tests is fixed at ∆t = 0.01 s.

Table 2 summarizes the results of a sensitivity study on the computational domain size.
All the numerical simulations were conducted for a reduced velocity of Ur = 6. Domains
1–3 embody the effect of the downstream domain dimension Ld on the numerical solution
and show the relative differences in the three quantities of interest as Ld/D increases from
25 to 45 to 65 with the width W/D fixed at a value of 40. It can be seen that the percent
relative differences in the predicted values of the three quantities between domains 1 and 2
are significant. Moreover, the percent relative differences in the predicted values of Ymax,
CL,rms and CD,mean are only 0.15%, 0.62% and 0.05%, respectively, between domains 2 and
3. In view of these results, Ld/D = 45 (or, equivalently, Lx/D = 60 where Lx ≡ Lu + Ld)
is chosen as the downstream dimension for the computational domain. Domains 4, 2, 5,
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and 6 embody the influence of the domain width W on the numerical solution for a fixed
value of the domain length Lx/D = 60. It is seen that CL,rms shows the largest percent
relative difference of 22.24% between W/D = 30 and 40, while Ymax and CD,mean exhibit
smaller percent relative differences of 8.26% and 4.33%, respectively. Moreover, the relative
percent differences in the quantities of interest are small for W/D = 40 compared to those
for W/D = 50—a percent relative difference of 1.25% is observed for CL,rms and generally
negligible percent relative differences for Ymax and CD,mean. Similarly, the percent relative
differences are very small for W/D = 50 when compared to those for W/D = 60. As a
consequence, an appropriate domain width for the numerical simulations is W/D = 40.
In summary, a computational domain with a length of Lx = 60D (viz., Lu = 15D and
Ld = 45D) and a width Ly ≡W = 40D provides the best balance between computational
effort and accuracy for the numerical simulations. The corresponding blockage (ratio of the
cylinder diameter D to the domain width W) is 0.025.

Table 2. Dependence of numerical results on the size of the computational domain. All the numerical
simulations were conducted at fixed values of Lu/D = 15, Re = 150, m∗ = 2.5465, ζ = 0, and Ur = 6.

Domain (Lx × Ly)/D2 Ymax CL,rms CD,mean

1 (15 + 25)× 40 0.50 0.03 1.73
2 (15 + 45)× 40 0.46 (8.08%) 0.02 (24.38%) 1.66 (4.16%)
3 (15 + 65)× 40 0.46 (0.15%) 0.02 (0.62%) 1.66 (0.05%)

4 (15 + 45)× 30 0.50 0.03 1.73
2 (15 + 45)× 40 0.46 (8.26%) 0.02 (22.24%) 1.66 (4.33%)
5 (15 + 45)× 50 0.46 (0.32%) 0.02 (1.25%) 1.66 (0%)
6 (15 + 45)× 60 0.47 (1.39%) 0.02 (0.52%) 1.66 (0.33%)

3.2. Sensitivity Study of Grid

A grid sensitivity study has been conducted to ensure the numerical results are
independent of the grid resolution. To simulate the VIV of a circular cylinder, a non-
uniform stretched mesh composed of quadrilateral elements is used to tessellate in the
entire computational domain (see Figure 3a,c). The mesh is characterized by the number
of nodal points (Nc) along the circumference of the cylinder, the height of first grid layer
away from the cylinder surface (δ), and the number of nodes along the radial direction
within the dense mesh area surrounding cylinder (Nr). More specifically, Nr grid cells are
distributed along the length of the splitter plate and three grid cells are distributed evenly
along the width of the plate. Four different meshes ranging from coarse to dense are used
in the sensitivity study—for each mesh, δ is fixed at 0.01D in order to satisfy the criterion
of y+ ≡ yuτ/ν ≈ 1 (where y+ is the normal wall coordinate, y is the distance from the
wall, and uτ is the friction velocity). The grid resolution is varied by changing the values
of Nc in the range from 80 to 200 and of Nr in the range from 48 to 76—these variations
change the total number of cell elements (NE) in the mesh. In these numerical simulations,
a computational domain size of Lx/D× Ly/D = 60× 40 and a time step of ∆t = 0.01 s
are used.

Four different meshes (grids) and their influence on the numerical solution are exhib-
ited in Table 3. It can be seen that the percent relative differences in the predicted quantities
between grid 1 (coarse) and grid 2 (intermediate) are significant as are those between grid 2
(intermediate) and grid 3 (fine). Moreover, the percent relative differences in the three
quantities between grid 3 (fine) and grid 4 (very fine) is small, with the largest percent
relative difference of 0.86% occurring for CL,rms. In order to balance computational effort
with accuracy, we will use grid 3 for the numerical simulations conducted in this paper.
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Table 3. Dependence of numerical results on the grid resolution. All the numerical simulations were
conducted at fixed values of Re = 150, m∗ = 2.5465, ζ = 0, and Ur = 6.

Grid Nc Nr NE Ymax CL,rms CD,mean

1 80 48 7815 0.52 0.03 1.77
2 120 56 12,217 0.50 (3.52%) 0.02 (9.20%) 1.73 (2.32%)
3 160 67 18,513 0.49 (1.97%) 0.02 (6.55%) 1.71 (1.14%)
4 200 76 25,201 0.49 (0.40%) 0.02 (0.86%) 1.71 (0.08%)

3.3. Sensitivity Study of Time Step

The sensitivity of numerical results on the dimensionless time step size has been
investigated. These sensitivity tests were conducted on a fixed computational domain
size (domain 2) and grid resolution (grid 3) with the numerical solutions obtained using
three different time step sizes: namely, ∆t = 0.02 s, 0.01 s, and 0.005 s. The results are
summarized in Table 4. A perusal of this table shows that significant percent relative
differences in the three quantities are observed between the results obtained for ∆t = 0.02 s
and those for ∆t = 0.01 s. More specifically, the percent relative difference for the predicted
value of CL,rms using ∆t = 0.02 s compared to that using ∆t = 0.01 s is 19.393%. In contrast,
the percent relative differences between results obtained for ∆t = 0.01 s and 0.005 s is much
smaller—again, the largest percent relative difference occurs for CL,rms, but this difference
is only 5.45%. From these considerations, a time step of ∆t = 0.01 s is used in our numerical
simulations as this choice represents the best compromise between computational efficiency
and solution accuracy.

Table 4. Dependence of numerical results on the time step size. All the numerical simulations were
conducted at fixed values of Re = 150, m∗ = 2.5465, ζ = 0, and Ur = 6.

Time Step Size (s) Ymax CL,rms CD,mean

0.02 0.51 0.03 1.76
0.01 0.49 (3.60%) 0.02 (19.39%) 1.71 (2.77%)
0.005 0.49 (0.27%) 0.02 (5.45%) 1.71 (0.16%)

3.4. Model Validation

To validate the predictive accuracy of the numerical model used in this study, we will
simulate the transverse VIV of a circular cylinder and the transverse FIV of the cylinder-
plate assembly, and compare our predictions with some previous numerical results. Three
different simulation cases are used for this purpose, involving different Reynolds numbers,
and structural mass and damping ratios.

The numerical properties of the first simulation case is the same as that in sensitiv-
ity studies: namely, Re = 150, m∗ = 2.5465, and ζ = 0 for a range of reduced veloc-
ity Ur = 2–9.5. The predictions of the dependence of three (dimensionless) quantities
of interest Ymax, CL,rms and CD,mean on the reduced velocity Ur is exhibited in Figure 5.
These results are compared with the predictions obtained from some previous numerical
investigations [39–43]. A careful examination of the figure shows that the normalized
maximum transverse displacement and the lift and drag force coefficients are in excellent
conformance with previous numerical simulations. This implies that the numerical model
used in this study can accurately predict the VIV response of a circular cylinder in terms of
the onset of VIV, the lock-in range and the maximum amplitude of oscillation.
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Figure 5. Comparison of numerical results between the present study and previous numerical
investigations (Ahn and Kallinderis [39], Borazjani and Sotiropoulos [40], Bao et al. [41], Zhao [42],
and Wang et al. [43]): (a) normalized maximum transverse displacement Ymax as a function of Ur;
(b) root-mean-square lift coefficient CL,rms as a function of Ur; and, (c) mean drag coefficient CD,mean

as a function of Ur. The current numerical simulations are of the VIV response of a circular cylinder
for Re = 150, m∗ = 2.5465, and ζ = 0. The resolution of Ur used in the present simulations is 0.5.

The second case involves the numerical simulation of the VIV response of a circular
cylinder for Re = 100, m∗ = 10, and ζ = 0 for Ur = 3− 9.5. The numerical parameters in
this example correspond exactly to those used for the numerical simulations of the cylinder-
plate assembly conducted herein. Figure 6 compares our predictions of the normalized
maximum transverse displacement as a function of Ur with results obtained from some
previous numerical studies [44,45]. A good agreement is obtained between the present
simulations and these previous numerical results—albeit, our predictions of Ymax are
slightly larger than those obtained from previous numerical studies in the range of reduced
velocities Ur from about 4.5 to 8. The reason for this small difference is that the mass ratio
used in these previous numerical studies was m∗ = 12.73—this value of the mass ratio is
larger than that used in the current simulations where m∗ = 10.

Figure 7 compares the maximum transverse displacement of elastically mounted
cylinder-plate assemblies with plate lengths of LSP/D = 0.25, 0.5, 0.75 and 1 with the
corresponding numerical results of Sun et al. [32] and Zhang et al. [38]. All the numerical
simulations shown here were conducted at Re = 100, m∗ = 10 and ζ = 0. A careful perusal
of Figure 7 shows that the present simulations are in excellent conformance with previous
numerical results for both short plate lengths associated with self-limiting oscillations at
small values of the reduced velocity (see Figure 7a,b) and for the longer plates associated
with non-limiting oscillations at the larger values of the reduced velocity (see Figure 7c,d).
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Figure 6. Comparison of numerical results between the present study and previous numerical
investigations (Bourguet and Jacono [44], Dorogi and Baranyi [45]) for the normalized maximum
transverse displacement Ymax as a function of the reduced velocity Ur. The current numerical
simulations are of the VIV response of a circular cylinder for Re = 100, m∗ = 10, and ζ = 0.
The resolution of Ur used in present simulations is 0.5.

Figure 7. Comparison of numerical results between the present study and previous numerical
investigations (Sun et al. [32], Zhang et al. [38]) for the normalized maximum transverse displacement
Ymax as a function of the reduced velocity Ur. The current numerical simulations are of the FIV
response of a cylinder-plate assembly with various plate lengths LSP/D for Re = 100, m∗ = 10,
and ζ = 0.

4. Results

In this section, the combined effect of splitter-plate length and reduced velocity on the
FIV of cylinder-plate assembly is analyzed in terms of the vibration amplitude, the oscilla-
tion frequency and the fluid forces acting on the moving body.

4.1. Vibration Characteristics

Figures 8 and 9 display the three-dimensional (3D) plots of the maximum transverse
displacement (amplitude) Ymax and the non-dimensional dominant transverse displacement
oscillation frequency f ∗Y/ fn, respectively, as a function of the splitter-plate length LSP and
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the reduced velocity Ur. A careful examination of these plots reveals the dynamical
characteristics of the nonlinear system that can be divided into three regimes: namely, (1) in
the regime where LSP/D = 0–0.5, the cylinder-plate assembly undergoes a self-limiting
vibration that occurs over a limited range of the reduced velocity with the oscillation
frequency locked near the structural natural frequency (which can be identified as a VIV-
type response); (2) in the regime where LSP/D = 0.75–3.5, the cylinder-plate assembly
undergoes a non-limited vibration with a monotonically increasing oscillation amplitude
with increasing reduced velocity—this regime exhibits complex frequency characteristics
and can be identified as a galloping-type response; and, (3) in the regime where LSP/D = 4,
there is no obvious oscillation induced on cylinder-plate assembly, at least for values of
Ur up to 30. Figures 8 and 9 show clearly that the dynamical response of a cylinder-plate
assembly has a strong dependence on the splitter-plate length and the reduced velocity.

Figure 8. The normalized vibration amplitude plotted as a function of the plate length LSP and the
reduced velocity Ur.

Figure 9. The dominant vibration frequency normalized by structural natural frequency ( f ∗Y/ fn)
plotted as a function of the plate length LSP and the reduced velocity Ur.

Although the three-dimensional plots exhibit qualitatively the relationship between
the plate length, reduced velocity, and maximum transverse displacement, a detailed and
more quantitative elucidation of the various controlling factors that influence the oscilla-
tory response of a cylinder-plate assembly requires two-dimensional plots. Consequently,
in order to obtain more details on the nature of the amplitude and frequency response for a
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cylinder-plate assembly, Figure 10 exhibits two-dimensional plots of Ymax and f ∗Y/ fn as a
function of Ur stratified by the value of the plate length LSP. The bare circular cylinder (with-
out the splitter plate, so LSP = 0) undergoes VIV with a lock-in range of Ur = 5–8.5 and
a maximum vibration amplitude of about Ymax/D ≈ 0.6 at Ur = 5. The non-dimensional
dominant frequency f ∗Y/ fn of displacement oscillations increases with increasing Ur before
the onset of VIV, attaining a value of unity when lock-in is achieved (implying that f ∗Y
is exactly locked to the structural natural frequency fn). The non-dimensional dominant
frequency increases linearly again when the system transitions out of lock-in. The dynamic
response of the bare circular cylinder is significantly different than that of a splitter plate
attached to the cylinder.

Figure 10. Plots of (a) the normalized vibration amplitude (Ymax) and (b) the normalized dominant
vibration frequency ( f ∗Y/ fn) as a function of the reduced velocity Ur stratified in terms of the splitter-
plate length LSP.

With the inclusion of a relatively short splitter-plate of length LSP/D = 0.25, the pure
VIV response is enhanced in the sense that it has a wider lock-in range (namely,
Ur = 4.5–12). The magnitude of the transverse displacement has a maximum value
of about 0.7D over an extended range of values of the reduced velocity, in contrast to
the case of a bare cylinder where Ymax decreases rapidly in magnitude with increasing
Ur after achieving a peak value at lock-in. Furthermore, with the inclusion of the short
splitter-plate, f ∗Y is approximately equal to fn over the wider range of reduced velocities
where lock-in occurs.

A cylinder-plate assembly with LSP/D = 0.5 undergoes a further reinforced vibration
over a much wider lock-in range of Ur = 5.5–20 (almost four times the VIV lock-in range of
a bare cylinder) with a larger amplitude of vibration. The frequency response exhibits a
similar pattern, but the dominant oscillation frequency f ∗Y is locked on to a value that is
smaller than the natural frequency (more specifically, to 0.93 fn). Consequently, a reasonable
guess is that the cylinder-plate assembly with LSP/D = 0.5 undergoes an integrated
VIV-galloping response.
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For an even longer plate length of LSP/D = 0.75, the cylinder-plate assembly first
undergoes a weak oscillation with an amplitude Ymax/D = 0.06 at Ur = 6 where f ∗Y also
exhibits a small increase. The system manifests an onset of galloping at Ur = 7 with a
nearly linear increase in amplitude with increasing Ur—attaining an amplitude of 2D at
Ur = 30. The associated dominant frequency f ∗Y/ fn maintains a constant value of 0.84 over
the range of Ur where galloping occurs. Cylinder-plate assemblies with LSP/D = 1, 1.25
and 1.5 exhibit very similar dynamical response characteristics as that with LSP/D = 0.75.
However, the onset of galloping occurs at larger values of Ur and the dominant frequency
f ∗Y/ fn over the range of Ur where galloping occurs is smaller for the longer plate lengths.
For example, the onset of galloping for LSP/D = 1, 1.25, and 1.5 occurs at Ur = 8, 9,
and 10, respectively. Furthermore, f ∗Y/ fn = 0.76, 0.7, and 0.65 in the range of Ur associated
with galloping for plate lengths of LSP/D = 1, 1.25, and 1.5, respectively. Therefore,
with increasing LSP the amplitude decreases (albeit slowly)—the only exception to this
rule occurs at the larger values of Ur (e.g., the amplitude for LSP/D = 1 crosses that
for LSP/D = 0.75 at about Ur = 23–27). Another interesting phenomenon is that the
amplitude plots of LSP/D = 0.75, 1 and 1.25 exhibits a “kink” in the amplitude response
(where the amplitude decreases abruptly) at Ur = 15, 14 and 12.5, respectively. However,
for LSP/D = 1.5, the expected “kink” morphs instead into an interval where the amplitude
is constant at Ur = 11–11.5.

When the plate length is increased to LSP/D = 1.75, the small vibrations occurring
at small Ur become stronger with increasingly reduced velocity, attaining a maximum
amplitude of 0.15D at Ur = 4. The onset of galloping in this case does not occur until
Ur = 10.5 and the dominant vibration frequency in the galloping regime is reduced (to
0.57 fn) as is the transverse displacement Ymax compared to that of the shorter plate lengths.
The cylinder-plate assemblies for LSP/D = 2, 2.5, 3 and 3.5 exhibit similar dynamical
response characteristics to those for LSP/D = 1.75—however, the onset of galloping
occurs at progressively larger values of the reduced velocity (e.g., at Ur = 11, 12, 13
and 18, respectively) and the dominant oscillation frequency in the galloping regime
is progressively smaller (e.g., f ∗Y/ fn = 0.5, 0.43, 0.35 and 0.3, respectively). In addition,
the frequency response exhibits some noteworthy attributes: namely, (1) for LSP/D = 3–3.5,
the dominant oscillation frequency in the lower range of Ur gradually increases to the
structural natural frequency fn (but does not exceed this value), in contrast to the behavior
for shorter plate lengths (e.g., for LSP/D = 1–2.5) where the dominant oscillation frequency
can exceed fn (and, indeed can attain values up to about 1.5 fn); and, (2) for LSP/D = 2.5–3.5,
there exist ranges of the reduced velocity where vibration ceases (e.g., Ur = 11–12, 9–11
and 9–13).

For the longest plate length LSP/D = 4 considered in this study, a small oscillation
occurs in the range Ur = 4–8. Moreover, no galloping is triggered, at least over the range
of reduced velocity Ur investigated in this study—although, it cannot be ruled out that
galloping might not occur at still larger values of Ur.

4.2. Fluid Force Characteristics

Figures 11 and 12 exhibit three-dimensional plots of CL,rms and of CD,mean, respectively,
as a function of the plate length LSP and the reduced velocity Ur for a cylinder-plate assem-
bly. A perusal of this figure suggests that the lift force is strongly correlated with the onset
of VIV and galloping—the lift force is seen to increase significantly in the range of reduced
velocities associated with VIV or galloping. In contrast, the mean drag force embodied in
CD,mean exhibits appreciable variations only when the self-limiting VIV response occurs
(e.g., for LSP/D = 0–0.25).
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Figure 11. Three-dimensional plot of the root-mean-square lift coefficient CL,rms as a function of the
splitter-plate length LSP and the reduced velocity Ur.

Figure 12. Three-dimensional plot of the time-averaged (mean) drag coefficient CD,mean as a function
of the splitter-plate length LSP and the reduced velocity Ur.

Figures 13a,b display the fluid force coefficients CL,rms and CD,mean of the cylinder-
plate assembly, respectively, as a function of the reduced velocity Ur stratified by the
different values of the plate length LSP. For the bare circular cylinder, the lift and drag
coefficients first increase sharply at the onset of VIV, reaching peak values of CL,rms = 1.38
and CD,mean = 2.3 at Ur = 5. After VIV onset, CL,rms decreases rapidly to near zero during
lock-in and thereafter increases slightly again to a value of 0.2 and remains constant at this
value when the system has transitioned out of lock-in. Furthermore, CD,mean also undergoes
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a sudden decrease from a peak value of 2.35 to a value of 1.35 where it remains constant
with increasing Ur—the latter value for CD,mean is the same as that before lock-in.

Figure 13. Variation of aerodynamic fluid forces acting on a cylinder-plate assembly: (a) the root-
mean-square lift coefficient CL,rms and (b) the time-averaged (mean) drag coefficient CD,mean as a
function of the reduced velocity Ur and stratified with respect to the plate length LSP.

For LSP/D = 0.25–0.5, the variation of CL,rms with Ur adheres basically to a similar
trend as that for a bare circular cylinder—the main difference is that the lift coefficient
for the cylinder with the splitter plate exhibits a slightly larger peak value of 1.44 and
gradually decreases to a value 0.2 in the lock-in range instead of a near-zero value for the
bare circular cylinder. By contrast, the value of the drag coefficient is reduced compared
to that for the bare circular cylinder—more specifically, the peak value of CD,mean = 1.76
for LSP/D = 0.25 and this peak value is even smaller for LSP/D = 0.5. In this case,
the maximum of CD,mean is broad, occurring over a wide range of values for Ur.

If cylinder-plate assembly undergoes a galloping-type response, the lift coefficient
exhibits a completely different behavior. For LSP/D = 0.75–1.5, CL,rms first increases to a
small peak value (first peak) at Ur = 5.5 (which is associated with a very small oscillation)
and then decreases towards zero until the onset of galloping, at which point CL,rms increases
again to attain a large peak value (second peak) of about 1.2–1.4. This is followed by a
gradual decrease in the value of CL,rms within the galloping regime. On the other hand,
CD,mean only exhibits a very small increase in value at the onset of oscillatory motion and
remains at a constant value within the galloping regime. There are also variations in the
values of CL,rms and CD,mean at the location of “kinks” in the amplitude response.

For LSP/D = 1.75–3.5, the first peak of the lift coefficient attains a much higher value
of between 1.75–2.7. This is comparable to the fluid force responsible for the VIV of a
bare circular cylinder. However, the corresponding vibration at small values of Ur has
a maximum amplitude of 0.2D, which is only one-third of the value associated with the
VIV response (cf. Figure 13). Moreover, attaching a longer plate to the cylinder results in
a smaller second increase in the lift coefficient before the onset of galloping followed by
a slow decrease of CL,rms within the galloping regime. In contrast, the variation CD,mean
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as a function of Ur is much simpler—there is a rapid increase at the onset of the small
oscillatory motion and a gradual increase at the onset of galloping. Moreover, the drag
coefficient is constant within the galloping regime. Finally, this constant value of CD,mean in
the galloping regime is smaller for longer plate lengths.

A cylinder-plate assembly with LSP/D = 4 only exhibits very small vibrations at small
values of Ur. In this case, it is seen that both CL,rms and CD,mean first increase at Ur = 4–8
and then decrease again to zero at the larger values of the reduced velocity.

4.3. Components of Transverse Force

For a cylinder-plate assembly moving together as a rigid body, the aerodynamic force
will act on both the circular cylinder and the splitter-plate—the latter cannot be ignored,
especially for a long plate. To determine the contribution of various force components
to the system oscillations, Figure 14 displays the oscillation amplitude superimposed on
the fluid forces exerted on the cylinder and the plate. It should be noted that the drag
force is included only for the self-limiting VIV-type oscillations (which are present when
LSP/D = 0–0.5)—the drag force has a negligible effect in the galloping regime.

For the cylinder-plate assembly undergoing a self-limiting oscillation
(LSP/D = 0.25–0.5), the transverse force acting on the cylinder is much larger than that
acting on the splitter-plate, although the former decreases while the latter increases with an
increasing LSP. As a consequence, the additional plate-force might play a leading role in
inducing stronger oscillations in the system over a wider range of Ur and in producing a
larger vibration amplitude over this range.

For LSP/D = 0.75–1.5, the cylinder-plate assembly undergoes a galloping-dominated
response. The lift force on the cylinder in the galloping regime is larger than that on the
splitter plate in general. The difference in the lift force between the cylinder and the plate
decreases with increasing plate length until LSP/D = 1.5 at which point the lift force on
the cylinder and plate are nearly equal in value. Before the onset of galloping, the lift force
on the cylinder is twice as large as that on the plate for small oscillations, but after that
the former decreases towards zero, eventually becoming smaller than the latter (e.g., this
occurs at Ur = 7–7.5, 7–8.5, and 7–9.5 for LSP/D = 1, 1.25, and 1.5, respectively).

For LSP/D ≥ 1.75, the situation is reversed: namely, the lift force on the plate is
generally larger than that on the cylinder for small oscillations and for galloping—this
response may be associated with some special flow patterns. The difference between these
two forces increases with increasing LSP. As discussed above, the magnitude of transverse
(lift) force with small oscillations is greatly increased relative to that for shorter plate lengths.
In the quasi-stationary regime before the onset of galloping, the variation of the transverse
force with Ur exhibits some interesting behavior. More specifically, for LSP/D = 1.75,
the lift force on the cylinder gradually decreases to zero, while the lift force on the plate
remains small (but, non-zero)—this occurs at Ur = 7–10.5 and 7.5–11 for plate lengths of
LSP/D = 1.75 and 2, respectively. In contrast, the lift force on the cylinder and plate both
are zero over this range of reduced velocities for longer plate lengths with LSP/D = 2.5–4.

It appears that the lift force on the cylinder (CLc) has a greater effect on the resulting
dynamic response of the vibrating system, even though the value of this lift force is less
than that on the plate (CLp). This is supported by the fact that CLp increases sharply at small
values of the reduced velocity Ur for LSP/D ≥ 1.75. However, this sharp increase does not
appear to induce a stronger secondary vibration—indeed, the lift force on the cylinder and
the oscillation amplitude remain unchanged. The effect of CLp appears to be closely related
to the wake flow dynamics behind a vibrating cylinder-plate assembly in the form of the
interaction between the splitter plate and the near-wake flow. Finally, when CLp is larger
than CLc for the longer plates, the amplitude response appears to increase linearly with Ur
with less tendency for the existence of a “kink” (discontinuity in the slope) in this response.
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Figure 14. The maximum vibration amplitude Ymax, the root-mean-square lift force coefficient and the
mean drag force coefficient acting on the cylinder (CLc,rms, CDc,mean) and the plate (CLp,rms, CDp,mean)
as a function of the reduced velocity Ur for six representative values of the splitter-plate length.

5. Conclusions

The combined effects of the splitter-plate length and the reduced velocity on the
transverse flow-induced vibration of an elastically mounted cylinder-plate assembly at a
Reynolds number of 100 is investigated using numerical simulations in the present work.

For LSP/D ≤ 0.5, a self-limiting oscillation is induced on the cylinder-plate assembly—this
consists of either a VIV-only response (for LSP/D = 0.25) or an integrated VIV-galloping
response (for LSP/D = 0.5). In comparison to the flow-induced vibrations of a bare circular
cylinder, the former case has a significantly extended lock-in range, whereas the latter case
has a larger reduced velocity range of structural motion with a smaller oscillation frequency.
For cylinder-plate assemblies with 0.75 ≤ LSP/D < 4, an unlimited galloping response
is triggered consisting of a steadily increasing oscillation amplitude that is preceded by
a VIV regime before the onset of galloping. The two regimes here become increasingly
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separated from one another as the plate length increases (viz., from a significant to no
overlap between the two regimes associated with VIV and galloping). The lift force acting
on the circular cylinder has an important contribution on the dynamic response of the
vibrating body. In contrast, the component of the force acting on the splitter-plate has a
more important effect on the dynamics of the flow surrounding the cylinder-plate assembly.

Further investigations on the branching behavior and wake structure would be of
great interest to gain a deeper understanding of the physical mechanisms underpinning
the FIV response of a cylinder-plate assembly reported herein.
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