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Abstract: The fluidization of certain biomasses used in thermal processes, such as sawdust, is
particularly difficult due to their irregular shapes, varied sizes, and low densities, causing high
minimum fluidization velocities (Umf). The addition of an inert material causes its Umf to drop
significantly. The determination of the Umf of the binary mixture is however hard to obtain. Generally,
predictive correlations are based on a small number of specific experiments, and sphericity is seldom
included. In the present work, three models, i.e., an empirical correlation and two artificial neural
networks (ANN) models were used to predict the Umf of biomass-inert mixtures. An extensive
bibliographical survey of more than 200 datasets was conducted with complete data about densities,
particle diameters, sphericities, biomass fraction, and Umf. With the combined application of the
partial dependence plot (PDP) and the ANN models, the average effect of sphericity on Umf was
quantitatively determined (inverse relationship) together with the average impact of the biomass
fraction on Umf (direct relationship). In comparison with the empirical correlations, the results
showed that both ANN models can accurately predict the Umf of the presented binary mixtures with
errors lower than 25%.

Keywords: fluidization; binary mixtures; neural networks

1. Introduction

The minimum fluidization velocity (Umf) is an important hydrodynamic characteristic
of gas–solid fluidized beds. It marks the transition from the fixed to the fluidized state
and it is a crucial parameter in the design of reactors or other related devices based on
the fluidized bed technology [1,2]. Although there is a large spectrum of correlations
describing the minimum fluidization velocity for various binary mixtures of inert materials
and biomass, they are empirical and only hold under certain specific conditions, reducing
their applicability within narrow and defined boundary conditions. The use of these
correlations in different scenarios leads to inaccuracies. A unified theoretical model could
lead to predicting Umf values more approximately. In most of the correlations developed to
predict the Umf of inert-biomass binary mixtures, the Umf value depends on the effective
density, the mean particle diameter, biomass fraction, and, in some cases, it also depends on
the mean particle sphericity. In this context, a database obtained from the literature, used as
a whole to be analyzed by artificial intelligence, can help to develop a comprehensive model
that can be used to obtain better predictions compared to those obtained with existing
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correlations. Additionally, the same database can be used for the development of a general
and accurate correlation.

In this context, the objectives of this work consist of, first, building a comprehen-
sive database obtained from an extensive literature survey of the minimum fluidization
velocities of inert-biomass binary mixtures. Second, using those datasets to develop an
empirical correlation and train two ANN models all of which encompass and unify a large
spectrum of experimental data. Then, using the developed models to determine the impact
the independent variables have on the Umf value, and, finally, to compare the accuracy of
the three models.

2. Background

For binary mixtures of biomass and inert materials, the inert material generally flu-
idizes at a lower gas flow rate than the biomass. These systems present segregation and, in
general, the inert material with a higher density than the biomass tends to descend into the
bed. In systems where there is no density difference, the larger particles tend to descend.
Based on the degree of mixing/segregation of binary systems, [3] they are classified as
(i) complete mixing, (ii) complete segregation, and (iii) partial mixing. The first case occurs
when the binary system does not have a large difference in size and density. In case (ii),
two zones are clearly distinguished, one in the lower part, where the inert material is
found, and the other one in the upper part, where the biomass component is located. Case
(iii) is an intermediate case between the previous ones. This is the predominant behavior
in biomass-inert fluidized beds of interest in this work. For each one of these cases, the
determination of Umf is based on the curve ∆P vs. U obtained during the defluidization of
the system [4].

2.1. Minimum Fluidization Velocity of Binary Mixtures

Many authors have studied the fluid-dynamic behavior of inert-biomass mixtures
during fluidization in recent decades. Among them, the works of [5–15] focus on evaluating
the quality of fluidization and the accuracy of different correlations to predict the minimum
fluidization velocity of mixtures at different proportions and under different operating
conditions. However, the development of such correlations dates back to the early 1970s.
The most relevant works on the subject are summarized below, and the corresponding
correlations are presented in Table 1. The subscripts P and F used in the equations pre-
sented in Table 1 correspond to biomass and inert, respectively, and coincide with those
used by [3].

Goossens et al. [16] modified the equation of Wen and Yu [17] to determine the Umf
of monodisperse systems. To employ this correlation, the authors defined equations to
evaluate the average diameter and density of binary mixtures as a function of the diameters,
densities, and weight fractions of each component.

Cheung, Nienow, and Rowe [18] developed a correlation to estimate Umf in binary
mixtures of particles of different diameters with the same density and shape. Its correlation
allows the Umf value of the mixture to be determined from the values of the minimum
fluidization velocity of each group of particles and their composition (weight fraction of
the particles with the largest diameter). This work was continued by [19] who worked with
particle systems of the same density and shape, although these systems were formed by
mixtures of two, three, and five different diameters. The authors presented a semi-empirical
correlation also considering the pressure loss equation through a porous medium from [20],
in which the value of Umf for the mixture of solids with more than two different diameters
is a function of the porosity of a bed made up of particles of a single diameter (the largest
or the smallest) and the respective Umf value.

Chiba et al. [3] developed correlations for the cases of completely mixed binary mix-
tures and for completely segregated mixtures. The authors measured the pressure drop
in the bed after quickly (maximum mixing condition) and slowly (highest degree of seg-
regation) defluidizing the system. In the first case, the correlation requires knowledge of
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the minimum fluidization velocity of the component that fluidizes at a lower superficial
gas velocity (the fluid component) and of the diameter and density of the mixture. In the
case of completely segregated mixtures, it is necessary to know the velocity of the fluid
component and of the component that fluidizes at the highest value of superficial velocity
(the packed component).

Noda et al. [21] studied the fluidization of mixtures of large particles (including wood
chip particles) and small ones of different densities. The authors determined correlations
for parameters A and B of the Ergun equation [22] modified by Wen and Yu [17]. The
parameters depend on the composition of the binary mixture and the ratio between the
diameters and the densities of the components. The diameter and density of the solid
mixture were determined using the equations of Goossens [16]. Based on their results, the
authors concluded that the minimum fluidization velocity of the binary mixtures studied
strongly depends on the mixing conditions, determined by the pair of densities, and on the
volume fraction of the component that fluidizes at the velocity value of lower gas.

Bilbao et al. [23] worked with binary mixtures of sand and straw. In their experiments,
they used different diameters, both for the inert and for the biomass, evaluating in each
case the maximum volume fraction of straw that would allow for maintaining the fluidiza-
tion quality. In this sense, the authors developed a correlation to evaluate the minimum
volumetric fraction of sand necessary to carry out fluidization. They also proposed a corre-
lation based on the minimum fluidization velocities of the sand and straw particles and
the real sand volume fraction in the bed defined (those which would correspond to zero
porosity). The authors proposed the use of the correlation of Wen and Yu [17] to calculate
the minimum fluidization velocity of sand, and a correlation adjusted with their data to
evaluate the minimum fluidization velocity of straw from the diameter of the particles.

Rao and Bheemarasetti [24] carried out studies on the fluidization of mixtures of
biomass and sands. The biomass materials used were rice husk, sawdust, and groundnut
shell powder, and the sands employed were of two different densities and particle sizes. To
evaluate the Umf of the mixtures, they used the Ergun correlation [22], simplified for the
special case of very small particles [25], together with an empirical correlation to evaluate
the effective diameter and the equation defined by Goossens [16] to determine the mean
mixing density.

Zhong et al. [26] studied the fluidization of biomass particles and binary mixtures
of biomass particles with different fluidization mediums. The biomass particles used
were wood chips, mung beans, millet, corn stalk, and cotton stalk, and the fluidization
mediums employed were silica sand, continental flood basalt (CFB) cinder, and aluminum
oxide. Based on the general expression proposed by [27] for single particle systems, the
authors determined two correlations to predict the minimum fluidization velocity of binary
mixtures, one of them for a low-effective density particulate system (0 <

–
ρ ≤ 1000 kg/m3),

and the other one, for the high-effective density particulate system (
–
ρ > 1000 kg/m3).

Si and Guo [28] investigated the fluidization of binary mixtures in an acoustic bubbling
fluidized bed. In their experiments, they used two types of biomass particles, sawdust
and wheat stalk. The authors developed a correlation to predict Umf for mixtures of
biomass and sand based on effective properties determined from the equations proposed
by Goosens [16]. Although the correlation developed has the form of the equation of Wen
and Yu [17], an aspect to highlight in the work is that the coefficients A and B are considered
as a function of the sphericity values of the particles.

Oliveira et al. [29] studied the fluidization of mixtures of biomass and sand. In their
experiments, they worked with three types of biomasses (sweet sorghum bagasse, waste
tobacco, and soybean hulls) and four sizes of sand particles, forming mixtures in different
proportions. The authors presented a predictive correlation of the minimum fluidization
velocity for mixtures of biomass and inert material from the function originally proposed
by [27] for single-particle systems.

Shao et al. [30] carried out experiments with mixtures of silica sand and four types
of particles differing in shapes, sizes, and densities (biomass waste and plastic materi-
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als). The pressure drop, flow pattern, and minimum fluidization velocity under different
operating conditions were investigated by recording pressure differential signals and
fluidization images.

Paudel and Feng [31] studied the fluidization of biomass particles (corn cobs and
walnut shells), inert particles (sand, glass beads, and alumina), and biomass and sand
mixtures. For the experiments with mixtures, they used biomass in mass percentages
between 0–100%. Based on their experimental results, they determined a new correlation to
predict the values of minimum fluidization velocity of inerts, biomass, and mixtures of both.
The correlation depends on the Archimedes number, on effective properties determined
from the equations of Goosens [16], and on the weight fraction of the biomass used. The
zero value in the variable allows us to evaluate the minimum fluidization velocity of the
inert material, and the value of the variable in one allows us to predict the minimum
fluidization velocity of the pure biomass.

A relevant work on the subject is that of Kumoro et al. [32], who developed a cor-
relation from the equation of Wen and Yu [17], considering the coefficients A and B as
functions of the effective sphericity and the weight fraction of the biomass. Rice husk and
corn cob particles were used as biomass along with two types of sand as inert material.
In its correlation, the minimum fluidization velocity depends on the Archimedes number,
evaluated from the effective properties of the mixture. The density of the sand-biomass
mixtures was calculated using the equation of Rao and Bheemarasetti [24], the average
particle diameter was calculated using the equation developed by [16], and the mean
sphericity of the particle mixture was evaluated using the equation suggested by [33].

More recently, Reyes-Urrutia et al. [34] analyzed the influence of different definitions
for evaluating the sphericity factor on the prediction of minimum fluidization velocity of
different agro-industrial/forestry biomass residues and sand. Three types of biowastes
(sawdust, grape marc, and grape stalk) and sand were characterized by sieving, and
sphericity was calculated using images obtained by scanning electron microscopy (SEM).
Sand particles, with a mean diameter of 0.33 mm, were used as inert material. Riley’s
sphericity method proved to be the most suitable. Finally, a new correlation to evaluate
Umf was proposed for biomass-inert particle binary systems.

Table 1. Modeling minimum fluidization velocities of binary mixtures.

References Correlations Additional Equations

[16] Remf =
(
33.72+0.0408×Ar

)1/2−33.7 (1)
1
–
ρ
= xF

ρF
+ 1−xF

ρP
(16)

–
d = dFdP

(1−xF)ρF+xFρP
(1−xF)ρFdF+xFρPdP

(17)

[18] Umf
US

=
(

UB
Us

)xB
2

, dB
ds
< 3 ∧ UB

Us
< 10 (2)

[3]

For the completely mixed bed

Umf = UF
–
ρ
ρF

( –
d

dF

)2

For the completely segregated bed
Umf =

UF
(1−UF/UP)xF+UF/UP

(3)

–
ρ = fF ρF + (1−fF)ρP (18)

–
d =

[
fNd3

F +
(

1−fNd3
P

)]1/3 (19)

(4) fN = 1[
1+
(

1
fF
−1
)( dF

dP

)3
] (20)

[21] Ar = A Re2
mf + B Remf (5)

–
ρ, Equation (16)
–
d, Equation (17)

A = 36.2
(

dP
dF

ρF
ρP

)−0.196 (21)

when the bed is completely mixed after both
components are fluidized

B = 1397
(

dP
dF

ρF
ρP

)0.296
(22)
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Table 1. Cont.

References Correlations Additional Equations

when the bed is partially mixed after both
components are fluidized, and dP

dF
> 3 and ρF

ρP
≈ 1

B = 6443
(

dP
dF

ρF
ρP

)−1.86
(23)

[23] Uv,f = UP,f − (UP,f −UF)fF,Real (6)

fF,Real =
xF

xF+
ρF
ρP

(1−xF)
(24)

UP,f= 50d0.84
P (25)

For determinate UF

Remf =
√

A2+B Ar−A
(26)

[24] Umf =

–
d

2
(

–
ρ−ρg)g

1650µg
(7)

–
ρ = xFρF + xPρP (27)

–
d

2
= k′

{
dF

[(
ρF
ρP

)(
dP
dF

)]wP/wF
}2

(28)

k′= 20dF+0.36 (29)

[26]

Umf= 1.2×10−4

[ –
d

2
(

–
ρ−ρg)
µg

( –
ρ
ρg

)1.23
]0.633

for 0 <
–
ρ≤ 1000 kg/cm3

(8) –
ρ, Equation (27)

Umf= 1.45×10−3

[ –
d

2
(

–
ρ−ρg)
µg

( –
ρ
ρg

)1.23
]0.363

for
–
ρ≥ 1000kg/cm3

(9)

–
d = d1

[(
ρ1
ρ2

)(
d2
d1

)]x2/x1

1 correspond to the particle that is in less mass
fraction of the mixture

(30)

[28] Remf =
(

A2+B Ar
)1/2
−A (10)

A = 25.65
(
φ0.21

P φ0.15
F

)
(31)

B = 0.056
(
φ−0.045

P φ0.015
F

)
(32)

[30] Umf= 1.28×10−3

[ –
d

2
(

–
ρ−ρg)g

µg

( –
ρ
ρg

)1.2
]0.356

(11)

–
ρ, Equation (27)

–
d = dF

[(
ρF
ρP

)(
dP
dF

)]xP/xF (33)

[31] Remf =
{

30.282 +
[
0.046(1−xP)+0.108x1/2

P

]
Ar
}1/2
−30.28 (12)

−
ρ, Equation (16)
−
d, Equation (17)

[29] Umf =
(
1.17×10−4±6×10−5)[ –

d
2
(

–
ρ−ρg)g

µg

( –
ρ
ρg

)1.23
]0.4916±0.032

(13)

–
ρ, Equation (27)
–
d, Equation (33)

[32] Ar = 1176 (1−xP)
–
φ

2
Remf+22.432 x1/2

P Re2
mf

(14)

–
ρ, Equation (27)
−
d, Equation (17)

–
φ = xFφF + xPφP

(34)

[34] Remf= 0.1(1−
–
φ
)

Ar0.616 (15)

−
ρ, Equation (16)
−
d, Equation (17)
−
φ, Equation (34)

2.2. ANN for Predicting the Minimum Fluidization Velocity

Modern systems of importance, such as the fluidized bed, are highly non-linear, and
even though their governing equations are known (Navier–Stokes), they are highly difficult
to apply due to their scale and complexity, and researchers frequently tend to use less
descriptive forms of it [35]. ANNs are, in essence, malleable computational structures
capable of adapting to model any type of system without having explicit knowledge of
the principles which govern it. That is the reason why they are considered universal
approximators [36,37], meaning that given at least one hidden layer with sufficient neurons
and a non-linear activation function, they are capable of mapping any input-output data
effectively, regardless of the linear or non-linear nature of the relationship [38–41]. Regard-
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ing the application of ANN for modeling a fluidized system, there are several examples in
the literature.

Larachi et al. [42] developed two correlations for predicting the minimum fluidization
liquid velocity in a three-phase fluidized bed using multi-layered perceptron ANN. For
that purpose, they built and used a comprehensive database obtained from open literature.
Such a model consisted of a single hidden layer of 6 neurons and 7 inputs and it was
trained based on over 500 data sets. Then, the minimum fluidization velocity was linked to
solid sphericity, liquid and solid density, and gas velocity, among others. They concluded
that ANNs allow the development of powerful models with fewer simplifications than
first principle models. Moreover, applying ANN models for simulating the minimum
fluidization liquid velocity estimation avoids the use of time and computational resource-
intensive CFD simulations.

Zhong et al. [43] studied the complex relationship between the minimum spouting
velocity (Ums) and several geometric and operational parameters of gas–solid spouted beds.
Since such a relationship is not yet fully explained by the several empirical equations avail-
able, they developed an ANN model (MLP) which included five dimensionless variables as
inputs such as column diameter, base angle, particle and gas densities, among others. The
ANN was trained based on 164 datasets taken from open literature and the single hidden
layer was formed by 9 neurons. They compared predictions based on the ANN with the
values obtained from four commonly used empirical equations. They concluded that the
ANN’s predictions were slightly better, but more work still needs to be performed in order
to better explain the complexities of the system.

Maiti et al. [44] investigated the minimum fluidization velocity of non-spherical sand
particles with a non-Newtonian fluid. Since in liquid fluidization the minimum fluidization
velocity of a non-Newtonian medium is difficult to estimate, they developed an ANN
model (MLP) based on their own experimental data. Such a model consisted of a single
hidden layer of 7 neurons, and 6 inputs and was trained based on 54 data sets. Then, the
minimum fluidization velocity was linked to solid sphericity and diameter, and liquid
density, among others. They concluded that the minimum fluidization velocity decreases
with a decrease in the sphericity of sand particles. Lastly, the ANN was able to fit the data
with greater accuracy than a multi-linear regression.

Karimi et al. [45], devised an ANN in order to accurately estimate the main hydrody-
namic parameters to properly design and operate a gas–solid tapered fluidized bed (conical
vessel). Those parameters included the minimum fluidization velocity, minimum velocity
of complete fluidization (Ucf), and maximum pressure drop, which were estimated based
on five dimensionless groups as inputs: the Archimedes number, the Bond number, bed
voidage over sphericity (ε/φ), static bed height over bed bottom diameter (H0/D0) and
tapered angle of the bed. The network architecture also consisted of a single hidden layer
with 10 perceptrons. The ANN was trained with 192 data sets obtained from [46], and then
its capability was assessed by comparison (benchmarked) with other available correlations
and experimental data. The results of this comparative study were very favorable to the
ANN model. Finally, it was found that the Archimedes number had the strongest linear
dependency with Umf and Ucf; while ∆Pmax had the strongest linear dependency with ε/φ.

In [47], a multi-layer perceptron was trained with the Levenberg–Marquardt backprop-
agation algorithm to predict the minimum spouting velocity (Ums) of conical spouted beds
with a draft tube as internal. Inputs included six key dimensionless design variables such
as the Archimedes number and the geometry of the vessel and internals. The motivation of
this work includes the lack of specific correlations for this kind of spouted bed which has a
complex relationship between Ums and several independent variables. Moreover, the fact
that correlations (empirical equations) are based on the least-squares fitting method, which
is linear, while any fluidized bed has a highly non-linear behavior. The ANN was trained
with more than 1000 data sets obtained from the literature, and then its capability was
assessed by comparison with the few empirical equations available and the experimental
data. A total of 21 neurons constituted the single hidden layer of the network. They
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concluded that the data-based ANN model predicted the results with better accuracy than
the few existing correlations. In a subsequent work [48], they studied and compared five
different intelligent models to estimate the minimum spouting velocity. The best of them
featured a self-organizing map (SOM) and the Bayesian regularization backpropagation
training algorithm. Such a model enabled them to improve the performance indicators
both in the training and testing stage of the ANN.

Targino et al. [49] used an ANN model to predict the minimum fluidization veloc-
ity of acai berry residues. The model was comprised of two inputs, one output, and six
neurons in the hidden layer. The authors developed their ANN model by using data on
the minimum fluidization velocity, which they obtained under various fixed bed heights
and fluidizing agent temperatures. During experimentation, they used particles with and
without external fibers. Additionally, the authors conducted a comprehensive character-
ization of the residues, determining various shape factors, as well as their thermal and
physical properties.

All the aforementioned works are in good agreement with the current state of the art in
ANN development [37], meaning that, most likely, a one hidden layer ANN will be able to
properly fit any polynomial and only in some cases will a two hidden layer ANN perform
better. Adding more than two hidden layers to the ANN will only add more computational
workload and no fitting improvement.

Frequently, new ANN models are assessed by comparison with one or more correla-
tions and/or other ANN models. In other words, the best model is the one that best fits the
experimental data. However, these researchers’ experience shows that a fundamental step
is to simulate the ANN generalization capability with previously unseen data (neither in
training nor in testing stages). The generalization capability of the ANN cannot be properly
verified only based on the testing lot of datasets, it is also needed to simulate the model
with inputs different from the data obtained from experimentation, and the corresponding
outputs have to be evaluated based on the researcher’s knowledge of the system under
study. Then, if the researcher is satisfied with the results, the ANN model can be considered
reliable for use. Later, when new experimental data is available, the model can be validated,
and its database can be enlarged. In the present work, several simulation examples will be
presented to illustrate this point.

3. Materials and Methods
3.1. ANN Models

Two data-based models were developed in order to determine the minimum fluidiza-
tion velocity of inert-biomass particle mixtures inside a gas–solid fluidized bed using a
feed-forward multi-layer perceptron network. This was necessary due to the fact that only
a smaller subset of the training data contained sphericity values for both the solid and
the biomass inside the FB. Therefore, Model 1 was trained with the full data set (219 sets)
and did not contain sphericity as input, and Model 2 was trained only with the subset
(114 sets) which contained sphericity values (Figure 1) and, therefore, sphericity was in-
cluded as an input. The rest of the inputs included densities, particle diameters, and the
biomass fraction of the mixture. Both datasets were augmented with information about the
minimum fluidization velocity when the biomass fraction was null, that is, regardless of
what biomass was entered as input, if the biomass fraction was null, Umf equaled that of
the solid material. Therefore, each model had about 250 datasets in total for training and
testing. All datasets are included in the Supplementary Material (Table S1). MATLAB®

Neural Fitting Tool was the software used to develop both ANN models.
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Figure 1. ANN-Model 2 (bias inputs are omitted from the figure for clarity). Model 1 has the same
architecture but without the two sphericities as inputs.

Two non-linear activation functions were tried: ReLU and sigmoid. Ultimately, the
ReLU was discarded due to poor performance. In addition, the two backpropagation
training algorithms were tested, and the Bayesian regularization was chosen instead of the
Levenberg–Marquardt which showed worse performance. Both the number of hidden lay-
ers and the number of neurons in each one were decided based on a trial and error process.
No need was found to apply any other more complex search method for the optimization
of those parameters. All the details regarding the ANN models are synthesized in Table 2.

Table 2. Complete set of Artificial neural networks (ANN) parameters.

Parameter Model 1 (Without Sphericity) Model 2

Network Type Multi-Layer Feed-Forward (MLFF) Multi-Layer Feed-Forward (MLFF)
Neuron Type Perceptron Perceptron
Inputs 5 7
Output 1 1
Normalization Type Min–Max (−1 to +1) Min–Max (−1 to +1)
Activation Function sigmoid (hidden) and linear (output) sigmoid (hidden) and linear (output)
Training Algorithm Bayesian Regularization Backpropagation Bayesian Regularization Backpropagation
Training Sets 252 257
Number of Hidden Layers 2 2
Num. Of Neurons per Layer 7 and 2 7 and 2
Train Ratio 85% 75%
Validation Ratio N/A N/A
Test Ratio 15% 25%

The procedure to evaluate the ANN’s generalization capability was based on the work
of [50]. Once the number of hidden layers (1 or 2 most likely) and the number of neurons
in each were established, several candidate networks had to be trained and the best models
have to be selected based on their R2 value, for instance. Those few best models will be
used for simulations with input sets different from those of the training and testing sets in
order to assess their generalization capabilities. Among the lot of best R2 ANN models, the
one having a better generalization may not necessarily be the one showing the best fitting
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of the training data (higher R2). Additionally, if none of those ANN models has acceptable
generalization capacity based on the researcher’s knowledge, retraining the lot may solve
the issue. If not, the hyperparameters have to be reset. Both model 1 and model 2 were
developed based on the described iterative procedure.

3.2. Data-Based Model Interpretability

Neural networks are black box models in the sense that they are not interpretable.
This is because a causal relationship between the inputs and outputs cannot be established.
The interpretability of a model is fundamental to the user’s confidence in it, so the user can
be able to trust the model’s predictions [51]. In the case presented here, the interpretability
of the model will be established with a model-agnostic methodology and a post hoc
analysis where, if a certain input is changed and that change modifies the output, then a
causal relationship between both exists. A model agnostic analysis involves separating
interpretations or explanations and the predictions of the model itself. In other words, it is
a model abstraction.

According to [52], a successful causal interpretation must have at least three character-
istics: first, a good predictive model; second, some domain or field knowledge; and third,
the application of a visualization tool such as the partial dependence plot (PDP [53]). The
data-based model’s predictive goodness will be established not only by the experimental
or field data fitting performance (training and testing data) and not showing overfit in
between but also by its capacity to generalize in the presence of new inputs previously
unknown. Moreover, domain knowledge is important for establishing what kind of causal
relationships exist between the model’s inputs. These relationships, in particular, might
affect the measurement of causal relationships between individual inputs and the output
with the PDP.

PDPs show the marginal effect that one or more inputs have over the predicted output
of a machine learning model. Generally, the set of inputs of interest is named XS and the
rest of the inputs will be grouped in the set XC or complement. Then, the PDP of a black
box model will estimate the causal effect of XS on the output Y only if none of the variables
on the complementary set XC is a causal descendant of XS. Otherwise, there will be no clear
causal interpretation obtained with the PDP.

The PDP may be calculated with Equation (35) and consists of averaging all the
training and testing sets (n data points) for the inputs in XC while leaving the inputs
in XS unchanged. Moreover, g represents the data-based model which, in turn, is an
approximation of the real model f, which is not known.

–
g(XS) =

1
n∑n

i=1 g(XS, Xi
C

)
(35)

3.3. Predictive Correlation

The predictive correlation presented in this work is based on Equation (14), which
is the expression also utilized in the work of [32], allowing the inclusion of the biomass
fraction. The mean values of density, diameter, and sphericity were determined with
Equations (16), (17), and (34), respectively:

Ar = A (1−xb)
–
φ

C
Remf+B x1/2

b

–
φ

D
Re2

mf, (36)

where

Ar =
ρg

(–
ρ− ρg

)
g

–
d

3

µ2
g

, (37)

and

Remf =
ρgUmf

–
d

µg
(38)
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The correlation’s parameter optimization was based on the pure random search (PRS)
method [54] which is an algorithm that is independent of the gradient of the problem to
be maximized or minimized. A total of 112 minimum fluidization values obtained from
the literature were used. In this particular case, the goal was to maximize R2. This is
based on generating many sets of the parameters A, B, C, and D from a given probability
distribution, for example, a normal distribution or, in this particular case, a uniform
distribution. Then, every different correlation coefficient set is tested to determine how
well it fits the experimental data set.

3.4. Fitting Performance Assessment

As mentioned previously, the coefficient of determination, R2, of the predicted and
experimental values was the statistical indicator used to show the goodness of fit of the
ANN models and the new correlation. R2 was calculated with Equation (39).

R2= 1−

 ∑N
i=1

(
Umf pred,i −Umf exp,i

)2

∑N
i=1

( –
Umf pred, i −Umf exp,i

)2

 (39)

4. Results
4.1. Models 1 and 2 Training, Testing, and Overall Coefficients of Determination

In this section, the coefficient of determination, R2, will be applied in order to assess
Models 1 and 2′s fitting performance. The ANN training algorithm randomly divides the
complete dataset into two separate subsets: the training set and the testing set. The training
set is used for the ANN training process itself (weights and biases) and the testing set is
used as a measure of how the ANN is expected to perform in the presence of previously
unseen inputs. Generally, the testing set has lower fitting performance when compared to
the training set in terms of its coefficient of determination, as can be observed in Figure 2 for
both models. Broadly speaking, both models fitted the data well. Moreover, Model 2 had a
slightly better fitting performance (0.9906 to 0.9905) when compared to Model 1. Regarding
the training set, Model 2 (with more inputs) presented a better fitting performance than
Model 1 (0.999 to 0.994).
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4.2. Accuracy of the ANN-Based Models and Empirical Correlations

The coefficients of Equation (36) were determined as described in Section 3.3, using
112 minimum fluidization velocity data of binary mixtures. From the adjustment, the
following correlation was determined:

Ar = 1923.384 (1−xb)
–
φ

2.051
Remf+24.357 x1/2

b

–
φ

0.229
Re2

mf (40)

Figure 3 shows the experimental values of Umf compared to the predictions of
Equation (40) and ANN models. There are 112 points used in the comparisons using
the ANN-Model 2 and 214 points for the ANN-Model 1. It is observed that most of the
points of the ANN models are located on the 45◦ line, so it can be concluded that both mod-
els accurately predict the variable of interest. On the other hand, the proposed correlation
presents inaccuracies in the prediction of Umf for low values of the variable. Nevertheless,
the prediction improves with errors of less than 25% for higher velocities.
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In Figure 4, the results of the predictions were compared with a particular set of
Umf values. In this case, the experimental data was taken from the work of [32], for
mixtures of sand (ρF = 2450 kg/m3, dF = 350 µm, φF = 0.94) and rice husk particles
(ρP = 635 kg/m3, dP = 1560 µm, φP = 0.18). The proposed correlation shows limitations in
the accuracy of the Umf prediction. Regarding the ANN models, ANN-Model 1 accurately
reproduces the values of the variable, with an overfit for values of xb greater than 0.6, and
ANN-Model 2 turns out to be accurate for all solid-biomass mixtures.
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4.3. Effect of the Biomass Fraction on the Minimum Fluidization Velocity Umf

Simulations were performed with ANN-Model 1 in order to evaluate the effect of
the biomass fraction on the minimum fluidization velocity by applying the PDP as a
visualization and interpretation tool. In Figure 5, the prediction of Umf as a function of
xb is presented for the case of [31]. The experimental values are shown in dots and the
ANN predictions are shown in continuous lines. As can be seen in Figure 5, there is a direct
relationship between Umf and xb. This is explained because, in contrast to inert materials,
biomass is difficult to fluidize. So, as expected, an increase in the presence of biomass in
the binary mixture is followed by an increase in Umf.
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Furthermore, in Figure 6, the PDP confirms the results previously obtained for the
Paudel and Feng data [31] by extending it for all data: the average effect of xb on Umf is a
direct relationship and this is the expected general behavior of the system. The PDP was
calculated using Equation (41).

–
Umf(xb) =

1
n∑n

i=1 g(xb, Xi
C

)
(41)
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4.4. Effect of Biomass Sphericity on the Minimum Fluidization Velocity

As explained before, ANN-Model 2 incorporates sphericity as an input, so simulations
were performed in order to evaluate the effect of the biomass sphericity on the minimum
fluidization velocity applying the PDP as a visualization and interpretation tool. In Fig-
ure 7a, the prediction of Umf as a function of xb is presented for the cases of [32,55]. The last
author studied the fluidization of mixtures of glass spheres (ρF = 2484 kg/m3, dF = 322 µm,
φF = 1) and sawdust particles (ρP = 433 kg/m3, dP = 625 µm, φP = 0.44). The experimental
values are shown in dots and the ANN predictions are shown in continuous lines. Several
prediction curves are plotted for biomass sphericity values ranging from 0.18 to 0.8 [31] and
0.44 to 0.7 [15]. The results show that Umf decreases with increasing sphericity. This result
is in agreement with the one observed by [29,55]. The last author attributes this behavior to
the lower settling velocity of a particle with lower sphericity for solid/Newtonian fluid
systems. Additionally, in Figure 7b, the PDP confirms the results obtained previously for
the two cases mentioned by extending it for all data: the average effect of sphericity on Umf
is an inverse relationship and this is the expected general behavior of the system. The PDP
was calculated using Equation (42).

–
Umf(xb,φb) =

1
n∑n

i=1 g(xb,φb, Xi
C

)
(42)
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5. Conclusions

This work is based on the development of three predictive tools for determining the
minimum fluidization velocity of biomass and inert particle binary mixtures. In order to
do so, an extensive bibliographical survey was conducted and a database of more than
200 datasets was put together. The first predictive model was a correlation based on the
biomass fraction, the mean particle diameter, the mean density of the mixture, and the
mean particles’ sphericity. Moreover, two ANN models were developed, one considering
the particles’ sphericity and another one without this parameter.

In general, both ANN models accurately predict the minimum fluidization velocity of
the presented biomass-inert binary mixtures better than the developed correlation, with
errors mostly lower than 25%. Specifically, for the data presented in the work of [31],
ANN-Model 1 was applied with biomass fraction inputs ranging from 0 to 1. Even though
the model follows the tendency well along the domain, fitting performance improved for
xb ≥ 0.5. Similar behavior can be observed for ANN-Model 2.

Additionally, the ANN models allowed predicting Umf values different from those
obtained from the literature by varying, for instance, one or more of the inputs while
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leaving the rest unchanged. This allowed determining quantitatively how Umf diminished
with an increase in particle sphericity for the cases of [15,32] confirming the observations
made by other authors. Then, with the aid of the PDP, these two case-specific results were
broadened to the whole domain of data surveyed, thus confirming the trend. Moreover,
the PDP was applied to measure the effect of the biomass fraction on Umf.

In summation, the ANN is a data-based model that can be trained relatively fast,
integrating data from many experiments. It is also accurate to fit the training data, allowing
us to obtain fast simulations and, together with the PDP, it can be applied to determine the
average impact one or more input variables have on the output of the system. On the other
hand, due to the limited experimental data available, it is still challenging to develop a
model that fits the data well and, at the same time, is able to provide reliable predictions for
every possible scenario. Finally, the results of the present work confirm the value of ANN
models as low-cost predictive tools for analyzing binary mixture fluidization processes.
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Nomenclature

Symbol Description

A, B
Coefficients of Noda et al. (1986) [21] (Equation (5)), Wen and Yu (1966) [17]
(Equation (26)), and Si and Guo (2008) [28] (Equation (10)) correlations

Ar Archimedes number, dimensionless
d Diameter of particles, [m]
–
d Average diameter of the mixture, [m]
f Volume fraction of particles, dimensionless
fF,Real Real volume occupied by inert material. It corresponds to zero voidage in the bed
fN In Chiba et al. (1979) [3], number fraction of particles (Equation (20)), dimensionless
Remf Minimum fluidization Reynolds number, dimensionless
Ucf Minimum velocity of complete fluidization, [m/s]

UP,f
In Bilbao et al.(1987) [23], fictitious minimum fluidization velocity of biomass (straw),
(Equation (25)), [cm/s]

Uv,f
In Bilbao et al. (1987) [23], minimum velocity needed for the whole mixture to start
fluidizing (Equation (6)), [m/s]

UB
In Cheung, Nienow and Rowe (1974) [18] equation, minimum fluidization velocity of
particles with a larger diameter in a binary mixture, [m/s]

Umf Minimum fluidization velocity, [m/s]
Ums Minimum spouting velocity, [m/s]

US
In Cheung, Nienow and Rowe (1974) [18] equation, minimun fluidization velocity of
particles with a smaller diameter in a binary mixture, [m/s]

w Mass of particles, [kg]
x Mass fraction of particles, dimensionless

https://www.mdpi.com/article/10.3390/fluids8040128/s1
https://www.mdpi.com/article/10.3390/fluids8040128/s1
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Subscripts
B For bigger particles in a binary mixture (Cheung, Nienow y Rowe, 1974) [18], [µm]
F Inert particles
P Biomass particles
S For smaller particles in a binary mixture (Cheung, Nienow y Rowe, 1974) [18], [µm]
Greek letters
ε Porosity, dimensionless
φ Sphericity, dimensionless
–
φ Average sphericity, dimensionless
ρ Apparent density, [kg/m3]
–
ρ Average density of mixture, [kg/m3]
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