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Abstract: The interfacial instability of a complex fluid in a multiphase flow system is ubiquitous in
both nature and industry. We experimentally investigated the spreading and interfacial instability
dynamics of a binary droplet (a water and 2-propanol (IPA) mixture) on an immiscible (sunflower
oil) pool. For droplets of 40 wt% IPA solution on sunflower oil, fingering instability occurred at
the spreading liquid front. To reveal the interfacial characteristics of the spreading and fingering
processes, we analyzed the interplay among the speed, diameter, and number of fingers on the
spreading front. Based on our observations, the finger length, wavelength between the fingers,
head length, and neck length were quantified. Our experimental results clearly demonstrate that
fingering instability can be driven by the capillary effect for a liquid–liquid system as well as the
Plateau–Rayleigh instability. We hope that our results will inspire further experimental and numerical
investigations to provide deeper insights into the interfacial dynamics of multicomponent droplets in
a liquid pool.

Keywords: fingering instability; binary droplets; droplet spreading

1. Introduction

The wetting, spreading of droplets, and the accompanying fingering instability have
attracted considerable attention as natural phenomena and those that occur in various indus-
tries [1–9]. Understanding the interfacial dynamics is crucial for exploring the impingement
of droplets on solid and liquid substrates [10–13]. To better understand spreading charac-
teristics, the evaporation-induced Marangoni effect has been extensively investigated over
the past few decades [14–35]. For solid substrates, Mouat et al. [20] investigated contact
line dynamics and fingering patterns in volatile liquid mixtures on a silicon wafer. They
demonstrated two distinct regimes of interfacial instability: surface wetting and solutal
Marangoni forces. The spontaneous spreading of a thin volatile film along the surface
of a liquid layer with a higher surface tension has been studied experimentally and the-
oretically by Troian et al. [21–24]. In the case of a deep liquid layer, although previous
studies of the spreading dynamics of non-volatile immiscible thin films on a deep liquid
layer have shown that the spreading front advances in time as t3/4 as predicted by laminar
boundary layer theory, they found that the leading edge of volatile immiscible spreading
films also advances with time as a power law, tα, where α~1/2 [22]. This indicates that
the differences in liquid vapor pressure or spreading coefficient can affect the velocity of
the spreading front and suggests the presence of a universal scaling law. A recent work
by Keiser et al. [25] revealed the instability that was observed when a two-component
drop of water and volatile alcohol is deposited on a bath of sunflower oil. The drop tem-
porarily spreads and spontaneously breaks up into thousands of tiny droplets owing to
the Marangoni effect, which is induced by the evaporation of the IPA component. To
understand the spreading dynamics caused by the concentration gradient of the IPA–water
interface, Kim et al. [26] analyzed the spreading owing to the solutal Marangoni effect in
fully miscible liquids by employing a scaling analysis. Even for non-Newtonian fluids, Ma
et al. [29] discussed fingering instability during Marangoni spreading on a deep layer of
the polymer. For a surfactant-coated droplet, Matar and Troian [35] investigated the linear
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stability of a coupled set of equations describing the Marangoni spreading of a surfactant
monolayer on a thin liquid film. They found that the inclusion of additional forces acting on
the surfactant-coated spreading film could form regions of unfavorable mobility gradients
known to produce finger instabilities in other fluid flows.

Although several researchers have explored the dynamics of the spreading and fin-
gering instabilities associated with the Marangoni effect, more quantitative and predictive
insights into the interfacial instability during the spreading and self-atomization processes
are needed. A better understanding of the spreading and fingering instability characteris-
tics will enable the development of a promising atomization technology for a liquid–liquid
interface that is easy to operate and can produce thousands of microdroplets within a short
time. This study aimed to identify the spreading and fingering instability characteristics
of an evaporating liquid pool. We visualized and quantified the dynamic behavior of IPA
solution droplets on an oil pool. During the spreading process of the released droplet,
the fingering instability in the circumferential and radial directions was characterized on
the spreading front via the capillary and critical instability lengths. These experimental
findings may also be relevant to other fascinating Marangoni-driven dynamics, such as the
swimming of droplets [36] and particles [37], and other interfacial phenomena [38–42].

2. Materials and Methods

Figure 1 represents a schematic of the experimental setup in the present study. The
experimental setup consisted of an oil pool in a Petri dish, a pipette for an injection of
droplets, and a digital camera for a visualization. The droplets were placed manually on the
oil pool. The droplet behavior was captured using a digital video camera (Nikon, D5600)
backlit with an LED light (WTH-C2020, Nissin Electronics Co., Ltd., Hachioji, Japan). To
enhance the contrast, the droplets were dyed blue using food coloring. The obtained images
were processed using the ImageJ software (1.52v) to estimate the spreading and fingering
instability of the droplets. In this study, a 40 wt% 2-propanol (IPA)/water mixture and
sunflower oil were used as the droplet and pools, respectively. In a previous study [33],
we investigated the speed dynamics of 20, 40, 60, and 80 wt% IPA solutions in sunflower
oil. For the 20 wt% IPA solution, the released droplet floated on sunflower oil (no obvious
change occurred even after 20 s of contact). For higher concentrations of IPA solution
(i.e., 60 and 80 wt%), although spontaneous spreading and atomization were observed on
the sunflower oil, the finger length was too short, and the atomized daughter droplet
size was too small to observe and quantify the entire process. To better understand the
spreading and fingering instability dynamics, we focused on the 40 wt% IPA solution.
The depth of the oil pool was fixed at 10 mm. The inner diameter of each Petri dish was
85.7 mm. The droplets released on the oil pool are ≈2.0 mm in diameter. The ambient
temperature and relative humidity were 25 ◦C and 50%, respectively. The droplet motion
was recorded at 60 fps with a spatial resolution of ≈85 µm/pixel.
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the IPA concentration distribution in the spreading film, allowing us to predict the con-
centration. The initial stage of droplet spreading (≈6 s) is darker blue (higher IPA concen-
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Table 1 lists the thermophysical properties of the tested liquids. The density and
kinematic viscosity of sunflower oil were measured. All surface tensions listed in Table 1
are the surface tensions between each liquid and air.

Table 1. Thermophysical properties of the test fluids.

Test Sample Density ρ
(kg/m3)

Kinematic Viscosity
ν (mm2/s)

Surface Tension σ

(mN/m)

Water 1 997 0.89 72
IPA 1 781 2.61 21

Sunflower oil 916 58 32 2

1 Ref. [43]. 2 Ref. [25].

3. Results and Discussion
3.1. Droplet Spreading

Figure 2 shows the effect of 40 wt% IPA solution on sunflower oil. After contact with
oil (time t = 0 s; Figure 2a), the released droplets started wetting and spreading within 1 s
(Figure 2b). Fingering instability and atomization were observed after 6 s (Figure 2c). The
spreading front reaches its maximum diameter after 12 s (Figure 2d). Subsequently, the
spreading front gradually shrunk (Figure 2e) and finally vanished after 26 s (Figure 2f).
During this process, the released droplet forms a wetting film that exhibits fingering at
the spreading front. Furthermore, it is reasonable to assume that brightness corresponds
to the IPA concentration distribution in the spreading film, allowing us to predict the
concentration. The initial stage of droplet spreading (≈6 s) is darker blue (higher IPA
concentration) near the center of the spreading film, which gradually changes to a lighter
shade of blue (lower IPA concentration) in the later stage (≈26 s) with the evaporation of
the IPA component. Based on these results, we quantified the brightness value to analyze
the spreading behavior.
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floated on the pool [29]. Notably, an appropriate amount of water (35 wt% IPA solution) 
plays a critical role in the spontaneous spreading dynamics. In the present case, the sur-
face tensions of sunflower oil and 40 wt% IPA solution in air are 32 and 25 mN/m, respec-
tively, and the interfacial tension is approximately 3 mN/m [25]. Using these figures, the 
initial spreading coefficient in the present case can be 32 − (25 + 3) = 4 mN/m. This indicates 
that the 40 wt% IPA solution spontaneously spreads over the sunflower oil pool initially. 
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(d) 12 s, (e) 18 s, and (f) 26 s, respectively. t = 0 s indicates the time at which the droplet contacted the
oil pool. Scale bar in (a): 20 mm.
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Figure 3 represents the brightness information of the spreading films. The data for
the spreading times of 1, 6, 12, and 18 s correspond to the snapshots in Figure 2. The
brightness changed with time, as shown in Figure 3a, allowing us to quantify the position
of the spreading front on the oil pool, which reached 12 mm at 1 s, 20 mm at 6 s, and
22 mm at 12 s, and shrank subsequently. The brightness fluctuation beyond the spreading
front is due to the pinch-off of the droplets owing to the fingering instability. Figure 3b
represents the brightness decay at the center of the spreading film (R = 0 mm in Figure 3a).
The linear decrease in the brightness value was consistent with the IPA components in
the spreading binary liquid film, which evaporated linearly with time. Consequently, the
evaporation-induced Marangoni force can drive the spontaneous spreading and shrinking
processes [29]. According to a previous analysis [25], it can be assumed that the spreading
coefficient S (=σoa − σsa − σso) [44] becomes positive for the 40 wt% IPA solution and
increases with the increasing IPA concentration, forcing the droplets to stretch and spread
to the outer edge in the early stage. The parameters σoa, σsa, and σso represent the oil–air,
solution–air, and solution–oil interfacial tensions, respectively. For lower concentrations
of IPA solution (<35 wt%), the spreading coefficient was negative, and the droplet floated
on the pool [29]. Notably, an appropriate amount of water (≥35 wt% IPA solution) plays
a critical role in the spontaneous spreading dynamics. In the present case, the surface
tensions of sunflower oil and 40 wt% IPA solution in air are 32 and 25 mN/m, respectively,
and the interfacial tension is approximately 3 mN/m [25]. Using these figures, the initial
spreading coefficient in the present case can be 32 − (25 + 3) = 4 mN/m. This indicates that
the 40 wt% IPA solution spontaneously spreads over the sunflower oil pool initially.
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of the brightness at R = 0 mm (center of spreading film marked as ×). To eliminate the effects of the
injection process, the brightness data from 1 s onwards are plotted. Inset: the film-spreading velocity.

Spontaneous spreading determines the contact line speed. The contact line speed
affected the evaporation rate of the IPA component by increasing the surface area of the
40 wt% IPA solution in air on sunflower oil. Therefore, the evaporation of the IPA com-
ponent can be enhanced using faster contact line speeds for a larger spreading coefficient
(higher IPA concentration), resulting in a stronger Marangoni effect on the spreading film.
To explain this quantitatively, we estimated the Marangoni velocity of the spreading film
for a 40 wt% IPA solution. We assumed competition between Marangoni stress and viscous
stress on the spreading film. The Marangoni and viscous stresses on the film can be de-
scribed by ∆σ

Rmax
and µp

Vm
H , respectively. By balancing the tangential stresses at the interface,

we derived the Marangoni velocity as shown in Equation (1).

Vm ∼ ∆σH
µpRmax

(1)
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where ∆σ is the surface tension deference between the front and center of the spreading
film due to the evaporation, H is the oil-pool depth, µp is the viscosity of the sunflower oil,
and Rmax is the maximum spreading radius. By substituting ∆σ ~ O(1) mN/m, H = 10 mm,
µp = 63 mPa·s, and Rmax = 45 mm into Equation (1), we obtain a Marangoni velocity of
O(10−3) m/s. This estimate is in quantitative agreement with the film-spreading velocity
shown in the inset of Figure 3b.

3.2. Fingering Instability on Spreading Front

During droplet spreading on the oil pool, fingering instability was generated on the
spreading front, as shown in Figure 2c–e. Figure 4 represents the fingering dynamics as
a function of the characteristic length. A typical snapshot of the fingering instability of
one-quarter of a spreading film is shown in Figure 4a. The number of fingers increased and
decreased with the droplet spreading and shrinking, respectively, as shown in Figure 4b.
For one-quarter of the spreading area, when the spreading film was fully developed for
5 s < t < 14 s, over 20 fingers were observed at the spreading front. Notably, capillary-
driven fingering instability is strongly related to the evaporation of the IPA component.
To reveal these fingering characteristics, we quantified the four characteristic lengths
depicted in the inset of Figure 4a: finger length, λr; wavelength, λθ ; head length, D; and
neck length, d. Figure 4c plots the time evolution of these characteristic lengths. For λθ and
d, the experimental data was almost constant during the spreading process, while λr and D
increased with time. This indicates that the instability mechanism must be distinguished
between the circumferential and radial directions.

Fluids 2023, 8, x FOR PEER REVIEW 6 of 10 
 

 
Figure 4. Fingering characteristics on the spreading front. (a) Snapshot of the fingering instability. 
Ri represents the radius from the spreading center to the front. Four characteristic lengths are de-
fined in the close-up view. (b) Relationship between the spreading diameter and finger number on 
the spreading front. (c) Time evolution of the finger length, wavelength, head length, and neck 
length. 

For the circumferential direction, the capillary length of the liquid–liquid (IPA solu-
tion–sunflower oil) interface, λc can be calculated using Equation (2) [1]: 𝜆 ~ ට ఙೞሺఘିఘುಲሻ, (2)

where σso is the interfacial tension between the IPA solution and sunflower oil, ρo is the 
density of sunflower oil, ρIPA is the density of IPA, and g is the gravitational acceleration. 
Figure 5a shows the time evolution of the wavelength between the fingers in the circum-
ferential direction. The wavelength was normalized to the capillary length, as described 
in Equation (2). For σso ~ 3 mN/m [25], ρo = 916 kg/m3, ρs = 781 kg/m3, and g = 9.81 m/s2, the 
predicted wavelength of ≈1.5 mm agrees well with the experimental data. This model al-
lows us to conclude that a higher concentration of IPA leads to lower interfacial tension 
and wavelength [29]. In Figure 5, although we characterized the time evolution of the 
wavelength between the fingers in the circumferential direction by the capillary length for 
the liquid–liquid interface, the experimental data showed a slight increase with time. This 
may be due to the effect of evaporation on the interfacial tension caused by a change in 
the IPA concentration in the spreading film. To verify the effect of interfacial tension dis-
tribution by evaporation, future work is expected to measure the IPA concentration dis-
tribution during film spreading. 

In the radial direction, the pinch-off process is reminiscent of the classical Plateau–
Rayleigh instability of liquid cylinders [45]. Based on this assumption, the experimental 
results were compared with those of the theoretical model. The key expression that de-
scribes the development of the Rayleigh–Plateau instability is the dispersion relation 

Figure 4. Fingering characteristics on the spreading front. (a) Snapshot of the fingering instability. Ri

represents the radius from the spreading center to the front. Four characteristic lengths are defined
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spreading front. (c) Time evolution of the finger length, wavelength, head length, and neck length.
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For the circumferential direction, the capillary length of the liquid–liquid (IPA solution–
sunflower oil) interface, λc can be calculated using Equation (2) [1]:

λc ∼
√

σso

(ρo − ρIPA)g
(2)

where σso is the interfacial tension between the IPA solution and sunflower oil, ρo is the
density of sunflower oil, ρIPA is the density of IPA, and g is the gravitational acceleration.
Figure 5a shows the time evolution of the wavelength between the fingers in the circumfer-
ential direction. The wavelength was normalized to the capillary length, as described in
Equation (2). For σso ~ 3 mN/m [25], ρo = 916 kg/m3, ρs = 781 kg/m3, and g = 9.81 m/s2,
the predicted wavelength of ≈1.5 mm agrees well with the experimental data. This model
allows us to conclude that a higher concentration of IPA leads to lower interfacial tension
and wavelength [29]. In Figure 5, although we characterized the time evolution of the
wavelength between the fingers in the circumferential direction by the capillary length
for the liquid–liquid interface, the experimental data showed a slight increase with time.
This may be due to the effect of evaporation on the interfacial tension caused by a change
in the IPA concentration in the spreading film. To verify the effect of interfacial tension
distribution by evaporation, future work is expected to measure the IPA concentration
distribution during film spreading.
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Figure 5. Time evolution of characteristic finger length in the (a) circumferential direction and
(b) radial direction. The solid line in (a) and dashed line in (b) indicate the capillary length of
the liquid–liquid (IPA solution–sunflower oil) interface predicted using Equation (2) and the most
unstable wavelength predicted by the Plateau–Rayleigh instability in Equation (4), respectively.

In the radial direction, the pinch-off process is reminiscent of the classical Plateau–
Rayleigh instability of liquid cylinders [45]. Based on this assumption, the experimental
results were compared with those of the theoretical model. The key expression that
describes the development of the Rayleigh–Plateau instability is the dispersion relation
between the growth rateωand wave number k (=2π/λ, where λ is the wavelength on liquid
cylinder interface). For axisymmetric capillary waves on a liquid cylinder with radius R0:

ω2 =
σ

ρR3
0

I1(kR0)

I0(kR0)
kR0

(
1 − (kR0)

2
)

, (3)

where σ is the surface tension of the liquid cylinder and I0 and I1 are the modified Bessel
functions of the first kind. From this relationship, if the right-hand side of Equation (3) be-
comes positive (kR0 < 1), the perturbation grows exponentially and eventually forces the sys-
tem to become unstable. The fastest growing mode occurred for kR0 = 0.697, i.e., when the
wavelength of the disturbance λcrit ~ 9.02R0. By substituting R0 = D/2 into λcrit/R0 ~ 9.02,
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we calculated the critical wavelength of the Plateau–Rayleigh instability, λcrit, according to
Equation (4) [7,45].

λcrit
D

∼ 4.51, (4)

Figure 5b shows the time evolution of the finger length in the circumferential direction.
The finger length was normalized to the critical wavelength predicted using Equation (4).
Our experimental results roughly agree with theoretical predictions. A reason for the slight
difference between the experimental data and theoretical values is the interplay between
the fingers. Although the Plateau–Rayleigh instability assumes only one liquid cylinder,
multiple fingers exist, and neighboring fingers may dynamically interact in the present
case. Another possible reason for this is the effect of the flow field on the spreading film.
For an evaporation-driven flow near the spreading front, the flow fluctuation generated
pressure fluctuations and enhanced the interfacial deformation for finger formation.

One fingering instability application resulted in tiny and myriad daughter droplets
after the pinch-off. Figure 6a shows the generation frequency of daughter droplets owing to
fingering instability. In this study, we analyzed five representative fingers. According to our
results, the majority of the daughter droplets measured less than 1 mm, with frequencies in
the range of 1–4 Hz. By counting the droplets produced from five representative fingers,
Figure 6b shows the probability density function (PDF) histogram for the daughter droplet
diameter. For all 131 data points associated with the five representative fingers, the average
diameter and standard deviation of the daughter droplets were 0.7 and 0.2 mm, respectively.
According to Figure 4b, nearly one-hundred fingers occupied the entire spreading front
during the spreading phenomenon; therefore, the total number of daughter droplets can
exceed 2000 for the entire spreading circle within tens of seconds [29].
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Figure 6. Atomization characteristics of the fingering instability. (a) Generation frequency of the
daughter droplets for five representative fingers during the spreading process; each finger can be
distinguished by the plot color. (b) PDF histogram for experimental data in (a). The number of
samples was 131.

4. Conclusions

We experimentally investigated the spontaneous spreading and fingering instability
of binary droplets on sunflower oil. The droplets released from a 40 wt% IPA solution
exhibited spontaneous spreading and fingering instability and underwent a pinch-off
process. The spreading behavior of the 40 wt% IPA solution was quantitatively studied.
The linear decrease in the brightness of the spreading film could be due to evaporation of the
IPA component in the spreading binary liquid film. This evaporation-induced Marangoni
force drives the spreading and shrinking processes by temporarily changing the surface
tension of the spreading film. We identified the interplay between the spreading diameter
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and number of fingers for fingering instability on the spreading front. To elucidate the
instability mechanism, the characteristic circumferential and radial lengths of the spreading
front are discussed. In the circumferential direction, the capillary length for the IPA solution–
sunflower oil interface can reasonably characterized the wavelength between the fingers.
In the radial direction, the pinch-off process is described by the classical Plateau–Rayleigh
instability of the liquid cylinders. Our experimental results agreed with the theoretical
results. The final feature of the fingering instability phenomenon is the pinch-off dynamics.
Owing to fingering instability, a myriad of tiny droplets was produced. Most daughter
droplets measured less than 1 mm and had frequencies in the range 1–4 Hz. Thus, the
generated daughter droplets were distributed across hundreds of micrometers. For the
entire spreading film, this spontaneous pinch-off process enables the generation of myriad
daughter droplets using a simple sequence.

Although we attempted to characterize the fingering dynamics on the spreading front
of the binary droplets on the oil pool as described above, it was difficult to quantify the
flow field induced by the Marangoni effect. The flow field in a spreading micrometer-thick
film on an oil pool can play an important role in the inception of fingering instability;
however, this is beyond the scope of this study. To achieve this, the flow fields within the
thin film during the spreading and evaporation of the IPA components must be visualized.
This investigation represents a step toward understanding and predicting the fingering
instability dynamics of spreading binary droplets on an oil pool to develop a promising
atomization technology.
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