Artificial Neural Network Prediction of Minimum Fluidization Velocity for Mixtures of Biomass and Inert Solid Particles
Abstract
:1. Introduction
2. Background
2.1. Minimum Fluidization Velocity of Binary Mixtures
References | Correlations | Additional Equations | ||
---|---|---|---|---|
[16] | (1) | (16) | ||
(17) | ||||
[18] | (2) | |||
[3] | For the completely mixed bed For the completely segregated bed | (3) | (18) | |
(19) | ||||
(4) | (20) | |||
[21] | (5) | , Equation (16) | ||
, Equation (17) | ||||
(21) | ||||
when the bed is completely mixed after both components are fluidized | (22) | |||
when the bed is partially mixed after both components are fluidized, and and | (23) | |||
[23] | (6) | (24) | ||
(25) | ||||
For determinate UF | (26) | |||
[24] | (7) | (27) | ||
(28) | ||||
(29) | ||||
[26] | for | (8) | , Equation (27) | |
for | (9) | correspond to the particle that is in less mass fraction of the mixture | (30) | |
[28] | (10) | (31) | ||
(32) | ||||
[30] | (11) | , Equation (27) | ||
(33) | ||||
[31] | (12) | , Equation (16) | ||
, Equation (17) | ||||
[29] | (13) | , Equation (27) | ||
, Equation (33) | ||||
[32] | (14) | , Equation (27) | ||
, Equation (17) | ||||
(34) | ||||
[34] | (15) | , Equation (16) | ||
, Equation (17) | ||||
, Equation (34) |
2.2. ANN for Predicting the Minimum Fluidization Velocity
3. Materials and Methods
3.1. ANN Models
3.2. Data-Based Model Interpretability
3.3. Predictive Correlation
3.4. Fitting Performance Assessment
4. Results
4.1. Models 1 and 2 Training, Testing, and Overall Coefficients of Determination
4.2. Accuracy of the ANN-Based Models and Empirical Correlations
4.3. Effect of the Biomass Fraction on the Minimum Fluidization Velocity Umf
4.4. Effect of Biomass Sphericity on the Minimum Fluidization Velocity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Description |
A, B | Coefficients of Noda et al. (1986) [21] (Equation (5)), Wen and Yu (1966) [17] (Equation (26)), and Si and Guo (2008) [28] (Equation (10)) correlations |
Ar | Archimedes number, dimensionless |
d | Diameter of particles, [m] |
Average diameter of the mixture, [m] | |
Volume fraction of particles, dimensionless | |
Real volume occupied by inert material. It corresponds to zero voidage in the bed | |
In Chiba et al. (1979) [3], number fraction of particles (Equation (20)), dimensionless | |
Remf | Minimum fluidization Reynolds number, dimensionless |
Minimum velocity of complete fluidization, [m/s] | |
In Bilbao et al.(1987) [23], fictitious minimum fluidization velocity of biomass (straw), (Equation (25)), [cm/s] | |
In Bilbao et al. (1987) [23], minimum velocity needed for the whole mixture to start fluidizing (Equation (6)), [m/s] | |
UB | In Cheung, Nienow and Rowe (1974) [18] equation, minimum fluidization velocity of particles with a larger diameter in a binary mixture, [m/s] |
Umf | Minimum fluidization velocity, [m/s] |
Ums | Minimum spouting velocity, [m/s] |
US | In Cheung, Nienow and Rowe (1974) [18] equation, minimun fluidization velocity of particles with a smaller diameter in a binary mixture, [m/s] |
w | Mass of particles, [kg] |
x | Mass fraction of particles, dimensionless |
Subscripts | |
B | For bigger particles in a binary mixture (Cheung, Nienow y Rowe, 1974) [18], [μm] |
F | Inert particles |
P | Biomass particles |
S | For smaller particles in a binary mixture (Cheung, Nienow y Rowe, 1974) [18], [μm] |
Greek letters | |
ɛ | Porosity, dimensionless |
Sphericity, dimensionless | |
Average sphericity, dimensionless | |
Apparent density, [kg/m3] | |
Average density of mixture, [kg/m3] |
References
- Hilal, N.; Ghannam, M.T.; Anabtawi, M.Z. Effect of bed diameter, distributor and inserts on minimum fluidization velocity. Chem. Eng. Technol. 2001, 24, 161–165. [Google Scholar] [CrossRef]
- Tang, J.; Chen, X.N.; Lu, C.X.; Zhang, Y.M. Minimum fluidization velocity of binary particles with different Geldart classification. Adv. Mater. Res. 2012, 482, 655–662. [Google Scholar] [CrossRef]
- Chiba, S.; Chiba, T.; Nienow, A.W.; Kobayashi, H. The minimum fluidisation velocity, bed expansion and pressure-drop profile of binary particle mixtures. Powder Technol. 1979, 22, 255–269. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Measuring the Minimum Fluidization Velocity of Free Flow Powders; ASTM International: Philadelphia, PA, USA, 2012. [Google Scholar]
- Cáceres-Martínez, L.E.; Guío-Pérez, D.C.; Rincón-Prat, S.L. Significance of the particle physical properties and the Geldart group in the use of correlations for the prediction of minimum fluidization velocity of biomass–sand binary mixtures. Biomass Convers. Biorefin. 2023, 13, 935–951. [Google Scholar] [CrossRef]
- Soanuch, C.; Korkerd, K.; Piumsomboon, P.; Chalermsinsuwan, B. Minimum fluidization velocities of binary and ternary biomass mixtures with silica sand. Energy Rep. 2020, 6, 67–72. [Google Scholar] [CrossRef]
- Toschi, F.; Zambon, M.T.; Sandoval, J.; Reyes-Urrutia, A.; Mazza, G.D. Fluidization of forest biomass-sand mixtures: Experimental evaluation of minimum fluidization velocity and CFD modeling. Part. Sci. Technol. 2021, 39, 549–561. [Google Scholar] [CrossRef]
- Gao, X.; Yu, J.; Li, C.; Panday, R.; Xu, Y.; Li, T.; Ashfaq, H.; Hughes, B.; Rogers, W.A. Comprehensive experimental investigation on biomass-glass beads binary fluidization: A data set for CFD model validation. AIChE J. 2020, 66, e16843. [Google Scholar] [CrossRef]
- Pérez, N.P.; Pedroso, D.T.; Machin, E.B.; Antunes, J.S.; Ramos, R.A.V.; Silveira, J.L. Fluid dynamic study of mixtures of sugarcane bagasse and sand particles: Minimum fluidization velocity. Biomass Bioenergy 2017, 107, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, K.; Song, F.; Zhu, X. Fluidization behavior of biomass particles and its improvement in a cold visualized fluidized bed. BioResources 2017, 12, 3546–3559. [Google Scholar] [CrossRef] [Green Version]
- Pécora, A.A.; Ávila, I.; Lira, C.S.; Cruz, G.; Crnkovic, P.M. Prediction of the combustion process in fluidized bed based on physical–chemical properties of biomass particles and their hydrodynamic behaviors. Fuel Process. Technol. 2014, 124, 188–197. [Google Scholar] [CrossRef]
- Fotovat, F.; Chaouki, J.; Bergthorson, J. The effect of biomass particles on the gas distribution and dilute phase characteristics of sand–biomass mixtures fluidized in the bubbling regime. Chem. Eng. Sci. 2013, 102, 129–138. [Google Scholar] [CrossRef]
- Chok, V.S.; Gorin, A.; Chua, H.B. Minimum and complete fluidization velocity for sand-palm shell mixtures, Part I: Fluidization behavior and characteristic velocities. Am. J. Appl. Sci. 2010, 7, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Gorin, A.; Chok, V.; Wee, S.; Chua, H. Hydrodynamics of binary mixture fluidization in a compartmented fluidized bed. In Proceedings of the 18th International Congress of Chemical and Process Engineering. Chemical Engineering, Chemical Equipment Design and Automation “CHISA”, Prague, Czech Republic, 24–28 August 2008. [Google Scholar]
- Clarke, K.L.; Pugsley, T.; Hill, G.A. Fluidization of moist sawdust in binary particle systems in a gas–solid fluidized bed. Chem. Eng. Sci. 2005, 60, 6909–6918. [Google Scholar] [CrossRef]
- Goossens, W.R.A.; Dumont, G.L.; Spaepen, G.L. Fluidization of binary mixtures in the laminar flow region. Chem. Eng. Prog. Symp. Ser. 1971, 67, 38. [Google Scholar]
- Wen, C.Y.; Yu, Y.-H. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 62, 100–111. [Google Scholar]
- Cheung, L.; Nienow, A.W.; Rowe, P.N. Minimum fluidization velocity of a binary mixture of different sized particles. Chem. Eng. Sci. 1974, 29, 1301–1303. [Google Scholar]
- Rowe, P.N.; Nienow, A.W. Minimum fluidisation velocity of multi-component particle mixtures. Chem. Eng. Sci. 1975, 30, 1365–1369. [Google Scholar] [CrossRef]
- Hatch, L.P.J. Flow through granular media. Appl. Mech. 1940, 7, 109. [Google Scholar] [CrossRef]
- Noda, K.; Uchida, S.; Makino, T.; Kamo, H. Minimum fluidization velocity of binary mixture of particles with large size ratio. Powder Technol. 1986, 46, 149–154. [Google Scholar] [CrossRef]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Bilbao, R.; Lezaun, J.; Abanades, J.C. Fluidization velocities of sand/straw binary mixtures. Powder Technol. 1987, 52, 1–6. [Google Scholar] [CrossRef]
- Rao, T.R.; Bheemarasetti, J.R. Minimum fluidization velocities of mixtures of biomass and sands. Energy 2001, 26, 633–644. [Google Scholar] [CrossRef]
- Kunii, D.; Levenspiel, O. Fluidization Engineering; Butterworth-Heinemann: Oxford, UK, 1991. [Google Scholar]
- Zhong, W.; Jin, B.; Zhang, Y.; Wang, X.; Xiao, R. Fluidization of biomass particles in a gas−solid fluidized bed. Energy Fuels 2008, 22, 4170–4176. [Google Scholar] [CrossRef]
- Coltters, R.; Rivas, A.L. Minimum fluidation velocity correlations in particulate systems. Powder Technol. 2004, 147, 34–48. [Google Scholar] [CrossRef]
- Si, C.; Guo, Q. Fluidization characteristics of binary mixtures of biomass and quartz sand in an acoustic fluidized bed. Ind. Eng. Chem. Res. 2008, 47, 9773–9782. [Google Scholar] [CrossRef]
- Oliveira, T.J.P.; Cardoso, C.R.; Ataíde, C.H. Bubbling fluidization of biomass and sand binary mixtures: Minimum fluidization velocity and particle segregation. Chem. Eng. Process. Process Intensif. 2013, 72, 113–121. [Google Scholar] [CrossRef]
- Shao, Y.; Ren, B.; Jin, B.; Zhong, W.; Hu, H.; Chen, X.; Sha, C. Experimental flow behaviors of irregular particles with silica sand in solid waste fluidized bed. Powder Technol. 2013, 234, 67–75. [Google Scholar] [CrossRef]
- Paudel, B.; Feng, Z.G. Prediction of minimum fluidization velocity for binary mixtures of biomass and inert particles. Powder Technol. 2013, 237, 134–140. [Google Scholar] [CrossRef]
- Kumoro, A.; Nasution, D.; Cifriadi, A.; Purbasari, A.; Falaah, A. A new correlation for the prediction of minimum fluidization of sand and irregularly shape biomass mixtures in a bubbling fluidized bed. Int. J. Appl. Eng. Res. 2014, 9, 21561–21573. [Google Scholar]
- Jena, H.M.; Roy, G.K.; Biswal, K.C. Studies on pressure drop and minimum fluidization velocity of gas–solid fluidization of homogeneous well-mixed ternary mixtures in un-promoted and promoted square bed. J. Chem. Eng. 2008, 145, 16–24. [Google Scholar] [CrossRef]
- Reyes-Urrutia, A.; Soria, J.; Saffe, A.; Zambon, M.; Echegaray, M.; Suárez, S.G.; Rodriguez, R.; Mazza, G. Fluidization of biomass: A correlation to assess the minimum fluidization velocity considering the influence of the sphericity factor. Part. Sci. Technol. 2021, 39, 1020–1040. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef] [Green Version]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [Google Scholar] [CrossRef]
- Hoskins, J.C.; Himmelblau, D.M. Artificial neural network models of knowledge representation in chemical engineering. Comput. Chem. Eng. 1988, 12, 881–890. [Google Scholar] [CrossRef]
- Himmelblau, D.M. Applications of artificial neural networks in chemical engineering. Korean J. Chem. Eng. 2000, 17, 373–392. [Google Scholar] [CrossRef]
- Pirdashti, M.; Curteanu, S.; Kamangar, M.H.; Hassim, M.H.; Khatami, M.A. Artificial neural networks: Applications in chemical engineering. Rev. Chem. Eng. 2013, 29, 205–239. [Google Scholar] [CrossRef]
- Andrejević Stošović, M.; Litovski, V. Applications of artificial neural networks in electronics. Electronics 2017, 21, 87–94. [Google Scholar] [CrossRef]
- Larachi, F.; Iliuta, I.; Rival, O.; Grandjean, B.P. Prediction of minimum fluidization velocity in three-phase fluidized-bed reactors. Ind. Eng. Chem. Res. 2000, 39, 563–572. [Google Scholar] [CrossRef]
- Zhong, W.; Chen, X.; Grace, J.R.; Epstein, N.; Jin, B. Intelligent prediction of minimum spouting velocity of spouted bed by back propagation neural network. Powder Technol. 2013, 247, 197–203. [Google Scholar] [CrossRef]
- Maiti, S.B.; Let, S.; Bar, N.; and Das, S.K. Non-spherical solid-non-Newtonian liquid fluidization and ANN modelling: Minimum fluidization velocity. Chem. Eng. Sci. 2018, 176, 233–241. [Google Scholar] [CrossRef]
- Karimi, M.; Vaferi, B.; Hosseini, S.H.; Rasteh, M. Designing an efficient artificial intelligent approach for estimation of hydrodynamic characteristics of tapered fluidized bed from its design and operating parameters. Ind. Eng. Chem. Res. 2018, 57, 259–267. [Google Scholar] [CrossRef]
- Rasteh, M.; Farhadi, F.; Bahramian, A. Hydrodynamic characteristics of gas–solid tapered fluidized beds: Experimental studies and empirical models. Powder Technol. 2015, 283, 355–367. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Valizadeh, M.; Olazar, M.; Altzibar, H. Minimum spouting velocity of draft tube conical spouted beds using the neural network approach. Chem. Eng. Technol. 2017, 40, 1132–1139. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Rezaei, M.J.; Bag-Mohammadi, M.; Altzibar, H.; Olazar, M. Smart models to predict the minimum spouting velocity of conical spouted beds with non-porous draft tube. Chem. Eng. Res. Des. 2018, 138, 331–340. [Google Scholar] [CrossRef]
- Targino, T.G.; Freire, J.T.; Perazzini, M.T.B.; Perazzini, H. Fluidization design parameters of agroindustrial residues for biomass applications: Experimental, theoretical, and neural networks approach. Biomass Convers. Biorefin. 2021, 13, 4213–4228. [Google Scholar] [CrossRef]
- Fabani, M.P.; Capossio, J.P.; Román, M.C.; Zhu, W.; Rodriguez, R.; Mazza, G. Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process. J. Environ. Manag. 2021, 281, 111915. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-agnostic interpretability of machine learning. arXiv 2016, arXiv:1606.05386. [Google Scholar]
- Zhao, Q.; Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. 2021, 39, 272–281. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zabinsky, Z.B. Pure random search and pure adaptive search. In Stochastic Adaptive Search for Global Optimization; Springer: Boston, MA, USA, 2003; pp. 25–54. [Google Scholar]
- Let, S.; Bar, N.; Basu, R.K.; Das, S.K. Minimum Fluidization Velocities of Binary Solid Mixtures: Empirical Correlation and Genetic Algorithm-Artificial Neural Network Modeling. Chem. Eng. Technol. 2022, 45, 73–82. [Google Scholar] [CrossRef]
Parameter | Model 1 (Without Sphericity) | Model 2 |
---|---|---|
Network Type | Multi-Layer Feed-Forward (MLFF) | Multi-Layer Feed-Forward (MLFF) |
Neuron Type | Perceptron | Perceptron |
Inputs | 5 | 7 |
Output | 1 | 1 |
Normalization Type | Min–Max (−1 to +1) | Min-Max (−1 to +1) |
Activation Function | sigmoid (hidden) and linear (output) | sigmoid (hidden) and linear (output) |
Training Algorithm | Bayesian Regularization Backpropagation | Bayesian Regularization Backpropagation |
Training Sets | 252 | 257 |
Number of Hidden Layers | 2 | 2 |
Num. Of Neurons per Layer | 7 and 2 | 7 and 2 |
Train Ratio | 85% | 75% |
Validation Ratio | N/A | N/A |
Test Ratio | 15% | 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Urrutia, A.; Capossio, J.P.; Venier, C.; Torres, E.; Rodriguez, R.; Mazza, G. Artificial Neural Network Prediction of Minimum Fluidization Velocity for Mixtures of Biomass and Inert Solid Particles. Fluids 2023, 8, 128. https://doi.org/10.3390/fluids8040128
Reyes-Urrutia A, Capossio JP, Venier C, Torres E, Rodriguez R, Mazza G. Artificial Neural Network Prediction of Minimum Fluidization Velocity for Mixtures of Biomass and Inert Solid Particles. Fluids. 2023; 8(4):128. https://doi.org/10.3390/fluids8040128
Chicago/Turabian StyleReyes-Urrutia, Andres, Juan Pablo Capossio, Cesar Venier, Erick Torres, Rosa Rodriguez, and Germán Mazza. 2023. "Artificial Neural Network Prediction of Minimum Fluidization Velocity for Mixtures of Biomass and Inert Solid Particles" Fluids 8, no. 4: 128. https://doi.org/10.3390/fluids8040128
APA StyleReyes-Urrutia, A., Capossio, J. P., Venier, C., Torres, E., Rodriguez, R., & Mazza, G. (2023). Artificial Neural Network Prediction of Minimum Fluidization Velocity for Mixtures of Biomass and Inert Solid Particles. Fluids, 8(4), 128. https://doi.org/10.3390/fluids8040128