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Abstract: Head-on collisions between two solitary waves in the framework of the nonlinear Schrödinger
(NLS) equation were investigated using the Fourier spectral method. When solitary waves undergo
collision, the peak value of surface elevation (hereafter referred to as ζmax) exhibits fluctuations with
increasing relative water depths k0h (where k0 is the wave number and h is the water depth). ζmax

is approximately equal to the sum of the peak values of the two solitary waves with smaller wave
steepness ε0 (ε0 = k0a0, a0 is the free background amplitude parameter), and it exhibits fluctuations for
ε0 > 0.10. Similar results have been observed in the study of head-on collisions for four solitary waves.
These results show that the water depth and wave steepness play important roles in the collision of
solitary waves, and the effects of the interactions of intense wave groups are important in studies of
the mechanisms and manifestations of freak oceanic waves.

Keywords: solitary waves; collision; nonlinear Schrödinger equation; water waves; Fourier
spectral method

1. Introduction

Some studies have considered the frontal collision of two equal solitary waves both
numerically and experimentally. Maxworthy [1] conducted experiments on the frontal
collision of two solitary waves and found that the maximum amplitude of these waves
can reach twice the initial amplitude. Su and Mirie [2] considered the frontal collision
between two solitary waves on the surface of an inviscid uniform fluid and found that the
waves generated by the collision maintained their original characteristics with third-order
accuracy. Using a set of approximate equations derived by Su and Gardner [3], Mirie
and Su [4] presented a numerical calculation of the collisions of two solitary waves and
checked the phase shifts and maximum amplitude of the collision with a corresponding
perturbation calculation. In addition, Akhmediev and Ankiewicz [5] considered a linear
coupler formed by two intersecting solitons. When the soliton amplitudes are equal, the
transmission coefficient depends on the collision angle; however, this coefficient does not
depend on the relative phase of the solitons. Cook et al. [6] simulated the high-amplitude
reflection of solitary waves on a vertical wall based on the boundary element method,
and found that solitary waves can be converted into a series of dispersive waves after
hitting the wall. Craig et al. [7] proposed a numerical analysis based on the pseudo-spectral
method to solve completely nonlinear equations and study the residual generated by the
head-on collision of two solitary waves. Chamberel et al. [8] numerically studied head-
on collisions of two equal and two unequal steep solitary waves, and found that when
the normalized amplitude a0/h of a solitary wave is greater than 0.60, a thin residual
jet will appear. Recently, Slunyaev et al. [9] studied strongly solitary wave groups of
collinear surface waves using numerical simulations and laboratory experiments with
Euler equations. The maximum displacement of a head-on collision is the sum of the two
sets of peak amplitudes. Wave trains with modulational instability [10,11], which transform
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into envelope solitons, may lead to huge wave events, and the nonlinear interaction of
solitons is a possible physical mechanism of freak wave (the wave height exceeds at least
2.2 times the significant wave height) generation [12]. Interactions of solitary waves were
investigated by simulating their collisions in a variety of wave contexts, such as plasma [13],
optical fibers [14], and Bose–Einstein condensates [15,16]. Head-on collisions between two
solitary waves in plasma have been studied through experiments [17,18] and numerical
simulations using the particle-in-cell method [19]. Zhang et al. [19] found that the maximum
amplitude during the collision process is less than the sum of the two amplitudes of the
envelope solitary waves, and no phase shift was observed after the two envelope solitary
waves collided head-on. The head-on collision of two envelope solitary waves was also
studied analytically [20].

Some new exact traveling wave solutions and solitary wave solutions for nonlinear
partial differential equations have been obtained [21–23]. These new solutions have many
applications in other branches of physics and applied science. However, they are rarely
used to systematically study the collision of solitary waves: the peak value of surface
elevation, ζmax, is affected by the relative water depth and wave steepness. For a long time,
NLS equations have been used to simulate the propagation of waves in finite deep water.
Benilov et al. [24] studied the solitary wave solution of NLS with variable coefficients, which
controls the weakly nonlinear envelope of surface gravity waves on topography. Grimshaw
and Annenkov [25] developed higher-order NLS equations with variable coefficients to
describe how a water wave packet will deform and eventually be destroyed as it propagates
shoreward from deep to shallow water. Rajan and Henderson [26] considered a variable
coefficient dissipative NLS equation, found a solution with uniform amplitude in an
appropriate reference frame, and checked its linear stability. Grimshaw [27] deduced a
two-dimensional long wave equation with small but limited amplitude in variable depth;
the differential equation describing the slow change in the parameters of the solitary wave
was derived and solved when the solitary wave evolved from a uniform depth region.
Benilov and Howlin [28] studied the evolution of surface gravity wave packets in channels
with terrain, where the terrain scale is far smaller than the limit of nonlinear/dispersion
scale. Rajan et al. [29] analyzed narrow-banded, periodic one-dimensional surface gravity
carrier waves propagating on water of variable depth. Many contemporary researchers
have carried out work on soliton collision but have not considered the role of water depth
and wave steepness in soliton collision, which is the main purpose of this paper. In this
study, the effects of surface tension were neglected; the analysis focused on gravity waves.
It is well known that FSM is a powerful tool for solving partial differential equations (PDEs)
both theoretically and numerically [30,31]. With the emergence of fast Fourier transform
(FFT), Fourier spectral methods can provide a numerical discretization with so-called finite
order convergence and high accuracy. In fact, for high-dimensional problems with periodic
boundary conditions, the efficiency of the Fourier spectral method is equivalent to that of
the finite difference method.

Based on the highly accurate FSM, we solved the NLS equation for gravity waves in
finite water depth, as detailed in Section 2. Results of the numerical studies on generation
and interactions of the solitary groups are presented in Section 3. The final discussion is
reported in Section 4.

2. Numerical Simulation for the NLS Equation

In dimensional variables, the following form is used:

i(At + cg Ax) + αAxx + β|A|2 A = 0 (1)
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where the complex wave envelope A = A(x, t); x is the horizontal coordinate; and t is time.
The coefficients in the equation depending on the local water depth have the following
definitions [32]:

α = −
c2

g

2ω
+

ω0q cosh2 q
k2

0sinh2q
− qsinhq

k0 cosh q
cg, (2)

β = −
ω0k2

0(cosh 4q + 8− 2tanh2q)

16sinh4q
+

ω0

2sinh22q

(2ω0 cosh2 q + k0cg)
2

(gh− c2
g)

, (3)

where ω0 is the carrier wave angular frequency, which follows the following linear disper-
sion relationship:

ω2
0 = gk0σ, (4)

where
σ = tanhq, q = k0h, c = ω0

k0
(5)

Here, k0, h, and c denote the wave number, water depth, and wave phase velocity,
respectively. cg denoting the group velocity can be written as follows:

cg =
ω0

2k0

(
1 +

2q
sinh2q

)
. (6)

The dimensionless variables are presented as follows [33]:

A = a0 A′, ε0ω0γ0(
1
cg

x− t) = ξ, ε2
0k0x = η, ε0γ0k0h = h′ (7)

where ε0 = k0a0 is the wave steepness, a0 is the free background amplitude parameter, and
γ0 is a scale factor that renders the computational domain in ξ to 2π. The evolution of
the complex envelope of surface elevation A (ξ, η) can be described using the spatial NLS
equation:

iA′η + γ2
0

α

c3
g

A′ξξ +
β

cg

∣∣A′∣∣2 A′ = 0 (8)

where

α = α
k2

0
ω0

, β = β
1

ω0k2
0

, cg = cgk0/ω0 (9)

The dimensionless form of the focusing NLS equation is convenient to use:

iA′η + A′ξξ + 2
∣∣A′∣∣2 A′ = 0 (10)

which results from Equation (8) under the following transformation (k0h > 1.363):

η =
β

2cg
η, ξ =

cg

γ0

√
β

2α
ξ (11)

The localized solution of the NLS equation is the envelope soliton, which is presented
in the following expression [34]:

A′(ξ, η) = sech(ξ) exp(iη) (12)

Therefore, Equation (8) yields the soliton solution in the following form:

A′(ξ, η) = sech(
cg

γ0

√
β

2α
ξ) exp(i

β

2cg
η) (13)
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The surface elevation ζ (x, t) to the leading order is presented as follows:

ζ(x, t) = Re{A(x, t) exp[i(k0x−ω0t)]} (14)

A highly accurate Fourier spectral method was used to obtain numerical solutions for
Equation (8). The spectral method is introduced by approximating the function as a sum of
smooth basis functions [30]:

A′(ξ) ≈
N

∑
j = 0

ajΦj(ξ) (15)

where Φj(ξ) are polynomials or trigonometric functions, and each aj must be determined.
In practice, the basis functions have many feasible options, such as Φj(ξ) = eikξ (the

Fourier spectral method). The continuous Fourier transform of A′(ξ), which is transformed
into Fourier space with regard to ξ and its inverse Fourier transform, is defined as follows:

Â′(k) =
1

2π

∫ +∞

−∞
e−ikξ A′(ξ)dξ (16)

A′(ξ) =
∫ +∞

−∞
Â′(k)eikξ dk (17)

Similarly to the continuous Fourier transform, we define the discrete Fourier transform:
let the solution interval be [0, 2π]; let A′(ξ) be the solution of Equation (8), then transform it
into the discrete Fourier space as follows:

Â′(k) =
1
N

N−1

∑
j = 0

A(ξ j)e
−ikξ j , − N

2
≤ k ≤ N

2
− 1, (18)

Using the inverse Fourier transform, we can obtain the following equations:

A′(ξ j) =
N/2−1

∑
k = −N/2

Â′(k)eikξ j , 0 ≤ j ≤ N − 1 (19)

where ξj = 2πj/N, N is the discrete number, noting that N is an even number. The spatial
derivatives can be approximated using fast Fourier transform, whereas the time evolution is
obtained using the fourth-order Runge–Kutta integrator [31,35]. Using the discrete Fourier
transform and its inverse F and F−1, the Fourier transform operator F can obtain a linear
operator:

F
{

A′(n)(ξ)
}

= (ik)nF
{

A′(n)(ξ)
}

, (20)

where A′(n)(ξ) denotes the n-th order derivative of A′(ξ). When n = 2,

F{A′(2)(ξ)} = (ik)2F{A′(2)(ξ)} (21)

Using the Fourier transform, Equation (8) becomes

Â′η = −iγ2
0

α

c3
g

k
2
Â′ + i

β

cg
F{|F−1{Â′}|2F−1{Â′}} (22)

with
k =

2π

L
[−N/2 + 1, . . . ,−1, 0, 1, . . . , N/2] (23)
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Under periodic boundary conditions on the spatial interval [0, L], L is the spatial
domain. Then, the fourth-order Runge–Kutta scheme is used to solve the system of
complex ordinary differential Equation (22). Letting

Â = [Â′(ξ0, η), Â′(ξ1, η), · · · Â′(ξN−1, η)]
T , (24)

A = [A′(ξ0, η), A′(ξ1, η), · · · A′(ξN−1, η)]
T (25)

Equation (22) can be written in the following vector form:

Âη = F[Â] (26)

where F defines the right-hand side of (22). An initial condition is given to the abovemen-
tioned problem:

A′(ξ, 0) = sech(
cg

γ0

√
β

2α
ξ) (27)

The classical fourth-order Runge–Kutta methods for the system (22) is presented as
follows:

Âm+1
= Âm

+ ∆η
6 (K1 + 2K2 + 2K3 + K4)

K1 = F[Âm
],

K2 = F[Âm
+ ∆η

2 K1],
K3 = F[Âm

+ ∆η
2 K2],

K4 = F[Âm
+ ∆ηK3],

(28)

Figure 1 shows the profile of a soliton with k0 = 4.8, ε0 = 0.157, γ0 = 0.1, h = 1, N = 2048,
and step size ∆η = 0.0006, 1 ≤ m ≤ 20,000, where m denotes the mth time step. We
carried out sensitivity analyses on grid size and time step; the results are not dependent
on the selection of grid size and time step. However, for simplicity, relevant images are
not included here. In the transformed domain, the amplitude and shape of the soliton
remain invariant during propagation. Firstly, the accuracy of the evolution envelope
equation in the isolated subspace was investigated. Slunyaev et al. [36] studied the stability
of deep water waves and the existence of strong nonlinear groups through laboratory
and numerical simulations. Figure 2 shows a comparison between experimental and
numerical simulated surface elevations at five different locations. The small wave steepness
obtained in a physical basin may be due to the specificity of the boundary conditions of the
wave generator (Equation (14)) or wave dissipation near the wave generator. Under the
same initial conditions, compared with numerical simulation, the standing wave group
in laboratory experiments ultimately appears to have a smaller steepness. Therefore, the
experimental cases shown in Figure 2 (ε0 = 0.2) and Figure 3 (ε0 = 0.30) are compared with
the numerical simulations of groups ε0 = 0.157 and ε0 = 0.25, respectively. Some deviations
between the experimental and numerical results are observed at a relatively larger distance.
NLS equation may be very useful in describing the general characteristics of initial narrow
band water wave sequences that evolve in deep and intermediate-depth water. However,
the focusing characteristics of the deep water NLS equation inevitably led to significant
spectral broadening, which violates the basic assumptions used in the derivation of the NLS
equation [37], and can lead to deviations between numerical simulation and experimental
results. The time frequency analysis shown in Figures 4 and 5 clearly demonstrates the
stationary waves.
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Figure 1. Profile of a soliton with k0 = 4.8, ε0 = 0.157, γ0 = 0.1, h = 1, ∆η = 0.0006, N = 2048.

Figure 2. Time series of surface elevation. Blue line: experimental data of Slunyaev et al. [36] (ε0 = 0.2,
k0h = 4.8, h = 1, ω0 = 6.86). Red dashed line: FSM simulation (ε0 = 0.157, k0h = 4.8, h = 1, ω0 = 6.86).
Black dashed dot line: envelope of simulation.
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Figure 3. Time series of surface elevation. Blue line: experimental data of Slunyaev et al. [36] (ε0 = 0.3,
k0h = 4.8, h = 1, ω0 = 6.86). Red dashed line: FSM simulation (ε0 = 0.25, k0h = 4.8, h = 1, ω0 = 6.86).
Black dashed dot line: envelope of simulation.

Figure 4. Corresponding wavelet spectrum of measurements depicted in Figure 3.

In this study, the Morlet wavelet was selected as the mother wavelet. The wavelet
spectrum was non-dimensionalized by the maximum wavelet energy at each location. Most
of the wave energy was distributed near the center frequency of the carrier wave, and the
instantaneous frequency of the intermediate wave packet in the wave train was a triangular
signal. However, the measured wave heights covered higher-frequency components, and
the energy of higher harmonics became significant. Therefore, the numerical simulation
was consistent with the experimental measurement results. In addition, the NLS equation
can be used to describe the general characteristics of initially narrow band water wave
trains that evolve in deep and medium-deep water [37].
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Figure 5. Corresponding wavelet spectrum of FSM simulation in Figure 3.

3. Interaction of Solitons

Wave collision is a common phenomenon in water waves. The collision between two
solitary waves manifests in two forms: overtaking collisions (solitary waves propagating
in the same direction), and head-on collisions (solitary waves propagating in opposite
directions). We selected the following initial conditions to study the interactions between
two solitons [5]:

A′(ξ, 0) = −ibsech[b cg
γ0

√
β

2α (ξ + ξ1)] exp(ia1
cg
γ0

√
β

2α ξ − iϕ1)

−ibsech[b cg
γ0

√
β

2α (ξ + ξ2)] exp(ia2
cg
γ0

√
β

2α ξ − iϕ2)
(29)

where b is the amplitude of each solitary wave, and a1 and a2 are the “velocities”. The values
of ϕ1 and ϕ2 are the initial phases of the wave; when ϕ1-ϕ2 is 0 or π, the solitary waves are
initially in phase. ξ1 and ξ2 are the locations of solitons. We only considered the collision
of the solitons with equal amplitude and equal velocity but with different directions of
movement, and a wave steepness ε0 = k0A0 (A0 = 0.01b). A head-on collision between two
solitary waves is depicted in Figures 6–11. We observed that the amplitudes of the solitary
waves were not altered after the interaction, and the solitary waves passed through each
other without losing their identity but with a slight phase shift. During collision, the peak
value of the amplitude was initially equal to the sum of the peak values of the two solitons.
As shown in Figure 7, the water depth, h, increased, whereas the other parameters were kept
fixed, and the widths of the two solitary waves became smaller than those shown in Figure 6.
Therefore, the shallow-water region contains more waves than the deep water region, and no
phase shift in solitary waves is observed in deep water (Figure 7b). Thus, the propagation
velocity of the solitary waves is constant. Figures 8 and 9 show the surface elevation of the
corresponding head-on collision between the two solitary waves shown in Figures 6 and 7.
With the increase in water depth, the distance that the solitons must travel before collision
will decrease significantly (i.e., the evolution of the modulational instability is accelerated).
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Figure 6. Head-on collision between the two solitary waves ε0 = 0.08, k0 = 5, h = 0.28, a1 = −a2 = 12,
b = 1.6, ξ1 = −4, ξ2 = 4, ϕ1 = ϕ2 = 0 (a) (ξ, η)-plot and (b) contour plot of the wave amplitudes.

Figure 7. Head-on collision between the two solitons ε0 = 0.08, k0 = 5, h = 2, a1 = −a2 = 12, b = 1.6,
ξ1 = −4, ξ2 = 4, ϕ1 = ϕ2 = 0 (a) (ξ, η)-plot and (b) contour plot of the wave amplitudes.
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Figure 8. Corresponding time series of the surface elevation of a head-on collision between the two
solitons at the different locations shown in Figure 6.

Figure 9. Corresponding time series of the surface elevation of a head-on collision between the two
solitons at different locations shown in Figure 7.
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Figure 10. Peak value of the surface elevation versus the relative water depth k0h with ε0 = 0.08,
k0 = 5, a1 = −a2 = 12, b = 1.6, ξ1 = −4, ξ2 = 4, ϕ1 = ϕ2 = 0.

Figure 11. Peak value of the surface elevation versus the wave steepness ε0 with b = 1, a1 = −a2 = 12,
ξ1 = −4, ξ2 = 4, ϕ1 = ϕ2 = 0.

The effect of water depth, k0h, on the surface elevation of a corresponding head-on
collision between the solitary waves is presented in Figure 10. During the collision, the
value of ε0 is initially equal to the sum of the peak values of the solitary waves, and the
wave profile is based on the principle of linear superposition. However, with the increase
in water depth, k0h, ζmax is less than the sum of the peak values of the two solitary waves,
which is consistent with the results reported by Slunyaev et al. [9] (the effect of finite depth
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reduces the amplitude of the eventual solitary group). ζmax exhibits fluctuations with
increasing water depths. Figure 11 presents the peak value of surface elevation versus
wave steepness, ε0. In the case of smaller steepness, ζmax is approximately equal to the
sum of the peak values of the two solitary waves, and it exhibits significant fluctuations for
ε0 > 0.10. These results indicate that the water depth and wave steepness play important
roles in the interaction of solitons. We also investigated the interaction of four solitary
waves, and the initial condition is given as follows:

A′(ξ, 0) = −ibsech[b cg
γ0

√
β

2α (ξ + ξ1)] exp(ia1
cg
γ0

√
β

2α ξ − iϕ1)

−ibsech[b cg
γ0

√
β

2α (ξ + ξ2)] exp(ia2
cg
γ0

√
β

2α ξ − iϕ2)

−ibsech[b cg
γ0

√
β

2α (ξ + ξ3)] exp(ia3
cg
γ0

√
β

2α ξ − iϕ3)

−ibsech[b cg
γ0

√
β

2α (ξ + ξ4)] exp(ia4
cg
γ0

√
β

2α ξ − iϕ4)

(30)

As shown in Figure 12, head-on collisions occurred between the four solitary waves
(ε0 = 0.08, k0 = 5, h = 0.28, a1 =a2 = 21, a3 =a4 = 7, b = 1.6, ξ1 = ξ2 = 6, ξ3 = ξ4 = 2,
ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0), where the four solitary waves retained invariant shapes, except
for the phase shifts before and after the collision. During collision, the peak value of
surface elevation, ζmax, was initially equal to the sum of the peak values of the four solitary
waves. In addition, the amplification factor was equal to six, which indicated a freak
wave. Therefore, the four solitary waves interacted for a short time, and the superposition
principle did not hold at the point of interaction in deep water. Figure 13 shows the effect
of water depth, k0h, on the surface elevation of the corresponding head-on collision among
the four solitary waves. During collision, the peak value of surface elevation, ζmax, was
initially equal to the sum of the peak values of the solitary waves; however, ζmax exhibited
significant fluctuations with increasing water depths.

Figure 12. Head-on collision among the four solitary waves ε0 = 0.08, k0 = 5, h = 0.28, a1 = −a2 = 21,
a3 = −a4 = 7, b = 1.6, ξ1 = −ξ2 = 6, ξ3 = −ξ4 = 2, ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 (a) (ξ, η)-plot and (b) contour
plot of the wave amplitudes.
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Figure 13. Peak value of the surface elevation versus the relative water depth, k0h, with ε0 = 0.08,
k0 = 5, a1 = −a2 = 21, a3 = −a4 = 7, b = 1.6, ξ1 = −ξ2 = 6, ξ3 = −ξ4 = 2, ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0.

4. Discussion

In this study, we modelled the solitary wave interactions by solving the NLS equation
numerically. First, we solved the NLS equation to determine the spatial evolution of
a solitary wave in finite water depth; the results showed good agreement between the
numerical simulations and experimental measurements. However, the measured wave
elevation covered evidently higher frequency components, and the energy of the higher
harmonics became significant. Then, we considered collisions of the solitons with equal
amplitudes and equal velocities, but with different directions of movement. During the
collision, the solitary waves passed through each other and completely preserve their
shapes and velocities, but a slight phase shift was observed. In contrast, no phase shift of
the solitary waves was found in deep water. In addition, the peak value of surface elevation,
ζmax, exhibited significant fluctuations with increasing water depths, k0h. In the case of
relatively small steepness, ε0, ζmax was approximately equal to the sum of the peak values of
the two interacting solitary waves, and it exhibited significant fluctuations for ε0 > 0.10 for
the head-on collision. However, the mechanism of generation of this phenomenon remains
an open problem. Similar results have been observed in studies of head-on collisions of
four solitary waves. These results indicate that the water depth and wave steepness play
important roles in soliton interactions, and the effects of the interactions of intense wave
groups are important to study the mechanisms and manifestations of freak oceanic waves.
These new results have many applications in the field of physics and other branches of
applied science; such results show great potential for applications in the instability study
of plasma and optical fibers. Meanwhile, FSM simulations provide a realistic description of
the dynamics of nonlinear waves.
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